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ABSTRACT 

 Most response spectrum-based modal combination rules used to estimate linear peak responses of 

multi-degree-of-freedom systems to specified seismic hazard assume that the nonstationary peak factors 

relating the root-mean-square responses to the largest response peaks are identical for the modal and 

overall system responses. This study accounts for the role of nonstationary peak factors by modifying an 

existing modal combination rule (a) which has been formulated for the peak value of an overall system 

response that can be expressed as a linear combination of the floor displacements in a lumped mass, 

classically damped, multistoried structure, and (b) which uses the hazard-consistent response spectrum 

ordinates to account for modal cross-correlation. To this end, available models for the normalized peak 

factors of the relative displacement and relative velocity responses of a base-excited                         

single-degree-of-freedom system (where normalization is with respect to the peak factor for ground 

acceleration) are used. Also, the normalized peak factor for overall system response is modelled in terms 

of the normalized peak factors for modal responses. The proposed rule is illustrated in the case of floor 

displacement and story shear responses with the help of five buildings and six earthquake excitations in 

comparison with the existing modal combination rules. 

KEYWORDS: Modal Combination Rule; Ground Acceleration Peak Factor; Relative Displacement 
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INTRODUCTION 

 It is considered acceptable and convenient in the case of multi-degree-of-freedom (MDOF) systems to 

estimate the largest (elastic) peak response by using the response spectrum-based modal combination 

rules. These rules attempt to estimate the overall maximum of the desired response in terms of its modal 

maxima, which occur at different instants of time in response to a given ground motion. Starting from the 

sum of absolute modal maxima (SUM) method by Biot (1943), several attempts have been made to 

suitably combine the modal maxima of the desired response, e.g., the square-root-of-the-sum-of-the-

squares (SRSS) method by Goodman et al. (1955), grouping and ten percent methods by USNRC (1976), 

complete-quadratic-combination (CQC) method by Wilson et al. (1981), modified CQC method by Der 

Kiureghian and Nakamura (1993), and complete-SRSS (CSRSS) method by Heredia-Zavoni (2011). 

 The basic differences in various modal combination rules relate to how modal cross-correlation 

arising from the close spacing of modes as well as from modes being stiff to the ground motion has been 

accounted for. The SUM method of Biot (1943) assumed various modal responses to be perfectly 

correlated on one extreme, while the SRSS method of Goodman et al. (1955) assumed those to be 

completely uncorrelated on the another extreme. Jennings (1958), Merchant and Hudson (1962), and 

O’Hara and Cunnif (1963) attempted to reduce the non-conservatism of the SRSS estimates by 

appropriately combining the SUM and SRSS methods. Rosenblueth and Elorduy (1969) were the first to 

account for modal cross-correlation in closely spaced modes without adopting any ad hoc measures and 

by formulating correlation coefficients for the responses in different pairs of modes. USNRC (1976) 

proposed the grouping and ten percent methods by assuming the responses in closely spaced modes to be 

fully correlated and the responses in the remaining modes and various groups of closely spaced modes to 

be uncorrelated. The CQC method by Der Kiureghian (1981) and Wilson et al. (1981) accounted for the 
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modal cross-correlation in closely spaced modes through correlation coefficients formulated by using 

stationary random vibration theory. Lindley and Yow (1980) considered the stiff or high-frequency modes 

to be fully correlated with each other and the remaining modes to be uncorrelated with each other and 

with the high-frequency modes. Singh and Mehta (1983) accounted for both types of modal cross-

correlation (due to the close spacing of modes as well as due to the modes being stiff to the ground 

motion) by proposing two formulations: one based on the mode displacement approach and another based 

on the mode acceleration approach. Their mode acceleration formulation enabled the truncation of 

significant high-frequency modes without involving any ‘missing-mass effect’. Gupta (1990) provided a 

heuristic solution to the problem of correlation between high-frequency modes by (a) considering each 

modal response to be composed of rigid and damped periodic parts, (b) by considering the rigid parts of 

different modes to be fully correlated, and (c) by accounting for the correlation between the damped 

periodic parts of different modes as in the CQC method. Singh and Maldonado (1991) modified the mode 

acceleration formulation of Singh and Mehta (1983) by considering the pseudo-static response in high-

frequency modes and by using the approach of Anagnostopoulos (1982) to obviate the need of relative 

acceleration spectra consistent with the specified seismic hazard. Der Kiureghian and Nakamura (1993) 

followed a similar approach, but they proposed the use of a first-order approximation of hazard-consistent 

power spectral density function (PSDF) instead of hazard-consistent spectral velocity (SV) ordinates in 

the calculation of correlation coefficients. Gupta (1996) proposed an alternative to the mode-displacement 

formulation of Singh and Mehta (1983) (requiring the hazard-consistent SV ordinates to account for 

modal cross-correlation), while using the partial fractions of the modal cross-correlation term in the PSDF 

of the response process as in Gupta and Trifunac (1990). Heredia-Zavoni (2011) proposed a formulation 

similar to that of Gupta (1996), wherein a hazard-consistent PSDF is needed to account for modal cross-

correlation (through characteristic frequency). Detailed reviews of some of the above methods have been 

provided by Gupta (2018) and Chopra (2021). 

 Almost all the modal combination rules mentioned above consider the modal maxima to be estimated 

via response spectrum ordinates, and therefore those assume the peak factors to be identical for the modal 

and overall responses. Here, peak factor refers to the nonstationary peak factor, which is defined as the 

ratio of the largest peak value in the given nonstationary process to the root-mean-square (RMS) value of 

the process assumed to be a stationary process. As argued by Ghumadwar and Gupta (2025), a 

nonstationary peak factor is the product of stationary peak factor and nonstationarity factor. Whereas a 

stationary peak factor accounts for the scaling up of the RMS value to the largest peak value in the 

process assumed to be a stationary process, a nonstationarity factor accounts for the scaling up/down of 

the largest peak value in the stationary process to that in the given nonstationary process. Further, the 

nonstationarity factors of ground acceleration and response processes are different in that the 

nonstationarity factor of a response process also accounts for the nonstationarity factor due to the finite 

operating time of the excitation (besides accounting for the inherent nonstationarity in the ground 

acceleration). It has been shown by Pal and Gupta (2021a) and Ghumadwar and Gupta (2025) that for the 

special situation of absolute floor acceleration response being the overall system response, the estimates 

based on the assumption of identical peak factors in a modal combination rule can be significantly 

improved by duly accounting for the role of peak factors through the modelling of normalized peak 

factors (where normalization is with respect to the peak factor of ground acceleration process). 

