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ABSTRACT

A solution of the plane strain deformation of a two layered Earth model consisting of a homogeneous,
elastically isotropic layer (EIL) of finite thickness lying on a homogeneous, elastically isotropic
half-space (EIHS) induced by two-dimensional faulting placed in the EIHS is obtained. The Airy’s stress
function method is used to obtain the deformation field in the integral form induced by a blind dip-slip
faulting. The linear combination of exponential terms occurring in the denominator of integral
expressions is estimated as a finite sum of exponential terms (FSET) employing least square method.
Then the integrals are evaluated analytically. The displacement field is computed analytically and
numerically for two different models of Earth. The stresses can be computed similarly.
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INTRODUCTION

The foci of most of the earthquakes lie in the crust of the Earth. Recently, Jamtveit et al. (2018),
Menegon et al. (2017) and Petley-Ragan et al. (2018) have demonstrated that during an organic process,
dynamic ruptures occur at an early stage in the structural and metamorphic development of the lower
crust. Microstructural evidence suggests that seismic slip in highly stressed rocks may be initiated by
brittle deformation and the rock damage caused by dynamic ruptures play a significant role in deep crustal
earthquakes. In this paper an attempt is made to know the deformation when the fault exists in the lower
ductile crustal layer.

A two layered model of Earth consisting of a layer over a half-space representing the lithosphere-
asthenosphere is considered by several investigators assuming the elastic layer with the
elastic/viscoelastic half- space. Singh et al. (1997) derived the displacements analytically by
approximating the denominator as FSET, for the static deformation of a homogeneous, elastically
isotropic layer of finite thickness welded with an elastic isotropic half space. Verma et al. (2016)
examined the plane strain deformation induced by dip-slip faulting in a poroelastic stratum lying on an
elastic half space using stress function approach. Kumari and Madan (2022) obtained analytic stresses
caused by a vertical dip-slip fault embedded in the upper half-space, considering a two phase medium
consisting of homogeneous, elastically isotropic half-space joined with an orthotropic half space.

A detailed solution for the lithospheric plane strain deformation of a two layered composition
consisting of a homogeneous, elastically isotropic stratum of finite thickness lying on a homogeneous,
elastically orthotropic substratum produced by two-dimensional faulting placed in the isotropic stratum
has been obtained by Soni and Rani (2023). They used the least square method to calculate the integrals
analytically and elaborated the deformation field for a vertical dip-slip line dislocation. Cao and
Mavroeidis (2024) investigated the spatial and temporal characteristics of near-fault ground strains and
rotations from actual earthquakes with predominantly dip-slip mechanisms. They performed forward
ground-motion simulations of the 1994 Mw 6.7 Northridge, the 1989 Mw 6.9 Loma Prieta, and the 1985
Mw 8.1 Michoacan earthquakes using finite-fault rupture models.
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In this paper, the deformation of upper crust due to a normal fault situated in elastic lower crust has
been studied. Our aim is to find the analytical solution for a two layer model consisting of a
homogeneous, isotropic, elastic layer welded with a homogeneous, isotropic, elastic half space. A dip-slip
line source is situated in the elastic half-space overlain by an elastic layer. A line dislocation is a point
source continuously located along a line. The Airy's stress function technique has been used to obtain the
deformation field in the integral form. Employing the least squares method (Scarborough, 1955), the
linear combination of exponential terms that occur in the denominator of the integral expressions of the
deformation field is approximated as FSET (Sneddon, 1951). Then the integrals are solved analytically
using standard integral tables. The displacement field is computed numerically for a vertical dip-slip line
dislocation (VDLD) located at the interface of the two phase medium for the Earth’s oceanic crust and the
continental crust models (Ben Menahem and Gillon, 1970).

MATHEMATICAL FORMULATION
In the Cartesian coordinate system (X, Y, Z), for a two-dimensional approximation the displacement
0
components U:(ux,uy,uz)are independent of one coordinate, say X, therefore a—EO. Hence, the
X

plane strain problem (uX = 0) and the anti-plane strain (uy =u, = 0) are split up and can be computed

independently. We consider the plane strain problem in the current paper. Let a two layered medium is
made up of a homogeneous EIL of finite thickness H lying over a homogeneous EIHS (z > H). The z -
axis is taken vertically downwards with origin at the free surface of the layer (Figure 1).

The stress strain relation for a homogeneous, elastically isotropic medium characterized by the elastic
constants: Poisson ratio (v)and shear modulus (z) is given by
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where Pjj (i, J=X,Y, z) denote the stress components and €ij (i, =X, z) denote the strain components

and
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oy oz

is the dilatation. For an isotropic media, the plane strain problem in terms of Airy’s stress function
(Sokolnikoff, 1956) U satisfying the equations of equilibrium, in the yz -plane is formulated as:

p —82_U p __aZ_U p —82_U (3)
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satisfying
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where
2 2
v2 = 8—2 + 5—2 (5)
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After integrating the constitutive Equations (1), we get the displacements which are:
ouU 2
24, :_E+(1_V)IV Udy, (6)

