
ISET Journal of Earthquake Technology, Paper No. 585, Vol. 61, No. 1, March 2024, pp. 27-39 

2-D DEFORMATION OF EARTH INDUCED BY A BLIND VERTICAL DIP-

SLIP FAULT 

Sunita Rani (Corresponding Author) 
Department of Mathematics 

Guru Jambheshwar University of Science and Technology 

Hisar, India, E mail id:s_b_rani@rediffmail.com 

Nirmal Soni 
Department of Mathematics 

Guru Jambheshwar University of Science and Technology 

Hisar, India, E mail id:soni.nirmal323@gamil.com 

ABSTRACT 

 A solution of the plane strain deformation of a two layered Earth model consisting of a homogeneous, 

elastically isotropic layer (EIL) of finite thickness lying on a homogeneous, elastically isotropic          

half-space (EIHS) induced by two-dimensional faulting placed in the EIHS is obtained. The Airy’s stress 

function method is used to obtain the deformation field in the integral form induced by a blind dip-slip 

faulting. The linear combination of exponential terms occurring in the denominator of integral 

expressions is estimated as a finite sum of exponential terms (FSET) employing least square method. 

Then the integrals are evaluated analytically. The displacement field is computed analytically and 

numerically for two different models of Earth. The stresses can be computed similarly. 
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INTRODUCTION 

 The foci of most of the earthquakes lie in the crust of the Earth. Recently, Jamtveit et al. (2018), 

Menegon et al. (2017) and Petley-Ragan et al. (2018) have demonstrated that during an organic process, 

dynamic ruptures occur at an early stage in the structural and metamorphic development of the lower 

crust. Microstructural evidence suggests that seismic slip in highly stressed rocks may be initiated by 

brittle deformation and the rock damage caused by dynamic ruptures play a significant role in deep crustal 

earthquakes.  In this paper an attempt is made to know the deformation when the fault exists in the lower 

ductile crustal layer. 

 A two layered model of Earth consisting of a layer over a half-space representing the lithosphere-

asthenosphere is considered by several investigators assuming the elastic layer with the 

elastic/viscoelastic half- space. Singh et al. (1997) derived the displacements analytically by 

approximating the denominator as FSET, for the static deformation of a homogeneous, elastically 

isotropic layer of finite thickness welded with an elastic isotropic half space. Verma et al. (2016) 

examined the plane strain deformation induced by dip-slip faulting in a poroelastic stratum lying on an 

elastic half space using stress function approach. Kumari and Madan (2022) obtained analytic stresses 

caused by a vertical dip-slip fault embedded in the upper half-space, considering a two phase medium 

consisting of homogeneous, elastically isotropic half-space joined with an orthotropic half space. 

 A detailed solution for the lithospheric plane strain deformation of a two layered composition 

consisting of a homogeneous, elastically isotropic stratum of finite thickness lying on a homogeneous, 

elastically orthotropic substratum produced by two-dimensional faulting placed in the isotropic stratum 

has been obtained by Soni and Rani (2023). They used the least square method to calculate the integrals 

analytically and elaborated the deformation field for a vertical dip-slip line dislocation. Cao and 

Mavroeidis (2024) investigated the spatial and temporal characteristics of near-fault ground strains and 

rotations from actual earthquakes with predominantly dip-slip mechanisms. They performed forward 

ground-motion simulations of the 1994 Mw 6.7 Northridge, the 1989 Mw 6.9 Loma Prieta, and the 1985 

Mw 8.1 Michoacan earthquakes using finite-fault rupture models.  
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 In this paper, the deformation of upper crust due to a normal fault situated in elastic lower crust has 

been studied. Our aim is to find the analytical solution for a two layer model consisting of a 

homogeneous, isotropic, elastic layer welded with a homogeneous, isotropic, elastic half space. A dip-slip 

line source is situated in the elastic half-space overlain by an elastic layer. A line dislocation is a point 

source continuously located along a line. The Airy's stress function technique has been used to obtain the 

deformation field in the integral form. Employing the least squares method (Scarborough, 1955), the 

linear combination of exponential terms that occur in the denominator of the integral expressions of the 

deformation field is approximated as FSET (Sneddon, 1951). Then the integrals are solved analytically 

using standard integral tables. The displacement field is computed numerically for a vertical dip-slip line 

dislocation (VDLD) located at the interface of the two phase medium for the Earth’s oceanic crust and the 

continental crust models (Ben Menahem and Gillon, 1970). 