 Most of the modal combination rules developed since the modified CQC rule by Der Kiureghian and 

Nakamura (1993) require the use of hazard-consistent PSDF to account for modal cross-correlation. Due 

to this, the simplicity and convenience of using response spectrum-based modal combination rules are 

compromised. However, as shown by Singh and Mehta (1983), Gupta (1990), Singh and Maldonado 

(1991), and Gupta (1996), it is possible to account for the modal cross-correlation without using hazard-

consistent PSDF, provided the hazard-consistent SV ordinates can be reliably obtained from the specified 

PSA spectrum. The approximation of SV ordinates as pseudo spectral velocity (PSV) ordinates is 

considered acceptable only at the intermediate periods. This study considers the estimation of hazard-

consistent SV ordinates as proposed by Gupta (2009), Samdaria and Gupta (2018), and Pal and Gupta 

(2021b). 

 In this study the response spectrum-based modal combination rule proposed by Gupta (1996) for the 

peak responses of lumped mass, classically damped, base-excited multistoried structures is modified to 

include the role of various (nonstationary) peak factors. This rule is only for those overall responses that 

can be expressed as the linear combinations of floor displacements. For the proposed modification, the 

normalized peak factors for the relative displacement and relative velocity responses of a base-excited 
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single-degree-of-freedom (SDOF) system (where normalization is with respect to the peak factor for 

ground acceleration) are modelled as in Pal and Gupta (2021a) and Ghumadwar and Gupta (2025), 

respectively. Also, an expression for the normalized peak factor for overall response is developed in terms 

of the known normalized peak factors for modal responses. Finally, a numerical study is carried out to 

illustrate the performance of the proposed modal combination rule vis-a-vis the existing modal 

combination rules in the case of floor displacement and story shear responses of five example buildings 

under six example seismic hazards. 

PEAK FACTOR-BASED MODAL COMBINATION RULE 

 The largest peak 
peakr  in any response ( )r t  of a classically damped, linear system with the lumped 

masses, 
1m , 

2m , …, 
nm , to the seismic hazard characterized by a set of design spectra may be estimated 

conveniently by using a response-spectrum based modal combination rule. For the situation where the 

response ( )r t  can be expressed as a linear combination of the floor displacements, this study considers 

the modal combination rule proposed by Gupta (1996) for the estimation of 
peak .r  When the normalized 

nonstationary peak factors for various responses (where normalization is with respect to the nonstationary 

peak factor for ground acceleration) are not assumed to be equal, the rule proposed by Gupta (1996) may 

be modified to  
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In this equation, 
j  denotes the normalized amplitude of the response ( )r t  in the j th mode. For 

example, if the response ( )r t  denotes the relative displacement at the i th floor level or shear force in the 

i th story, 
j  becomes equal to ( )j

i  (for the displacement response) or 2 ( )n j

j l ll i
m 

  (for the shear force 

response). Further, 
j , 

j , and ( )j

i  respectively represent the natural frequency, modal participation 

factor, and i th element of the mode shape in the j th mode of the system; 
rp  represents the 

nonstationary peak factor 
rp  for the response process ( )r t  after normalization with respect to the 

nonstationary peak factor 
Gp  for the given ground acceleration process; D

jp  and V

jp  respectively 

represent the normalized versions of the nonstationary peak factors D

jp  and V

jp  for the relative 

displacement and relative velocity responses of the SDOF oscillator (of 
j  frequency and 

j  damping 

ratio) which is excited by the given ground acceleration process at its base; and SD j
 and SVj

 

respectively represent the spectral displacement (SD) and SV ordinates at the frequency 
j  

corresponding to the specified design spectrum for the damping ratio 
j . Further, the coefficients 

jkC  

and 
jkD  are expressed as  
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with .k j    

 It may be observed that when the normalized peak factors, ,rp  ,D

jp  and ,V

jp  are assumed to be 

equal, Equation (1) will give the conventional estimates of 
peak .r  Same estimates will be obtained by 

alternatively assuming the normalized peak factors to be equal to unity.  
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NORMALIZED PEAK FACTORS FOR MODAL RESPONSES 

 The response ( )j t  of the modal (SDOF) oscillator in the j th mode (of 
j  frequency and 

j  

damping ratio), which is excited by the given ground acceleration ( )z t  at its base, is governed by the 

following equation:  

 2( ) 2 ( ) ( ) ( ) 1 2j j j jj j
t t t z t j … n              (5) 

where ( )
j

t  and ( )
j

t  respectively denote the first and second derivatives of ( ).j t  Assuming the 

response ( )j t  to be a stationary process, the PSDF ( )S   of this process is obtained from the PSDF of 

the ground acceleration process ( )zS   as  
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is the transfer function relating the response ( )j t  to the input ( ).z t  Further, the PSDF ( )zS   of the 

ground acceleration process is expressed in terms of the Fourier spectrum ( )Z   of ground acceleration 

( )z t  as  
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where the expectation operator [ ]E   may be applied via the smoothening of 
2

( )Z   over frequency ,  

and the strong-motion duration 
sT  of the ( )z t  record may be assumed to denote the duration of the 

(stationary) ground acceleration process. 

 The nonstationary peak factor for the expected value of the largest peak in ground acceleration (= 

max ( )
t

z t  ), i.e., PGA, is expressed as  
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z
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where 
rmsz  is the RMS value of the ground acceleration process. It is obtained from the PSDF ( )zS   of 

the process (see Equation (8)), with strong-motion duration 
sT  assumed to be same as that defined by 

Trifunac and Brady (1975), by taking the square root of the area under ( ).zS   Further, the nonstationary 

peak factor for the expected value of the largest relative displacement response (= max ( )jt
t  ), i.e., SD j

 is 

expressed as  
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where 
,rmsj  denotes the RMS value of the relative displacement response. This is obtained by taking the 

square root of the area under the PSDF ( )S   defined in Equation (6). Similarly, the nonstationary peak 

factor for the expected value of the largest relative velocity response (= max ( )jt
t  ), i.e., SVj

 is expressed 

as  
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where ,rmsj  denotes the RMS value of the relative velocity response. This is obtained by taking the 

square root of the area under the corresponding PSDF ( )S

  (= 2 ( )S  ).  

 On normalizing D

jp  and V

jp  by ,Gp  the normalized (nonstationary) peak factors D

jp  and V

jp  are 

obtained for the expected values of the largest relative displacement and relative velocity responses in the 

j th mode.  