2uu, :—%—lZJJr(l—v)IVZUdz, (7
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Using Fourier transform of (4) with respect to y and solving the corresponding ordinary differential
equation for the elastic layer (0 <z <H) having a line source parallel to the x -axis acting at(0,0,h),
a suitable solution of (4) is as follows:

u® = T[(cl +Cokz)e™ +(C, +c4kz)ekz}(sm ky}dk (8)
5 cosky

where C; (i =1,2,3,4) are the unknown constants. From equations (3), (6)-(7) and (8), the stresses and

the displacements for the isotropic layer are computed.
Let there be a line source parallel to x—axis passing through the point (0,0, h) in the EIHS (z > H)

(Figurel).The Airy’s stress functionUj for a line source parallel to the x—axis located at the point
(0,0,h) inthe EIHS is given by Rani and Singh (2007):

X
P 4
0 ,° > y
H
Elastic Layer w
Elastic Half-Space
(0,0,h)
Line Source
vZ

Fig. 1 An Earth model consisting of an EIL of finite thickness H (Os z< H) lying over an isotropic
half-space (z> H) with a line source parallel to x—axis situated at the point (0,0,h) in the

half-space
< ~ sinky ) dk
Uy = (S, +5,ekz, Je K& il 9
0 {( 1 +S,6kZ) [coskyj % 9)
where

the upper sign stands for Z; >0 and the lower sign for Z;<0 and S,,S, are the source coefficients
given in Table 1 for vertical dip slip fault and dip slip fault dipping at45° explained by Soni and Rani
(2023). Let the half-space is characterized by the elastic constants: Poisson ratio (v') and shear

modulus (x') and quantities related to half-space are denoted by dashed notation. Again, solving (4),
the Airy stress function for the EIHS (z > H) with a line dislocation, is as follows:

T [ Sinky
U _U0+£(A1+A2kz)e [Coskdek (12)
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where Ajand A,are the arbitrary constants. From (3), (6)-(7) and (11), the stresses and the
displacements are obtained for the half-space.

Table 1: Source coefficients for the Vertical dip slip and Dip slip fault dipping at 45" where
F.s, Fy; are the moments for the corresponding sources

Source S, S, Solution

Vertical dipslip | 0 eFy, Upper
2r(d—v")

Dip slip fault 0 Fs Lower

dipping at 45’ 27(1—v")

BOUNDARY CONDITIONS

The surface of the layer z =0is supposed to be stress free which gives
Pyz = Pz = 0 12)

at z=0. Also, the elastic layer is in welded contact with the EIHS along z=H, hence the boundary
conditions are:

Py, = plyz’ Pz = Pz

U (13)

y=Uy, Uy =Ug,
at z=H We notice that the source components S, andS, varies forZ; >0 and Z;<0. Let S;,S, be
the values of S, andS, for Z;<0. Using the boundary conditions (12)-(13), the system of six equations
in six unknowns C;,(i=1,2,3,4)and A(i=12) is obtained. Applying Cramer’s rule to evaluate the
system of equations, we find the unknowns constants C; ,(i :1,2,3,4) and A(i=12)given in

Appendix A.
VERTICAL DIP-SLIP LINE DISLOCATION

According to Maruyama (1966), for the vertical dip-slip fault, the moment is equivalent to
Fys = ubds (14)
where b represents the magnitude of the slip and ds represents the width of the line source in the z -
direction. Hence, from Table 1, the source components for a VDLD are
gu'bds ,  —p'bds

27(1-v")’ 2" 2z (L—v")

On substituting the values of S{,S5,C;,(i=1,2,3,4) and A(i=12) in the displacements and
stress field for the EIL and for the EIHS ,we obtain the solution in the integral form. Here, the
expressions for the displacements for EIL (0 <z < H) are given below:

$,=5/=0, S,= (15)
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On substituting h=H in Equations (16)-(17), the fault lies on the interface of the two layered
medium. The displacement field of the layer agrees with the corresponding displacements given by
Singh et.al. (1997) at the interface. To obtain the displacements in the closed-form, the integrals are to be
evaluated analytically. For this, the linear combination of exponential terms 1/ A’ is replaced as FSET so
that the error is minimum. Expanding

1 _ 2142\ A—2kH _akn 7t
E—[1+(A+Bk H?)e ™" +Ce ] (19)
by Binomial theorem and approximating as
1
— =1-(A+BKk*H?)e™ +{C'+a(kH)" e ™" 20
v~ Je ! +{Cl+akH)'} (20)

where, C' is a constant independent of kH ; «, #,n depending upon kH,m,v,v' are to be computed

employing the method of least squares. The asymptotic approximation is used to find the value of C" by
taking the limit as kH — O which gives

2 —
Cro A+ AC-C 21)
A+C+1
forall n=0,1,2,3..... In our calculations, we choose n = 2. Therefore,
L 1o (A+BKPHZ)e ™ 4 (C'+ ak?H?)e (22)

We consider two models of Earth: continental crust model and oceanic crust model [1970]. For the
continental crust model,
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v=v'=025 ' /u=222 (23)
and for oceanic crust model,
v=v'=03, u'/u=176 (24)

Employing the least square method for the nonlinear case given by Scarborough (1955), the sum of
squares of deviations given by

2
of of
Zi:[ao%Jfbo%JfRi] (25)

should be minimized, where a,, by are the corrections to the approximated values of &, B respectively

and
R —[L (X (26)
1 A' A’
apprimated actual

are the residuals and f(kH,s,,5,, 8)is the right side of Equation (22). Beginning with the initial
approximation of «, £ using iterative process, the best fitted values of , f given in (22) are obtained,

listed in Table 2. Figure 2(a)-2(b) shows the comparison of actual % (Equation (19)) and the

approximated % (Equation (22)) with kH for the continental case and for the oceanic case respectively.