MATHEMATICAL FORMULATION 

 In the Cartesian coordinate system  , , ,x y z  for a two-dimensional approximation the displacement 

components  , ,x y zu u u u are independent of one coordinate, say x , therefore  0.
x





 Hence, the 

plane strain problem   0xu    and the anti-plane  strain  0y zu u  are split up and can be computed 

independently. We consider the plane strain problem in the current paper.  Let a two layered medium is 

made up of a homogeneous EIL of finite thickness H  lying over a homogeneous EIHS ( ).z H  The z - 

axis is taken vertically downwards with origin at the free surface of the layer (Figure 1). 

 The stress strain relation for a homogeneous, elastically isotropic medium characterized by the elastic 

constants:  Poisson ratio ( ) and shear modulus ( )  is given by 
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where  , , ,ijp i j x y z denote the stress components and  , , ,ije i j x y z denote the strain components 

and 

 
y z

u u

y z


 
 
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 (2) 

is the dilatation. For an isotropic media, the plane strain problem in terms of Airy’s stress function 

(Sokolnikoff, 1956) U satisfying the equations of equilibrium, in the yz -plane is formulated as: 
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satisfying 

 2 2 0U    (4) 

where 

 

2 2
2

2 2y z

 
  

 
 (5) 

After integrating the constitutive Equations (1), we get the displacements which are: 
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 Using Fourier transform of (4) with respect to y  and solving the  corresponding ordinary differential 

equation for the elastic layer  0 z H   having a line source parallel to the x -axis  acting  at (0,0, )h , 

a suitable solution of (4) is as follows: 

    (1)
1 2 3 4

0

sin

cos

kz kz ky
U C C kz e C C kz e dk

ky


  

       
 

  (8) 

where  1,2,3,4iC i   are the unknown constants. From equations (3), (6)-(7) and (8), the stresses  and 

the displacements for the isotropic layer are computed. 

 Let there be a line source parallel to x axis passing through the point (0,0, )h  in the EIHS ( )z H  

(Figure1).The Airy’s stress function 0U for a line source parallel to the x axis located at the point 

(0,0, )h  in the EIHS  is given by Rani and Singh (2007): 

 

Fig. 1 An Earth model consisting of an EIL of finite thickness H  0 z H    lying  over an isotropic 

half-space ( )z H with a line source parallel to  x axis situated at the point (0,0, )h  in the     

half-space 
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where 

 1 , 1Z z h      (10) 

the upper sign stands for 1Z > 0  and the lower sign  for 1< 0Z  and 
1 2,S S  are the source coefficients 

given in Table 1 for vertical dip slip  fault and dip slip fault dipping at 45 explained  by Soni and Rani 

(2023). Let the half-space is  characterized by the elastic constants:  Poisson ratio     and shear 

modulus ( )   and   quantities related to half-space are denoted by dashed notation. Again, solving (4), 

the Airy stress function for the EIHS ( )z H with a line dislocation, is as follows: 
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where 1A and 2A are the arbitrary constants. From (3), (6)-(7) and (11), the stresses  and the 

displacements  are obtained  for the half-space. 