FORMULATION OF NORMALIZED PEAK FACTOR FOR OVERALL RESPONSE 

 The response ( )r t  may be expressed in terms of the responses in different undamped modes of the 

system as 
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with  

 ( ) ( )j j j jr t t    (13) 

If the modal responses ( )jr t  and ( )kr t  in the j th and k th modes, respectively, are assumed to be 

statistically independent and the peak factors for the modal responses are assumed to be same as the peak 

factor for the response ( ),r t  the peak response 
peakr  may be expressed under the SRSS rule as  
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where 

 
peak SDj j j jr     (15) 

represents the peak value of the modal response ( ).jr t  

 The peak value 
peakr  is also related to the RMS value 

rmsr  of the response process ( )r t  (which is 

estimated from the PSDF ( )zS   of the ground acceleration process by using the stationary random 

vibration theory) through the nonstationary peak factor 
rp  as  
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On ignoring the modal cross-correlation terms, the RMS value 
rmsr  may be expressed as (Gupta, 1996)  
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On using Equation (17) in Equation (16) and normalizing the peak factors, 
rp  and ,D

jp  to 
r

p  and ,D

jp  

respectively, the peak response 
peakr  may be expressed as  
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Equation (15) is now substituted in Equation (14), and the so-obtained expression of the peak response 

peakr  is compared with that in Equation (18) to give the normalized peak factor 
r

p  for the response 

process ( )r t  as  
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 Following a few manipulations, the preceding expression for 
r

p  may alternatively be written as  
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and  

 ,

D

r j jp p  (22) 

In Equations (20)–(22), the weight 
jw  is a measure of the relative contribution of the j th mode in the 

normalized peak factor 
rp  for the response process ( ),r t  and 

,r jp  denotes the normalized peak factor for 

the response process ( ).jr t  It may be mentioned that the expression for the normalized peak factor 
rp  in 

the case of the displacement at the i th floor level (see Equations (20)–(22) with ( )j

j i  ) is similar to 

that of the normalized nonstationarity factor defined by Pathak and Gupta (2017). 

 The expression of the normalized peak factor 
rp  in Equation (20) is based on the assumptions that (a) 

when the modal cross-correlation is negligibly small, the SRSS approximation of the peak value of the 

response ( )r t  is a reasonable approximation, and that (b) the normalized peak factor 
rp  is insensitive to 

the relative extent of modal cross-correlation in the RMS value of ( ).r t  These assumptions usually are not 

true, and hence Equation (20) may not give reliable estimates of the normalized peak factor .rp  

Therefore, a generalized form of Equation (20) is attempted in this study, wherein instead of the power of 

2 on the weights and peak factors, a power of q is assumed, and the value of the parameter q is 

determined through calibration using the actual peak factors. Accordingly, the normalized peak factor 
rp  

is considered as  
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,

1
qn
j

qq
jr r j

w

p p
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where the parameter q is determined for various types of responses with the help of a numerical exercise.  

CALIBRATION OF PARAMETER q  

1. Example Buildings and Excitations 

 As shown in a similar study by Pal and Gupta (2021a), the value of parameter q minimizing error 

between the actual and estimated responses (to a zero value most of the times) varies with the floor/story 

level, ground motion, and building considered. However, most of these values of q are around 2, and thus, 

it seems reasonable to consider a large range of building and ground motion combinations and to 

determine that value of q which minimizes the RMS error computed over all the floors/stories of the 

buildings in these combinations, for the modal combinations rule given in Equation (1). To this end, same 

30 building and ground motion combinations are used as in Ghumadwar and Gupta (2025). These 

combinations correspond to six example ground motions listed in Table 1 and five example buildings. 

Three of the example buildings are symmetric, shear buildings with lumped masses and massless 

columns: (a) a 24-story building BD1 with a fundamental period of 2 s; (b) a 15-story building BD2 with 

a fundamental period of 1.2 s; and (c) a 5-story building BD3 with a fundamental period of 0.51 s. Table 

2 gives the floor masses and story stiffnesses, and Table 3 gives the natural frequencies for these 

buildings. The remaining two example buildings are torsionally coupled shear buildings with massless 

columns and the centers of mass of different floors lying on one vertical axis: (a) a 7-story building BD4 

with the dimensions of 2025 m for the top four floors and 2633 m for the bottom three floors, and 
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having a fundamental period of 0.5 s; and (b) a 15-story building BD5 with the dimensions of 25 100 m 

uniformly for all the floors, and having a fundamental period of 1.13 s. Tables 4 and 5 give the floor 

masses, radii of gyration (about the centres of mass), translational story stiffnesses in the x- and              

y-directions (which are aligned with the principal axes of resistance in the stories), torsional story 

stiffnesses, and eccentricities in the x- and y-directions for BD4 and BD5, respectively. Table 6 gives the 

natural frequencies of these buildings. All the five example buildings are assumed to be classically 

damped with 5%-damping in all the modes.  

Table 1: Details of example ground motions considered 

S. No. Name of Earthquake Recording Site Location Comp. 

1 1968 Borrego Mountain Earthquake 
Engineering Building, Santa Ana, 

Orange County 
S04E 

2 1940 Imperial Valley Earthquake 
El Centro, Imperial Valley Irrigation 

District 
S00E 

3 1952 Kern County Earthquake Taft Lincoln School Tunnel N21E 

4 1966 Parkfield Earthquake Array No. 5, Cholame, Shandon N05W 

5 1971 San Fernando Earthquake 
Utilities Building, 215 West Broadway, 

Long Beach 
N90E 

6 1985 Michoacan earthquake SCT Station, Mexico City N90E 

Table 2: Floor masses and story stiffnesses of example buildings BD1, BD2, and BD3 

Floor Level 
Floor Mass (t) 

Story No. 
Story Stiffness (kN/mm) 

BD1 BD2 BD3 BD1 BD2 BD3 

1 7426 280 166 1 6650 525 290 

2 7426 200 166 2 6260 536 290 

3 6918 200 166 3 5880 536 290 

4 6970 200 166 4 5880 536 290 

5 5849 200 141 5 5510 536 290 

6 5587 200 

 

6 5480 536 

 

7 5569 200 7 5480 536 

8 4063 200 8 5100 536 

9 3678 200 9 5010 536 

10 3678 200 10 5010 536 

11 3678 200 11 4960 536 

12 3415 200 12 4920 536 

13 3415 200 13 4920 536 

14 2855 200 14 4720 536 

15 2469 200 15 4670 536 

16 2469 

 

16 4670 

 

17 2329 17 4610 

18 1769 18 4220 

19 1769 19 4220 

20 1524 20 4260 

21 1278 21 4240 

22 1261 22 4260 

23 928 23 4250 

24 771 24 4420 

Table 3: Natural frequencies of example buildings BD1, BD2, and BD3 

Mode No. 
Frequency (rad/s) 

BD1 BD2 BD3 

1 3.14 5.24 12.23 

2 7.82 15.62 35.57 

3 12.55 25.74 55.72 

4 17.48 35.46 71.02 

5 22.06 44.69 80.44 
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6 27.03 53.45 

 

7 31.25 61.79 

8 35.83 69.69 

9 39.84 77.04 

10 43.86 83.72 

11 47.66 89.57 

12 50.86 94.49 

13 54.15 98.40 

14 56.33 101.24 

15 58.88 102.96 

16 61.59 

 

17 66.06 

18 69.80 

19 72.86 

20 77.86 

21 83.24 

22 91.06 

23 103.23 

24 121.53 

Table 4:  Floor masses, radii of gyration, translational and torsional story stiffnesses, and 

eccentricities of example building BD4 

Floor  

Level 

Floor  

Mass 

(t) 

Radius  

of  

Gyration 

(m) 

Story  

No. 

