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- MATRIX ANALYSIS OF BEAMS ON ELASTIC FOUNDATION
SUBJECTED TO STATIC AND DYNAMIC LOADS

K.G. SHARMA!, S.N. DUBEY? AND H.S. MOONDRA®

INTRODUCTION

The theory of beams on elastic foundation is commonly used in soil-structure
interaction and occupies a very important place in soil mechanics. The methods for the
solution due to Winkler’s assumption were -used (Winkler, 1867) for more than one
century. Winkler’s hypothesis states that the reactions of the foundation are proportional
at every Point to the deflection of the beam at that point. Until recently, a large number
of studies and many numerical methods have been proposed by many researchers (Iyenger,
1965 and Malter, 1960) to solve this problem using Winkler’s hypothesis. Based on
the theory of Vlasov’s general variational method (Vlasov et al, 1966), a computer program
was developed by Harr (1959) for analysing beams on elastic foundation. Shih-Fang
Chen (1972) developed stiffness matrix for beams on elastic foundation using virtual work
principle based on Vlasov’s theory. In the present investigation authors have used
Winkler’s hypothesis and the value of ‘K’ (Elastic modulus) used was obtained by a
number of soil tests around Pilani.

The authors chose to solve a simply supported beam resting on elastic foundation
and subjected to static and time varying loads uniformly distributed over the entire
- length. The analytical solution for the two cases was obtained by solving the equation
of motion. The numerical solution was obtained using matrix method, which requires
the determination of stiffness, mass and loading matrices. The two results for deflection
are compared. The dynamic case is represented graphically and the static case in a
tabular form.

PROBLEM FORMULATION

_The equation of motion for transverse vibration of a uniform beam of length
L resting on elastic foundation and subjected to a general forcing function is given as

Elg%g%i)—l—p/i ﬂya%’;ﬂ—l—KY(X, N=q(,1?), . ‘ e ea(1)
where
p=rlg
r=unit weight of the beam material
g=acceleration due to gravity
EI=flexural stiffness of the beam
A=cross sectional area of the beam element
K=modulus of subgrade reaction
Y (X, t)=deflection of the beam at some point X and any time 7.
q (X, t)=forcing function. . v
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DYNAMIC CASE (ANALYTICAL SOLUTION)

Assume a series solution for the analytical value of the deflection ¥ (X, t) of
the form

YX =% h(sin X, @
i=1 |
and setting the value of Y (X, 7) and its derivatives from eqn. (2) into eqn. (1) after taking
- q(X, t)=4(t) (because load is uniformly distributed over the entire length), yields: ‘
, , At g ‘ ey o
EIZ ¢ (1) 'F sin 1_7_:1_:}’_1_9/1 Z ¢ () sin mTX+K 2 i (¢)sin 1—72‘},=q @ ..(3)

7 and integrating with respect to X between the limits

Multiplying this equation by sin
0 to L, one obtains:

. 04 4 ' ‘ '
(B0 Tt e O+ Ky (t)) LAUOL 5. .. (4)
or |
) 4q (1) N 5
¢ ()t (t)p?=i—ﬂp(—A | )
: ElT444- K14 :
where ‘ pﬁ:(W ) . .(6)
The general solution of equation (5) can be written as
o t
. 4 .
é1(8)=A; cos pjtB;sin p;t+l,@fq(T)sxn pi(t—T) dT, ‘ )

0
With the initial conditions

Y (X, 0)=0, i.e. ¢ (0)=0 .
Y (X, 0)=0,i.c. $;(0)=0 ...(8)

Making use of initial conditions from equation (8) into equation (7), the arbitrary
constants 4; and B; can be evaluated. : _ ‘

Thus Ai=B;=0 ‘ ...(9)
Therefore;
, |
4 .
b O= i j' ¢(T)sin ps (¢t—T) dT | ...(10)
- |

The three ﬁme distributions of the uniformly distributed load over the entire length of
the beam considered are given in case I, II and III and the corresponding values of ¢ (¢)
are also listed for the analytical solution of the problem.

