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APPROXIMATE DYNAMIC ANALYSIS OF CABLE SYSTEMS

VK. GUPTA!, BRUESH CHANDRA?, AND PREM KRISHNAS?
INTRODUCTION

Cable systems have been used in recent years to support a number of long span
roofs throughout the world. The increased popularity of these structuresis a direct result of
the wide variety of aesthetic shapes possible through their use, efficient use of material and
their capability for covering large spans. However, because of their small flexural rigidity
cable roofs may suffer large deformations unless adequately pretensioned, and in the process
the roofing material may get damaged. In order to determine the dynamic response of
cable suspended systems, the free vibration characteristics must be studied for consideration
indesign. The Tigorous dynamic analysis of such systems is quite tedius and time
consuming. Therefore, for preliminary designs, it is desirable to develop approximate
formulae for determining the natural frequencies of cable nets and trusses. This will
facilitate the computation work of the designer in determining the preliminary dimensions
of structural members which may be checked later with rigorous analysis. ~The present

paper discusses the use of approximate formulae for determination of natural frequencies
for both, networks as well as trusses.

ANALYSIS

.. Ananalytical solution is developed using the Rayleigh-Ritz approach (4) for
arriving at the approximate formulae for determining natural frequencies of elastic cable
structures. The analysis considers only vertical load and displacements and neglects edge

displacements and horizontal loads. Analysis of cable nets and trusses thus carried out
is described in the following sections.

CABLE NET

The cable net considered for illustrating the method is a translational surface of
two parabolic curves and is shown in Fig. 1. For a surface having the horizontal com-
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component of tensile force in cables as (Hx + hy) and (H, +hy) in x and y directions
respectively, the equilibrium equations at any point can be written as follows:
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in which

H: (»), H, (x)=horizontal component of tension in x and y directions per unit width of
strip=Hy, H,

hx (), hy (x)=change in horizontal component of tension in x and y directions per unit
width of the strip=#hy, Ay

a =spacing of the cables in x and y directions,
m ==mass per unit area,
w =vertical displacement of a point at any instant of time

Considering the change in length of cable and assuming the curve of cable to be
parabolic, A (¥) and 5, (x) can be expressed as follows:
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in which v
Ax, Ay=cross-sectional area of cables in x and y directions per unit width of the strip,
E =modulus of elasticity
Iy by =span of cable in x and y directions.

Assuming the origin of hypar at the centre of the roof C (Fig. 1), equation of
- the surface is given by,

4y 4 .0

Then, curvatures in x and yp directions are given by
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where f;, fy=sag of cables in x and y d1rect10ns.k

_ As the curvatures are invariant, the prestress forces are equal and the notations
H;(y) and H, (x) may be replaced by Hx and H, respectively in eq. (1).

For uniformly distributed load on the hypar, assuming origin at one corner, the
deflection is given by,
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in which i and j are integers.

However, eqn. (3) remains unaltered because of invariance of second derivative.
Now substituting eqn 4 and 5) _in eqn. (2), we get
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Now using these, the strain energy E; can be obtained as,
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Now assuming harmonic solution for w, one could write,

W=Wmx Sin 7t | .. (9)
in which Wmx=maximum deflection at a point
o n=circular natural frequency of the net in radians/sec.
The maximum kinetic energy for vibrating structure is given by
E,=} mass (velocity)?

Ix Iy

=—’2717]2 I J.megdxdy ...(10)
00
Assuming that the maximum amlitude of vibration is given by

wmx—-z z Cij sin —— nx smm ...(11)
I [ ,

Where i and j are integers.
Kinetic Energy E, is given by

Ey="7% 7" wzz@ ...(12)

According to Rayleigh-Ritz method (5) which proceeds by minimising (E,—E,),
NE,—E,) _
oCi;
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Now,
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Differentiating (14) with respect to C;; and equating to zero, we get,

m \2 2 n \% j2 EA»x%2Cyy  EAyp,? 2Cyj
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As an approximation, only the first term of the series in eqn. (11) is considered. Then,

taking wm.=C, sin _1;_x sin 7—;1, we get,
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- Ifiand j are even integers in eqn, (5), hu(y) and f,(x) are equal to zero, consequently
the first and second term of eqn. (1) will vanish, reducing eqn. (15) to the form

m \2 8 7 \2 j2 mnd
Hy ('l:) y Cij+H, (7;) ry Cii—'%)— Ciy=0 . (17)
Taking i=j=2 (even integers), for C,, we get,
4n[ H, H, \
"1222=E 'Ijz-i-ﬁ] ...(18)

Equation (18) gives the frequency of vibrations for an asymmetric mode, with
asymmetry about both x and y axes.

If i is odd integer and j is even integer in eqn. (5), h—(x)y is equal to zero, vanishing
the second term of eqn. (1). Thus eqn. (15) reduces to the form

LA T 2j2 EAxszzc mr?
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Taking i=1, j=2, for C,, we get
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Following the above argument, for i=2, j=1, we get
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Equation (20) and Eqn. (21) gives the frequency of vibration for an asymmetric mode,
~ with asymmetry about either x axis or y axis.