Translational  

Stiffness 

(kN/mm) 

Torsional  

Stiffness 

(kN-m/rad) 

Eccentricities 

(m) 

x-Dir y-Dir x-Dir y-Dir 

1 1150 12.015 1 5361 5229 1100×106 3.142 4.621 

2 1150 12.015 2 5240 5083 1001×106 3.142 4.621 

3 1150 12.015 3 4998 4792 948×106 3.142 4.621 

4 800 9.242 4 3424 3112 278×106 2.218 2.403 

5 800 9.242 5 3100 2697 242×106 1.848 2.403 

6 800 9.242 6 2696 2179 197×106 1.848 2.403 

7 800 9.242 7 2212 1392 144×106 1.848 2.403 

Table 5: Floor masses, radii of gyration, translational and torsional story stiffnesses, and 

eccentricities of example building BD5 

Floor 

Level 

Floor 

Mass 

(t) 

Radius of 

Gyration 

(m) 

Story 

No. 

Translational 

Stiffness 

(kN/mm) 

Torsional 

Stiffness 

(kN-m/rad) 

Eccentricities 

(m) 

x-Dir y-Dir x-Dir y-Dir 

1 792 29.76 1 1971 2608 2950×106 2.976 2.976 

2 768 29.76 2 1914 2391 2865×106 2.887 2.887 

3 744 29.76 3 1857 2456 2779×106 2.827 2.827 

4 721 29.76 4 1799 2381 2694×106 2.738 2.738 

5 705 29.76 5 1742 2306 2608×106 2.649 2.649 

6 681 29.76 6 1685 2229 2522×106 2.559 2.559 

7 657 29.76 7 1628 2154 2437×106 2.470 2.470 

8 634 29.76 8 1571 2077 2351×106 2.381 2.381 

9 610 29.76 9 1514 2003 2266×106 2.292 2.292 

10 586 29.76 10 1457 1928 2180×106 2.232 2.232 

11 570 29.76 11 1399 1851 2095×106 2.143 2.143 

12 546 29.76 12 1342 1776 2009×106 2.053 2.053 

13 523 29.76 13 1285 1701 1924×106 1.964 1.964 

14 499 29.76 14 1228 1624 1838×106 1.875 1.875 

15 475 29.76 15 1183 1563 1770×106 1.786 1.786 
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Table 6: Natural frequencies of example buildings BD4 and BD5 

Mode  

No. 

Frequency  

(rad/s) 
Mode  

No. 

Frequency  

(rad/s) 
Mode  

No. 

Frequency  

(rad/s) 

BD4 BD5 BD4 BD5 BD5 

1 12.51 5.55 16 100.66 57.13 31 96.63 

2 14.63 6.32 17 108.52 59.48 32 96.11 

3 18.85 7.34 18 113.35 60.14 33 97.66 

4 29.26 15.08 19 122.42 67.64 34 97.81 

5 35.00 17.19 20 129.37 68.48 35 98.41 

6 42.71 19.91 21 156.85 68.93 36 102.91 

7 45.86 24.75 22  74.52 37 106.38 

8 55.83 28.26 23 77.26 38 106.94 

9 63.22 32.66 24 79.41 39 109.84 

10 67.50 34.18 25 80.59 40 111.68 

11 75.39 39.05 26 85.03 41 113.29 

12 77.23 43.27 27 85.81 42 119.07 

13 88.56 45.11 28 89.32 43 123.56 

14 91.21 49.50 29 90.20 44 126.89 

15 96.63 51.99 30 91.90 45 129.06 

 It may be mentioned that (a) the Borrego Mountain motion has energy distributed in a broadband of 

0.7–9.5 s and a dominant period of 5.65 s, (b) the El-Centro motion has energy distributed in a broadband 

of 0.2–3 s and a dominant period of 0.47 s, (c) the Kern County motion has energy distributed in a 

broadband of 0.2–7 s and a dominant period of 0.35 s, (d) the Michoacan motion has energy distributed in 

a narrowband of 1.6–3 s and a dominant period of 2 s, (e) the Parkfield motion has energy distributed in a 

narrowband of 0.25–0.6 s and a dominant period 0.28 s, (f) the San Fernando motion has energy 

distributed in a narrowband of 4–7 s and a dominant period of 5.65 s (Ghumadwar and Gupta, 2025).  

 Six ensembles of 259 ground motions each are generated corresponding to the seismic hazards 

represented by the 5%-damping PSA spectra of the six example ground motions by making a set of 259 

recorded ground motions compatible with these PSA spectra as in Mukherjee and Gupta (2002). The set 

of 259 ground motions considered has been chosen by Saifullah and Gupta (2020) from the database of 

1482 accelerograms recorded during the 106 earthquake events that occurred in the western region of 

U.S.A. between 1931 and 1984. The details regarding the database are given in Lee and Trifunac (1987). 

The chosen ground motions are characterized by peak ground acceleration (PGA) > 0.15g, epicentral 

distance ranging from 4 to 62 km, earthquake magnitude ranging from 4.5 to 6.9, and 
sT  (as defined in 

Trifunac and Brady (1975)) ranging from 1.8 to 42 s. It may be noted that the motions in each of the six 

ensembles generated are compatible with the same 5%-damping PSA spectrum, which varies from 

ensemble to ensemble.  

2. Computation of Actual and Estimated Peak Responses 

 Each of the five example buildings is subjected to the (spectrum-compatible) ground motions of the 

six ensembles (in the x-direction for BD4 and BD5), and the peak response of a floor/story is obtained for 

a building-ensemble combination by averaging the peak responses obtained for that floor/story from the 

time-history analyses of the building under the excitation of the 259 motions of the ensemble. Thus, a 

total of 66 values of peak floor displacements or peak story shears are obtained (which are in the             

x-direction for BD4 and BD5) for each of the six seismic hazards, where a seismic hazard is represented 

by the 5%-damping PSA spectrum averaged over the 259 motions of the corresponding ensemble. Let the 

value of a peak floor/story response under a seismic hazard be denoted by act

peak( ) .r   

 For the estimated value est

peak( )r  of the peak floor/story response, the input spectrum data to the modal 

combination rule in Equation (1) is obtained by averaging the 5%-damping SD and SV spectra over the 

set of 259 (spectrum-compatible) motions of the ensemble for the seismic hazard under consideration. 