Table 1: Source coefficients for the Vertical dip slip  and Dip slip fault dipping at 45 ,where

23 23,F F  are the moments for the corresponding sources 

Source  
1S  

2S  Solution  

Vertical dip slip   0 
23

2 (1 )

F





 
 

Upper  

Dip slip fault 

dipping at 45  

0 
23

2 (1 )

F

  


 

Lower  

BOUNDARY CONDITIONS 

 The surface of the layer 0z  is supposed to be stress free which gives 

 0yz zzp p   (12) 

at 0.z   Also, the elastic layer is in welded contact with the  EIHS along z H  hence the boundary 

conditions are: 

 

, ,

, ,

yz yz zz zz

y y z z

p p p p

u u u u

  

  
 (13) 

at z H . We  notice  that the source components 
1S  and

2S varies for 1Z > 0  and 1< 0Z . Let 1S , 2S  be 

the values of  
1S  and

2S  for 1< 0Z . Using the boundary conditions (12)-(13), the system of six equations 

in six unknowns  , 1, 2,3, 4iC i  and ( 1,2)iA i   is obtained. Applying Cramer’s rule to evaluate the 

system of equations, we find the unknowns constants   , 1, 2,3, 4iC i  and ( 1,2)iA i  given in 

Appendix A. 

VERTICAL DIP-SLIP LINE DISLOCATION 

 According to Maruyama (1966), for the vertical dip-slip fault, the moment is equivalent to 

 23F bds  (14) 

where b represents the magnitude of the slip and ds  represents the width of the line source in the z -

direction. Hence, from Table 1, the source components for a VDLD are 

 1 1 2 20, ,
2 (1 ) 2 (1 )

bds bds
S S S S

 

   

 
    

  
 (15) 

 On substituting the values of  1 2, , , 1, 2,3, 4iS S C i    and ( 1,2)iA i    in  the displacements and 

stress field for the EIL  and for the  EIHS ,we obtain the solution in the integral form.  Here, the 

expressions for the displacements for EIL  0 z H   are given below: 
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where 

 2 2 2 41 ,kH kHA Bk H e Ce     

 

1 1 2 1 2 2 1

1 2 1 1 2

( ) ( )( 1) (1 )( 1)4( 1)
, , ,

m m mm
A B C

      

    

       
    (18) 

 On substituting h H  in Equations (16)-(17), the fault lies on the interface of the two layered 

medium. The displacement field of the layer agrees with the corresponding displacements given by    

Singh et.al. (1997) at the interface. To obtain the displacements in the closed-form, the integrals are to be 

evaluated analytically. For this, the linear combination of exponential terms 1/  is replaced as FSET  so 

that the error is minimum. Expanding 

  
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2 2 2 41
1 kH kHA Bk H e Ce


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by Binomial theorem and approximating as  

    2 2 21
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where, C  is a constant independent of kH ; , ,n    depending upon , , ,kH m    are to be computed 

employing the method of least squares. The asymptotic approximation is used to find the value of C  by 

taking the limit as 0kH   which gives 
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for all 0,1,2,3....n  . In our calculations, we choose 2n  . Therefore,  

    2 2 2 2 21
1 kH kHA Bk H e C k H e      
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 We consider two models of Earth: continental crust model and oceanic crust model [1970]. For the 

continental crust model, 
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 0.25, 2.22        (23) 

and for oceanic crust model, 

 0.3, 1.76        (24) 

Employing the least square method for the nonlinear case given by Scarborough (1955), the sum of 

squares of deviations given by  
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should  be minimized, where 0 0,a b are the corrections to the approximated values of ,   respectively 

and  
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are the residuals and  1 2, , ,f kH    is the right side of Equation (22). Beginning with the initial 

approximation of ,  using iterative process, the best fitted values of ,    given in (22) are obtained, 

listed  in Table 2. Figure 2(a)-2(b) shows the comparison of actual 
1


 (Equation (19)) and the 

approximated 
1


(Equation (22)) with kH for the continental case and for the oceanic case respectively. 

Table 2:  Best fitted values of  and   for continental crust model and oceanic crust model 

Crust Models          

Continental

2.22m     
0.25 0.25 0.69108844 3.24471534 

Oceanic

1.76m     
 0.3 0.3 0.44593599 3.28297275 

(a) 
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(b) 

Fig. 2 Comparison of the actual curve with the approximated curve of 1  for (a) continental crust 

model (b) oceanic crust model 

 On substituting the values of  and   from Table 2 in the expression  of 
1


 given in (22), the 

displacements for the EIL given in (16)–(17) can be expressed as a linear combination of integrals, and 

these integrals are solved using the standard integrals (Gradshteyn and Ryzhik [2014] ). The   expressions 

for the displacements yu and zu  for the  EIL  are given below:  

  2 2
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mbds
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where 

( 1,2,3,4,5), ( 1,2,3,4,5)i ji j    are given in Appendix B. The stresses can be computed 

similarly. On taking the limit  H  , the displacements for a vertical dip-slip line source in a uniform 

half-space coincide  with the displacements given by Rani et.al. (1991). 