The frequencies of the cable net systems shown in Fig. 2 (Example 1) and Fig. 3
(Example 2) are computed using the expressions given by eqn. (16) to eqn.(21) and are
compared with the frequencies obtain by Jacobi’s transformation technique for lumped
mass discrete models. Comparison of results is shown in Table 1 and is found to be close.
Itis of importance to point out that if larger number of terms is considered in Eqn. (5)
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Example 1§ | Example 2
' Lg s -
Flat Net ‘
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Data: Data:
EA=6810,000 kg for each cable EA=262500 Tonnes per cable
Hy=Hy=34050 kg for each cable H;=580 Tonnes per cable
Hy=326 Tonnes per cable
Load at Load at
each node==3.95 kg each node=18.75 Tonnes
Fig, 2 Fig. 3
TABLE |
Frequency of vibrations in c/s
Example 1 Example 2
(Flat net) (Hypar)
Remarks - —1 Remarks
Addroi-x | Conven- Approxi- | Conven-
mate | tional mate tional’
Method | Method Method | Method
First 59.389 57.16 Symmetric 1.08 0.98  Antisymmetric
Frequency Mode : Mode
Second 93.90 85.02 Symmetric _ 1.15 1.095 Symmetric
Frequency , about x axis about x axis
and antisym- and antisym-
metric about metric about y
Y axis axis '
Third 93.90 85.02 Symmetric  1.250  1.17 Symmetric
Frequency about » axis about y axis
_ and antisym- and antisym-
metric about ‘metric about x
X axis axis
Fourth 118.778  105.74 Antisym- 1.315  1.26 Symmetric
Frequency metric Mode Mode
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greater accuraéy shall be obtained in the computed results. Further, it shall be

possible to obtain higher order frequencies. However, including more terms in Eqn. (5),
increases the complexity of the numerical work.

CABLE TRUSS®

Using the approach adopted for the network, the equilibrium equation at any
point for a truss can also be written as follows:

d*z d?z d*w d*w
where m=mass per unit length of span of cable,
On simplification, eqn. (22) reduces to .
d2z7 (EA)u d?z | 2w  dw
[236—2 " T (1 +q2r) j‘[-a;z]u de—(Hu+Hl) —Jiz,—=m —Zl,—t‘.; . .(23)
where L=span
o
7 Pu
r=(EA)’
(EA)
(EA)1u=cable rigidity for bottom, top cable respectively,
eru==curvature for the bottom, top cable respectively.
For uniformly distributed load on truss, the deflection is given by
. Imx ’
w=z Ci sin 1—7— ...(23a)

in which i is an integer

Solution of eqn. (23) is carried out using Eqn.(23a) and adopting the same procedure
as adopted for the cable network in previous section. From this an approximate
formulae for natural frequency of a dual cable system is derived. For a single wave
symmetric mode the frequency 7 is given by,

s [ et i+ (S)(Z2ERLE) (4] (2%

Expl:éssion for the frequency of vibration with double wave antisymmetric mode is
obtained as, ‘

4 2
”=ﬁ%[m+lh] .. (25)

Results of two cases of dual cable systems have been computed by usingeqn. (24) and (25)
considering two terms in Eqn. (23a)., The frequencies, thus, obtained are compared in
Table 2 with that obtained from conventional analysis. From the Example 3 and 4, the
frequencies have also been computed by taking three terms in Eqn. (23a). These results
are given in Table 3. It may be seen that the comparison of the results is closer in this
case. However, as before consideration of large number of terms entails greater numerical
complexity, \
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|-———-— L= 100m —'——“

" flum3Om Hy = 62-5 Tonnes -
u
415 Tonnes EA = 50,000 Tonnes }
NnsS + Hg = 500 Tonnes
fy= 6:25m

EA = 2000 Tonnes

udt(qL) on top cable =30 T/m
Example 3

]
[ L 1
Hy

0-0225H, EA =400 H,

f,=0-075L H
He A L

EA s ”'2 Hu

vdt (qL) on top cable s 0-5 Hy

Example 4
TABLE 2
Frequency of vibration
c/s
Problem i , Remarks
Approximate | Conventional
formulae analysis
Example 3 First Frequency 0.665 0.608 Antisymmetric mode
Second Frequency 1.33 0.815 Symmetric mode
Example 4 First Frequency 0.577 0.567 Antisymmetric mode
Second Frequency 0.959 0.743 Symmetric mode
TABLE 3
Frequency of vibration
c/s
I R k
Problem Approximate | Conventional emarks
Method Method
ﬂTExample 3 First Frequency - - 0.665 - 0.608 Antisymmetric mode
Second Frequency 0.921 0.815 Symmetric mode
Third Frequency 1.452 1.046 Three wave symmetric
mode
Example 4 First Frequency 0.577 0.567 Antisymmetric mode
Second Frequency 0.775 0.743 Symmetric mode
Third Frequency 1.079 0.9995

Three wave symmetric
mode
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CONCLUSIONS

_ The approximate method as presented herein gives results close to those obtained
using the conventional analysis and are recommended for the use in estimating the
dynamic response of such systems for preliminary design.
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