Further, the input normalized modal peak factors (i.e., ,D

jp  ,V

jp  j = 1, 2,…  n) are obtained by averaging 

the 259 actual values of these peak factors determined for the set of 259 motions of the ensemble, where 
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the actual values of these peak factors for the j th mode are obtained for an ensemble motion by 

computing the nonstationary peak factors ,Gp  ,D

jp  and V

jp  as in Equations (9), (10), and (11), 

respectively, for the oscillator of 
j  frequency and 

j  damping ratio, and then by normalizing the         

so-obtained D

jp  and V

jp  values with respect to the 
Gp  value. These input spectrum and peak factor data 

are now used in Equation (23) for a given value of q to obtain the normalized peak factor 
rp  for the 

response ( )r t  being considered. Finally, the peak floor/story response est

peak( )r  is estimated (using 

Equation (1)) to give 66 values of peak floor displacements or peak story shears for a seismic hazard and 

q value. These calculations are carried out for different values of the parameter q, considered at the 

interval of 0.1 in the 1–5 range, to arrive at the optimum values of q for the floor displacement and story 

shear responses.  

3. Optimum Values of q  

 For a given value of q, the error associated with the estimated peak value est

peak( )r  is determined by 

comparing it with the actual peak value act

peak( )r  for all the 396 combinations of floor/story and seismic 

hazard in the cases of floor displacement and story shear responses, and those 396 error values are used to 

determine the RMS error in each of these cases as  

 

1
22

act est396
peak peak

act
1 peak

( ) ( )
100 396

( )

r r
e

r

      
    

  (24) 

The values of the RMS error e are determined for all the q values considered, and the variation of e with 

the parameter q is plotted for each of the two response cases (i.e., floor displacement and story shear). For 

a response case, the value of q at which the RMS error e is minimized is considered to be the optimum 

value of q for use in Equation (23).  

 Figures 1(a) and 1(b) show the variations of the RMS error e with q for the response cases of floor 

displacement and story shear, respectively. These figures give the optimum values of q as 2.4 for the floor 

displacement response (with the RMS error of 2.3%), and 1.8 for the story shear response (with the RMS 

error of 16.65%). It may be noted that these values may have to be revised, if the damping ratio is 

uniformly not equal to 5% in all the modes of the building.  

 
(a) 

 
(b) 

Fig. 1 Variation of RMS Error e in (a) Peak Floor Displacement Estimation and (b) Peak Story Shear 

Estimation, with Parameter q (with the optimum values of q and corresponding RMS errors 

indicated) 

ILLUSTRATION OF PROPOSED MODAL COMBINATION RULE 

 It will be useful to illustrate the performance of the modal combination rule described in Equation (1) 

for the 30 combinations of example buildings (BD1 to BD5) and 5%-damping PSA spectra (obtained 

from averaging over the 259 motions of the ensembles corresponding to the Borrego Mountain, Imperial 

Valley, Kern County, Michoacan, Parkfield, and San Fernando motions). This is so because these rules 

are expected to use the modelled values of the normalized modal peak factors and SV ordinates (instead 
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of their actual values averaged over the ensemble) together with 
rp  estimated using Equation (23) and q 

taken as 2.4 or 1.8 (depending on whether the response is floor displacement or story shear). To this end, 

the modelled value of the displacement peak factor D

jp  is obtained as proposed by Ghumadwar and 

Gupta (2025), and the modelled value of the velocity peak factor V

jp  is taken as in Pal and Gupta 

(2021a). Further, the modelled SV ordinates, SVj
, for the natural frequency 

j  are taken as in Pal and 

Gupta (2021b).  

 The computed values of peak floor displacements and peak story shears for the 66 floors/stories under 

each of the six seismic hazards are compared with the act

peak( )r  values determined above. Figures 2(a) and 

2(b) respectively show the cumulative distributions of percentage error and absolute percentage error in 

the peak floor displacement estimation based on 396 such values. For comparison, the error distributions 

are also shown for the conventional estimates obtained by using unity peak factors instead of the 

modelled peak factors. Figures 3(a) and 3(b) show such comparisons in respect of peak story shear 

estimation. It may be observed from both sets of figures that the use of modelled peak factors fails to 

improve upon the performance of the conventional approach. In the case of peak floor displacement 

estimation, up to the error level of about 14% for about 94% cases, the probability of the absolute error 

being below a given level is almost same for the two types of estimates, and there are about 3% cases, in 

which the modelled peak factors lead to larger absolute errors compared to the maximum error obtained 

with the conventional approach. In the case of peak story shear estimation, the modelled peak factors 

perform slightly better only for the absolute errors below 4% (for about 35% cases), and there are about 

12% cases that have larger absolute errors with the use of modelled peak factors in comparison with the 

maximum absolute error for the conventional estimates.  

 
(a) 

 
(b) 

Fig. 2 Comparisons of Cumulative Distributions of (a) Percentage Error and (b) Absolute Percentage 

Error in Peak Floor Displacement Estimation by Using Unity and Modelled Peak Factors 

 
(a) 

 
(b) 

Fig. 3 Comparisons of Cumulative Distributions of (a) Percentage Error and (b) Absolute Percentage 

Error in Peak Story Shear Estimation by Using Unity and Modelled Peak Factors 

 The above illustration of the use of modelled peak factors in the modal combination rule of     

Equation (1) has shown that the errors in modelled peak factors may lead to large errors in the peak 

response estimation in a few cases. In order to avoid such extreme cases, it is proposed as in Pal and 

Gupta (2021a) to consider the conventional estimates based on unity peak factors instead, as and when the 

estimates based on the modelled peak factors deviate from those by more than 15%. Figure 4(a) shows the 

comparison of the revised absolute error distribution for the use of modelled peak factors (denoted by 

‘Modelled-Revised’) with the ‘Unity’ and ‘Modelled’ distributions shown in Figure 2(b) in the case of 
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peak floor displacement estimation. Figure 4(b) shows similar comparison in the estimation of peak story 

shear. In Figure 4(a), it may be observed that the proposed modification reduces the extent of errors in the 

extreme cases of peak floor displacement estimation. Similarly, Figure 4(b) shows in the case of peak 

story shear estimation that the performance of Equation (1) with the use of modelled peak factors 

becomes almost as good as that of the conventional approach (of unity peak factors) due to the proposed 

modification. 