Case I:
g )=qgytlty  [Fig. 1(i)]

qS}(t):pA:‘,Iiniz (f_sn;f" t), i=1,3,5... fortgt,
0 ‘
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() (i) Gin
© Fig. 1 Time Distribution of Load.

and ‘
__ 44, ( ooy Sinpi(t—ty) sinpit o |
()= ipm (o008 Pilt—t)+——, ———— for 1>f,  ...(11)
YX)=F p(sin o2 R
il
Case 1l : .
o 2 W
a()=g (11 ) (Fig. 1)
— 4q, t sin p;t
=i (108 P ) for 1<
and
44 (_ ,_sin pi(t—ty)  sinpit ,
¢'~~PAWIP:2( cos pit ity + it for t>t, | ...(13)
Case 111 :
(Combination of Case I and II) [Fig. 1(iii)]
when t<ty/2
‘ 8 _sinp;t\) |
qS'__l.PATCfopgz (t Di ’ v .(14)
and B |
_ 84 ( _, 2sin pi(t—1,/2) Sinp;t)
ti>_l'€’/‘175f<;17:'2 fo—t+ Di 7 - (15)
8 . . . '
¢’=i971%:;ﬁ (2 sin p; (t—1p/2—sin p; (t—1ty—sin p;t) fort 2ty ...(15a3)

MATRIX ANALYSIS

- This method consists in the derivation of stiffness, load and mass matrices for
the beam elements. (The beam is divided in certain number of parts and each part is
termed as beam element) R o

For generating stiffness matrix, the rate of loading on the beam should te set to
zero and thus, the equation of the beam resting on elastic foundation in its revised
form 1s

d'y ‘
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The general solution of this equation is given as .
Y=e2X (C, cos ZX4-C, sin ZX)4-

where e~2X (C, C0s ZX+C, sin ZX) | .. (17)
Z=4+/KJ4ET ...(18)

('2 x4
Y, ',
Fig. 2 'End Displacements of a Beam Element.
Case A ;
. —— dX-_
at ‘ ~0? Y= 1: E?./—Y—
, ay :
at X=/; =(, -c—l,?=0 | ...(19)
Case B : ,
. - a’Y~
at X=0; Y=, (E-—l
. - dY—- .
X<l y=o, =0 | ...(20)
CaseC:
dy
at =(), =), o=
‘ dy
at X=l, Y=-I, 67;‘;= . .(21)
CaseD:
: dy
at X—O, Y——O, LTY—O
dYy ‘
at X=I, Y=0, e ...(22)

Renamaig the arbitrary “constants Cy, C,, Cy and C, of equation . (17) as C,,
Clgy...Chyy Cyy, G . :Cot, Cyy, Cyy. .. Cyy, Cas Cyz. .. Cyy for the four different cases of
boundary conditions discussed, one can obtain these constants by setting the boundary
conditions from eqpns. (19), (20), (21) and (22) into eqn. (17). Thus the arbitrary
constants are as follows: ‘



Matrix Analysis of Beams on Elastic Foundation 11

Case A : ' «
Cn=(42+4, —A1A3—A1A4 Ay,A —3A 244)[D ...(23)
12-—'_(A 2+A 2—3A1A4_A1A3+A A3+A A4)/D . .(24)
Ciz=(4,*+4,2—4 A3+A1A4+A2A —-3A 2A44)/D .. .(25)
h 4'-—(A12+A 2""A A ’_A A4+A2A4+3A2A3)/D .o -(26)
where )
D=A12—I—A22+A32+A42——2A1A3——6A2A4 -.(27)
and ‘ Ay=e2! cos ZI, Ady=eZ! sin 7] _ ' :
Ag=e~%l cos Z] and Ay=e=% sin ZI ...(28)
Case B :
{ ‘
C21='—Z"—D (A1A4+2A2A4‘A2Aa) : -+.(29)
: \
C22=Z-—-D (A32+A‘2—“A1A3+2A1A4_'A2A4) ! o .(30)
Cos=—Cyy ...(31)
1
C“:Z—D (A12+A22——A1A3—2A2A3——A2A4) ...(32)
Case C:
C31="'“ (43—4, —A4,—A4,) ‘ ’ ...(33)
Cae=(—4, +A2+A3_3A4)/D ...(34)
C33=(A3—A4—A1_A2)/D .. .(35)
C34="(A1+3A2"A3—'A4)/D ...(36)
Case D: '
1
Ca =77 (A,—Ay) -..(37
1 ' ‘
Cro=7= (4,—4,—24,) ...(38)
Cia=—Cy -..(39
C44=2“Z) ( A1+2A2+Aa) o (40)