NUMERICAL RESULTS 

 We compute the displacement field numerically for the continental crust model and oceanic crust 

model using the parameters given in Table 2. Let the VDLD lies on the interface of the two layered 

medium   at h H taking  the  fault location  at the material discontinuity. For numerical computations, 

the following quantities are normalized as: 

 , , ,
y z

y z

u H u H y z
U U Y Z

bds bds H H
     (29) 

where ,y zU U  are the normalized  displacements of the layer, Y is the normalized epicentral distance and 

Z is the normalized focal depth. Therefore, the displacements ,( , )iu i y z are computed in units of 
bds

H
. 

 Figure 3(a)-3(b) depict  the  behavior  of horizontal displacement  yU and the vertical displacement 

zU at the surface of the layer 0z   with epicentral distance y H  for continental crust and the oceanic 

crust, respectively. We find that the vertical displacement zU  is more significant than the horizontal 

displacement yU . Also yU  and zU  exhibit reverse behavior. 
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 Figure 4(a)-4(b) demonstrate the contour map  of the horizontal displacement  in units of 
210yU   

in the layer for  continental crust and Oceanic crust. The displacement has a significant variation near the 

fault location  0, .H The isolines are shown in the plot and the negative values of yU  are denoted by 

dashed lines. Figure 5(a)-5(b)  displays the contour map of the  vertical  displacement in units of 
210zU in the layer for continental crust and Oceanic crust. The displacement zU  has a remarkable 

variation near the fault. Solid lines denote the positive values of zU  and dashed lines denote negative 

values. Also, there  is a symmetry about the line 0y  . 

(a) 

(b) 

Fig. 3 Graph showing the variation of the dimensionless horizontal displacement yU  and vertical 

displacement zU  of the  stratum with normalized horizontal distance from a VDLD  located at 

the interface on the surface 0z  for (a) continental crust model (b) oceanic crust model 
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(b) 

Fig. 4 Contour map of  the  normalized horizontal displacement yU  for a VDLD located at h H of the  

stratum for (a)continental crust model(b) oceanic crust model 

(a) 

(b) 

Fig. 5 Contour map of  the  normalized horizontal displacement zU  for a VDLD located at h H of 

the  stratum for (a) continental crust model (b)oceanic crust model 



36 2-D Deformation of Earth Induced by a Blind Vertical Dip-Slip Fault 

 

CONCLUSIONS 

 We have obtained the analytical solution for a two-layered composition with a homogeneous EIL 

lying on a homogeneous EIHS. A dip-slip line source is situated in the elastic half-space overlain by 

an elastic layer.   

 The Airy's stress function technique has been used to obtain the deformation field in the integral 

form. 

 The least squares method is employed to approximate the linear combination of exponential terms 

that occur in the denominator of the integral expressions of the deformation field as FSET in the 

numerator and then integrals are solved analytically using standard integral tables.  

 The displacement field is computed numerically for a VDLD located at the interface of the two phase 

medium for two Earth models considering oceanic crust and the continental crust.  

 Near the source location, we observe that the displacements vary considerably. In comparison to the 

horizontal displacement, the vertical displacement has a larger magnitude. 

RESEARCH HIGHLIGHTS 

 The plane strain deformation of a two layered Earth model produced by blind dip-slip faulting is 

obtained. 

 The Airy’s stress function method is used. 

 The linear combination of exponential terms occurring in the denominator is estimated as a finite sum 

of exponential terms employing least square method. 

 The integral expressions of the displacement field are evaluated analytically. The displacement field 

is computed numerically for two different models of Earth. 
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