 
(a) 

 
(b) 

Fig. 4 Comparisons of Cumulative Distributions of Absolute Percentage Error in (a) Peak Floor 

Displacement Estimation and (b) Peak Story Shear Estimation, by Using Unity, Modelled, and 

Modelled-Revised Peak Factors 

 The results given in Figures 2–4 have been based on the same ensembles of ground motions as those 

used for the calibration of q. It will therefore be desirable to illustrate the use of modelled peak factors in 

the modal combination rule of Equation (1), together with the proposed modification for the extreme 

cases, by considering entirely different ensembles of ground motions. To this end, four new ensembles of 

100 spectrum-compatible ground motions each are considered instead of the six ensembles of 259 

spectrum-compatible motions each. These ensembles are same as those considered by Ghumadwar and 

Gupta (2025) and are generated by making 100 recorded motions compatible with the 5%-damping PSA 

spectra of the four recorded ground motions listed in Table 7. The 66 actual values of each of the peak 

responses (i.e., floor displacement and story shear) are obtained for each of the four example motions by 

averaging the time-history analysis estimates of the peak response for the corresponding ensemble of 100 

spectrum-compatible motions, whereas the estimates of that peak response from the modal combination 

rule of Equation (1) (for the hazard represented by the same example motion) are obtained by using 

(a) the PSA spectrum obtained by averaging the 5%-damping PSA spectra of the 100 spectrum-

compatible motions, and (b) the modelled values of the 5%-damping SV spectrum and various 

normalized peak factors. The estimates from the modal combination rule are also obtained for the cases of 

(a) various normalized peak factors assumed to be unity, and (b) proposed modification with the use of 

modelled peak factors.  

Table 7:  Details of ground motions considered to generate four ensembles of 100 spectrum-

compatible motions each (for the illustration of the proposed modal combination 

rule)  

S. No. Name of Earthquake Recording Site Location Component 

1 2006 Kiholo Bay Earthquake Kona Hospital, Kealakekua North 

2 2016 Amberley Earthquake Molesworth Station N77E 

3 2016 Amberley Earthquake Te Mara Farm, Waia S62W 

4 2015 Nepal Earthquake Kanti Path, Kathmandu North 

 Figures 5(a) and 5(b) respectively show the comparisons of the percentage error and absolute 

percentage error distributions in the peak floor displacement estimation under the ‘Unity’, ‘Modelled’, 

and ‘Modelled-Revised’ cases based on 264 data points each. Figures 6(a) and 6(b) show similar 

comparisons in the case of peak story shear estimation. It may be observed that for the new suite of 

ground motions, (a) errors obtained with the use of the modelled peak factors (see the ‘Modelled’ curve) 

are significantly reduced by applying the proposed modification for the extreme cases (see the ‘Modelled-

Revised’ curve), and (b) the ‘Unity’ and ‘Modelled-Revised’ curves are quite close to each other, and thus 

the use of modelled peak factors together with the proposed modification works almost as well as the 
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conventional use of unity peak factors in Equation (1). This implies that the estimates based on the use of 

modelled peak factors (with the proposed modification for the extreme cases) are as accurate as those 

from the conventional approach (based on the use of unity peak factors) or better than those. Accordingly, 

it is proposed to use the modal combination rule given in Equation (1) together with the use of modelled 

or unity peak factors, depending on whether the estimates based on modelled peak factors deviate by 

more than 15% from the estimates based on unity peak factors.  

 
(a) 

 
(b) 

Fig. 5 Comparisons of Cumulative Distributions of (a) Percentage Error and (b) Absolute Percentage 

Error in Peak Floor Displacement Estimation by Using Unity, Modelled, and Modelled-Revised 

Peak Factors in Case of Four Ground Motion Ensembles Used for Illustration 

 
(a) 

 
(b) 

Fig. 6 Comparisons of Cumulative Distributions of (a) Percentage Error and (b) Absolute Percentage 

Error in Peak Story Shear Estimation by Using Unity, Modelled, and Modelled-Revised Peak 

Factors in Case of Four Ground Motion Ensembles Used for Illustration 

COMPARISON WITH EXISTING MODAL COMBINATION RULES 

 A comparative study is carried out to illustrate the performance of the proposed modal combination 

rule vis-à-vis the existing modal combination rules for peak floor displacement and peak story shear. To 

this end, the 30 combinations of five example buildings (BD1 to BD5) and six seismic hazard cases 

(represented by the Borrego Mountain, Imperial Valley, Kern County, Michoacan, Parkfield, and San 

Fernando motions) are considered, and thus there is no change in the averaged time-history analysis 

results and the input data for the modal combination rules as obtained above. All the 30 combinations lead 

to a total of 396 actual or estimated values of peak floor displacement or peak story shear, where the 

estimated values correspond to (a) the proposed approach, (b) the modal combination rule in Equation (1) 

using unity peak factors (with the SV ordinates modelled as in the proposed rule), (c) the PSDF-based 

Category III method of Gupta (2002), and (d) the CSRSS rule proposed by Heredia-Zavoni (2011) (with 

the Kanai-Tajimi PSDF-based calculation of characteristic frequency). 

1. Peak Floor Displacement 

 The cumulative distributions of percentage error and absolute percentage error obtained for the four 

approaches are compared in Figures 7(a) and 7(b) respectively. The cumulative distribution for the 

proposed approach (denoted by ‘P’) in Figure 7(a) is identical to the ‘Modelled-Revised’ curve in      

Figure 4(a), while that for the rule in Equation (1) using unity peak factors (denoted by ‘C1’) is identical 

to the ‘Unity’ curve. Even though the PSDF-based methods of Gupta (2002) and Heredia-Zavoni (2011) 
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do not enjoy the simplicity and convenience of modal combination rules (because both methods do not 

solely use the spectrum ordinates) and thus cannot be compared with a modal combination rule, the 

estimates from the two methods are expected to be more accurate and are thus included in order to 

provide a perspective to the usefulness of the proposed modal combination rule.  

 
(a) 

 
(b) 

Fig. 7 Comparisons of Cumulative Distributions of (a) Percentage Error and (b) Absolute Percentage 

Error in Peak Floor Displacement Estimation by Proposed Rule (P), Rule in Equation (1) with 

Unity Peak Factors (C1), CSRSS Rule (C2), and PSDF-Based Method of Gupta (C3) 

 It may be observed in Figure 7(b) that the performance of the PSDF-based method of Gupta (2002) is 

superior to the performances of the other methods, and that the performance of the proposed rule falls 

below this performance primarily in respect of the maximum absolute error. Whereas this error is 13% for 

the PSDF-based method of Gupta (2002), it becomes 30% for the proposed rule. The cumulative 

distributions for the two methods are reasonably close for the errors up to 9%, which accounts for about 

88% cases. As shown by Figure 7(a), both methods are also associated with a greater probability of 

underestimation.  