Table 2: Best fitted values of o and f for continental crust model and oceanic crust model

Crust Models 1% V' o B
Continental
i pg=m=2.22 0.25 | 0.25 0.69108844 3.24471534
Oceanic
) pu=m=176 0.3 |03 0.44593599 3.28297275
1.0
0.9
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Fig. 2 Comparison of the actual curve with the approximated curve of 1/A’for (a) continental crust
model (b) oceanic crust model

On substituting the values of aand £ from Table 2 in the expression of % given in (22), the

displacements for the EIL given in (16)—(17) can be expressed as a linear combination of integrals, and
these integrals are solved using the standard integrals (Gradshteyn and Ryzhik [2014] ). The expressions

for the displacements Uy and u, for the EIL are given below:

_mbds 2 , 2
Uy = i {h — Ady —~BH sy + C'gy + aH s | @7)
mybds 2 ' 2
u, = v — Ay, —BH w3 +C'yvy +aH (28)
ﬂﬂﬂ_ﬂz{ 1 2 3 4 5}

where
$,(1=12,34,5), w;(j=1234,5) are given in Appendix B. The stresses can be computed

similarly. On taking the limit H — oo, the displacements for a vertical dip-slip line source in a uniform
half-space coincide with the displacements given by Rani et.al. (1991).

NUMERICAL RESULTS

We compute the displacement field numerically for the continental crust model and oceanic crust
model using the parameters given in Table 2. Let the VDLD lies on the interface of the two layered
medium at h=H taking the fault location at the material discontinuity. For numerical computations,
the following quantities are normalized as:

z

u,H
y:y_, UZZUZH, Y:l,Z:— (29)
bds bds H H

where U y,UZ are the normalized displacements of the layer, Y is the normalized epicentral distance and

i bds
Z is the normalized focal depth. Therefore, the displacements u;, (i =Y, z) are computed in units of a

Figure 3(a)-3(b) depict the behavior of horizontal displacement U, and the vertical displacement
U, at the surface of the layer z =0 with epicentral distance y/H for continental crust and the oceanic
crust, respectively. We find that the vertical displacement U, is more significant than the horizontal
displacement U . Also U, and U, exhibit reverse behavior.
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Figure 4(a)-4(b) demonstrate the contour map of the horizontal displacement in units of Uy x10?
in the layer for continental crust and Oceanic crust. The displacement has a significant variation near the
fault location (O, H ) The isolines are shown in the plot and the negative values of Uy are denoted by
dashed lines. Figure 5(a)-5(b) displays the contour map of the wvertical displacement in units of
U, x10%in the layer for continental crust and Oceanic crust. The displacement U, has a remarkable
variation near the fault. Solid lines denote the positive values of U, and dashed lines denote negative
values. Also, there is a symmetry about the line y =0.
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Fig. 3 Graph showing the variation of the dimensionless horizontal displacement Uy and vertical

displacement U, of the stratum with normalized horizontal distance from a VDLD located at
the interface on the surface z=0 for (a) continental crust model (b) oceanic crust model
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Fig. 4 Contour map of the normalized horizontal displacement U, for a VDLD located at h=H of the
stratum for (a)continental crust model(b) oceanic crust model
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CONCLUSIONS

e We have obtained the analytical solution for a two-layered composition with a homogeneous EIL
lying on a homogeneous EIHS. A dip-slip line source is situated in the elastic half-space overlain by
an elastic layer.

e The Airy's stress function technique has been used to obtain the deformation field in the integral
form.

e The least squares method is employed to approximate the linear combination of exponential terms
that occur in the denominator of the integral expressions of the deformation field as FSET in the
numerator and then integrals are solved analytically using standard integral tables.

e The displacement field is computed numerically for a VDLD located at the interface of the two phase
medium for two Earth models considering oceanic crust and the continental crust.

¢ Near the source location, we observe that the displacements vary considerably. In comparison to the
horizontal displacement, the vertical displacement has a larger magnitude.

RESEARCH HIGHLIGHTS

e The plane strain deformation of a two layered Earth model produced by blind dip-slip faulting is
obtained.

e The Airy’s stress function method is used.

e The linear combination of exponential terms occurring in the denominator is estimated as a finite sum
of exponential terms employing least square method.

e The integral expressions of the displacement field are evaluated analytically. The displacement field
is computed numerically for two different models of Earth.
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