 The comparison of the four (approximate) approaches in respect of the absolute percentage error 

averaged over all the floors of a building under a seismic hazard is shown in Table 8 for each of the 30 

combinations of buildings and seismic hazards. The largest average error among these combinations for  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 8  Comparisons of Exact (E) Peak Floor Displacement Envelopes with Estimated Envelopes from 

Proposed Rule (P), Rule in Equation (1) with Unity Peak Factors (C1), CSRSS Rule (C2), and 

PSDF-Based Method of Gupta (C3) in (a) BD4 and Borrego Mountain, (b) BD1 and Imperial 

Valley, (c) BD4 and Kern County, (d) BD4 and Michoacan, (e) BD1 and Parkfield, and (f) BD4 

and San Fernando Combinations 
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Table 8:  Comparison of averaged absolute percentage errors in peak floor displacement 

estimates from four different approximate methods for 30 combinations of example 

buildings and seismic hazards 

Approximate 

Method 

Example Motion 

Borrego 

Mountain 

Imperial 

Valley 

Kern 

County 
Michoacan Parkfield 

San 

Fernando 

Example Building BD1 

Proposed 2.33 6.61 8.62 0.27 11.23 1.37 

Unity Peak 

Factors 
2.18 4.07 5.96 1.19 8.47 0.88 

CSRSS 1.57 3.18 4.92 0.93 4.53 5.04 

PSDF Method    

of Gupta 
1.26 2.88 4.87 0.44 5.36 0.90 

 Example Building BD2 

Proposed 0.56 0.83 0.60 2.15 3.24 0.20 

Unity Peak 

Factors 
0.76 1.78 0.56 2.88 2.10 0.87 

CSRSS 0.94 1.49 0.84 1.64 3.90 4.76 

PSDF Method    

of Gupta 
0.28 0.87 0.48 1.12 1.76 0.51 

 Example Building BD3 

Proposed 1.36 0.33 0.70 2.27 1.33 0.66 

Unity Peak 

Factors 
0.72 0.40 0.76 2.57 0.97 1.14 

CSRSS 1.09 0.40 0.56 2.36 0.70 4.07 

PSDF Method    

of Gupta 
0.64 0.28 0.10 1.29 0.29 0.63 

 Example Building BD4 

Proposed 5.85 6.21 10.43 6.95 5.48 17.23 

Unity Peak 

Factors 
5.32 12.63 14.07 3.74 9.39 17.23 

CSRSS 3.16 10.76 21.63 1.06 12.06 21.85 

PSDF Method    

of Gupta 
9.95 9.21 11.31 7.67 11.68 11.43 

 Example Building BD5 

Proposed 1.04 0.77 1.98 0.80 3.94 0.34 

Unity Peak 

Factors 
1.30 1.49 1.72 2.02 3.23 1.23 

CSRSS 1.47 1.06 2.25 1.36 4.11 5.82 

PSDF Method of 

Gupta 
0.55 0.66 1.34 1.45 3.36 0.78 

Note: Underlined values denote the largest average error (among the 30 combinations of example buildings and hazards) for each 
method. Bold values denote the largest average error (among the five example buildings) for the proposed rule under each seismic 

hazard. 

each approach is underlined. The values shown in bold represent the largest average errors (over the five 

example buildings) for the six seismic hazards in the case of the proposed rule. It may be observed that 

the largest average error is obtained as 17.23% for both proposed rule and the rule in Equation (1) with 

unity peak factors (in the case of BD4 building under the seismic hazard of the San Fernando motion) in 

comparison with the lowest value of 11.68% for the PSDF-based method of Gupta (2002) (in the case of 

BD4 building under the seismic hazard of the Parkfield motion). Further, there are three cases (out of a 

total of 30 cases), in which the average error exceeds 10% for these three approaches. This indicates that 

the proposed rule for peak floor displacement does not sacrifice significantly on the accuracy of 

estimation in comparison with the PSDF-based method of Gupta (2002) despite avoiding the 

computational effort involving PSDF. 
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 The envelopes of peak floor displacement estimates from the four approaches are compared in   

Figures 8(a)–8(f) with the (exact) time-history envelopes for an illustration of the relative performance of 

the proposed rule. These envelopes correspond to the critical cases for the proposed approach (in respect 

of the largest average error) under the seismic hazards of Borrego Mountain, Imperial Valley, Kern 

County, Michoacan, Parkfield, and San Fernando motions, respectively, and are for the buildings BD4, 

BD1, BD4, BD4, BD1, and BD4, respectively. It may be observed that the envelopes obtained from the 

proposed rule consistently underestimate the exact envelopes in the cases of Kern County and San 

Fernando motions (see Figures 8(c) and 8(f)) and that these envelopes overestimate or fluctuate around 

the exact envelopes in the remaining four cases. This appears to be a reasonable performance considering 

that the envelopes from the PSDF-based method of Gupta (2002) underestimate the exact envelopes in all 

the six cases and the envelopes from the rule in Equation (1) with unity peak factors underestimate in five 

of the six cases. 

2. Peak Story Shear 

 Figures 9(a) and 9(b) compare the cumulative distributions of percentage error and absolute 

percentage error corresponding to the four approaches. The cumulative distributions in Figure 9(a) for the 

proposed rule and the rule in Equation (1) with unity peak factors respectively are identical to the 

‘Modelled-Revised’ and ‘Unity’ curves in Figure 4(b). Table 9 gives the absolute percentage errors 

averaged over all the stories of a building for each of the 30 combinations of buildings and seismic 

hazards in the case of all the four approaches (the underlined values indicate the overall largest errors for 

the four approaches, and the values shown in bold indicate the largest errors determined across different 

buildings for different seismic hazards in the case of the proposed rule). Finally, Figures 10(a)–10(f) show 

the envelopes of peak story shear estimates obtained from the four approaches together with the (exact) 

time-history envelopes for the building-hazard combinations corresponding to the values shown in bold in 

Table 9. These critical cases (for the proposed approach) correspond to the BD1-Borrego Mountain,   

BD1-Imperial Valley, BD1-Kern County, BD4-Michoacan, BD1-Parkfield, and BD4-San Fernando 

combinations of building and seismic hazard, respectively.  

 The performance of the PSDF-based method of Gupta (2002) is seen to be superior to the 

performances of the other approaches in Figure 9(b), primarily because the maximum absolute error is 

19% for this approach as compared to 26% for the proposed rule and the rule in Equation (1) with unity 

peak factors, and 88% for the CSRSS rule. For the absolute errors up to 14% which accounts for about 

90% cases, the cumulative distribution for the proposed rule is quite close to that for the PSDF-based 

method of Gupta (2002), and thus the proposed rule does not compromise significantly on accuracy due 

to the simplifications incorporated. Further, as shown by Figure 9(a), most of the estimates from the two  

 

 

(a) 

 

(b) 

Fig. 9 Comparisons of Cumulative Distributions of (a) Percentage Error and (b) Absolute Percentage 

Error in Peak Story Shear Estimation by Proposed Rule (P), Rule in Equation (1) with Unity 

Peak Factors (C1), CSRSS Rule (C2), and PSDF-Based Method of Gupta (C3) 
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Table 9:  Comparison of averaged absolute percentage errors in peak story shear estimates 

from four different approximate methods for 30 combinations of example buildings 

and seismic hazards 

Approximate 

Method 

Example Motion 

Borrego 

Mountain 

Imperial 

Valley 

Kern 

County 
Michoacan Parkfield 

San 

Fernando 

Example Building BD1 

Proposed 12.59 13.12 14.98 2.41 8.31 11.93 

Unity Peak 

Factors 
12.52 12.56 9.88 8.16 7.57 9.93 

CSRSS 7.42 9.73 7.11 8.17 3.40 38.57 

PSDF Method    

of Gupta 
10.48 10.08 8.00 3.46 9.66 8.56 

 Example Building BD2 

Proposed 2.86 4.56 6.35 4.80 5.78 7.50 

Unity Peak 

Factors 
4.82 4.22 2.86 7.73 2.58 10.57 

CSRSS 10.78 3.84 9.38 2.75 4.49 35.74 

PSDF Method    

of Gupta 
6.77 5.34 5.66 8.37 3.86 8.55 

 Example Building BD3 

Proposed 7.48 0.66 2.10 3.03 5.79 7.19 

Unity Peak 

Factors 
1.16 3.57 3.96 2.92 2.47 8.94 

CSRSS 6.93 2.36 5.44 1.17 1.64 28.29 

PSDF Method    

of Gupta 
5.52 4.19 3.50 6.16 1.82 5.20 

 Example Building BD4 

Proposed 5.96 4.47 10.35 7.00 5.96 23.65 

Unity Peak 

Factors 
3.84 7.92 12.12 2.79 3.84 23.65 

CSRSS 12.99 9.83 16.57 0.57 10.68 54.87 

PSDF Method    

of Gupta 
15.32 14.36 14.94 11.69 12.07 16.32 

 Example Building BD5 

Proposed 2.90 7.09 5.88 2.98 4.52 10.03 

Unity Peak 

Factors 
5.24 1.93 1.87 6.63 2.28 13.05 

CSRSS 11.74 4.64 9.66 6.54 4.83 36.32 

PSDF Method of 

Gupta 
7.10 6.75 6.20 8.70 5.26 9.81 

Note: Underlined values denote the largest average error (among the 30 combinations of example buildings and hazards) for each 
method. Bold values denote the largest average error (among the five example buildings) for the proposed rule under each seismic 

hazard. 

approaches are on the non-conservative side. On considering the averaged absolute percentage errors 

shown in Table 9, it may be observed that both the proposed rule and the rule in Equation (1) with unity 

peak factors lead to the maximum error of 23.65% as compared to the error of 16.32% in the case of the 

PSDF-based method of Gupta (2002) (for the BD4 building under the San Fernando motion). Also, there 

are comparable number of cases (6 in the case of the rule in Equation (1) with unity peak factors, 7 in the 

case of the proposed rule, and 8 in the case of the PSDF-based method of Gupta (2002)), which are 

associated with the averaged error exceeding 10%. Thus, the performance of the proposed rule compares 

well with the more involved and accurate PSDF-based method of Gupta (2002) for peak story shear 

estimation as well. Also, as observed from the envelopes shown in Figures 10(a)–10(f), the envelopes 

obtained from the proposed rule follow the exact envelopes well, just like the envelopes obtained from the 

PSDF-based method of Gupta (2002). 
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SUMMARY AND CONCLUSIONS 

 The response spectrum-based modal combination rule proposed by Gupta (1996) to estimate the 

largest peak amplitude of the linear response of a lumped mass, classically damped, multistoried 

structure, which is subjected to ground acceleration at its base, has been modified to include the role of 

normalized nonstationary peak factors (where normalization is with respect to the nonstationary peak 

factor for ground acceleration). This rule specifically considers those overall responses that can be 

expressed as a linear combination of the floor displacements of the structure, e.g., the relative floor 

displacement and story shear responses. The spectral amplitudes required for this formulation are the SD 

and SV amplitudes corresponding to the specified seismic hazard (in terms of the PSA amplitudes). The 

proposed rule uses the approximation of SV amplitudes (from the specified (design) PSA spectrum) as in 

Pal and Gupta (2021b). The proposed rule also uses the normalized nonstationary peak factors proposed 

by Ghumadwar and Gupta (2025) and Pal and Gupta (2021a) respectively for the relative displacement 

and relative velocity responses of base-excited SDOF oscillators.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 10  Comparison of Exact (E) Peak Story Shear Envelopes with Estimated Envelopes from Proposed 

Rule (P), Rule in Equation (1) with Unity Peak Factors (C1), CSRSS Rule (C2), and PSDF-Based 

Method of Gupta (C3) in (a) BD1 and Borrego Mountain, (b) BD1 and Imperial Valley, (c) BD1 

and Kern County, (d) BD4 and Michoacan, (e) BD1 and Parkfield, and (f) BD4 and San Fernando 

Combinations 

 The normalized nonstationary peak factor for the overall response has been modelled by first 

formulating the peak factor for the case of negligible cross-modal correlation and then by generalizing the 

so-obtained expression through a parameter q to account for non-negligible correlation. The proposed 

expression is in terms of (a) the (normalized) peak factors for different modal responses contributing to 

the structural response, and (b) the weights measuring the relative contributions of different modes to the 

peak factor for the overall response. The proposed peak factor model has been calibrated (through the 

determination of the parameter q) based on the actual peak factors computed from the time-history 

analysis estimates of peak floor displacements and peak story shears in the case of five example buildings 

and six ground motion ensembles.  

 The proposed modal combination rule envisages various normalized peak factors to be uniformly 

taken as unity as in the conventional approach, in case the estimates based on using the peak factor 

models show large deviations from those based on the unity peak factors. This has been done to avoid 

large errors in peak response estimation due to the errors inherent in the modelling of normalized peak 

factors. An illustration of the proposed modal combination rule based on four ensembles of ground 
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motions and five example buildings shows that the estimates from this rule are at least as accurate as 

those based on the use of unity peak factors. 

 A comparative study based on six different ensembles of ground motions (and same five example 

buildings) shows that the proposed modal combination rule gives almost as accurate peak response 

estimates as the rules based on the calculation of moments from the PSDF of ground motion. In the case 

of peak floor displacements, there is 88% probability with the proposed rule that the absolute error would 

be less than 9%, which is also the case for the PSDF-based estimates. Similarly, there is 10% probability 

for both methods that the averaged absolute error would exceed 10%. In the case of peak story shears, 

there is 90% probability with the proposed rule as well as the PSDF-based approach that the absolute 

error would be less than 14%. Further, there are about 25% cases for the two approaches in which the 

averaged absolute error exceeds 10%. Thus, the proposed modal combination rule does not compromise 

significantly on the accuracy of estimation in comparison with the PSDF-based methods, while avoiding 

the complexity and computational effort inherent with the use of ground motion PSDF consistent with the 

specified seismic hazard. Further, since the conventional version of the proposed rule delivers a similar 

performance vis-à-vis the PSDF-based methods, this may be an attractive alternative due to its simplicity. 
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