Defining these constants

..(41)

R
1
1
o
et
&
—— .
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a3y d2y
7X° and for moment as EI — Y Ex

One can write down the expression for shear and moment at the two ends of the beam
element under consideration.

and writing down the general exprcssmn for shear as El ——

Therefore:
at X=0, moment=M;;=2 (C,;,—Cy,) Z2EI
shear=04,=2 (—Ciy+Ci+Cig+Ciy) Z°EI ...(42)
at  X=I, Miy=2 (—A4,Cu+A4,Cry— AyCis+ A,Ciy) Z2EI
Qip==2(+B,Ci,—B,C;;,—B,Ci,+B,Ci5) Z3EI ...(43)

Thus one can generate the stiffness matrix Whlch will be a 4X4 matrix. The
first row for, example is given as

2Z2EI[Z (—Cyy+ Ciy+ Cizt+Cyy), —(Ci,—Ciy),
VA (Bzcix—BJCiz‘Ba.Cm+Baci4)a
(_A2C11+A1Cia+A4C13—A3Ci4)] .. (44)

Thus the complete stiffness matrix (S) can be written as follows:
S$11=2Z (€*%14-2 sin 2Z]—e?21)|U=S,, :
Spp=(e*21+-e-221—2 cos 2ZI)|U=Sy=—S;=—S,3
S13=—4Z [eZ (cos ZI+sin ZI)—e~Z! (cos ZI—sin ZI)}JU=S4, ... (44a)
Su=4 (Z—e~2) sin ZI|U=S4y=—Spy=—S;,
Sgp=(e?2!—e~2Zi 2 sin 2Z1)/|ZU=S,,
Sa==—2 [¢?! (cos ZI—sin ZI)—e-Z! (sin Z{4cos ZI)|/ZU=S,,

when S;; is the element of the stiffness matrix S(4x4) corresponding to it row and jt
column and this is symmetrical and

U=eZif o223 4 sin? ZI . . .(44b)

DERIVATION OF LOAD MATRIX ‘
Writing down eqn. (16) fgr the forcing function ¢, yields;
> Yy ‘
EI dX4+KY—q ...(45)
The general solution of this equation is
Y=eZX (C, cos ZX+C, sin 2ZX)+ e~ZX (C, cos ZX
+C, sin ZX) +q/K ...(46)
together with boundary conditions ‘

Y(0)=d—X’f(0)=o

Y(I)— (l) 0 .. (47).

Setting these boundry condition in eqn. (46) one obtains
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Cr=— (At A2 — Ay A= A A — Ay As—3 A~ Ayt A A H 4) ... (48)
Cy= .KT)(A32+A42—A1A3—3A1A4+A2A3+A2A4+A1-—Az—A3+3A4)' L LL49)

Cy=— 1_<"_D(A12+A;-A1A3+A1A4+A,A3—3A2A4+A3—A4—A1—Az) - .(50)
and
Com— 2 (AP AP — Ay As— A A 3y Ayt A — A, 34,4 AFA) ... (51)

where the constants have been defind earlier.

Thus the loading matrix can be written as

—Z(—C+Co+C31+C))
(C,—Co)
”2(32C1_B1C2—E4C1 +33C4)
(42C,—A4,Cy—A4,C3+A45Cy)

272E] .. (52)

DERIVATION OF MASS MATRIX

Defining the elemental mass matrix for an element as follows (Archer, 1969) :
I
mij=od I Y: ¥; dx . (53)

where Y; and Y; are the displacements of the i and Jj& element.

Substituting the values of element displacement already obtained, the mass matrix
m general for an element can be given as follows, where mij is one element (i*" row jt
col) of the mass matrix:

1
mii='8‘Z (—3CilCi1—C12Ci2+3Ci3Cfs+Ci4ci4+ Ci,Ci,
+ Ci3C11+ Ci3Cf4+ Ci4CJa+ZCiaci2+2Ci4Ci1
l
- +2GCi5Ci3+2Cy Cra) +5(CisCn+CinCra
+Ci4Ci2+C12C14)+ (C13CJ1+ CIICJ:;
. 1
_Ci4Cj2—'Ci2Cj4) sin (ZZI)—Zz(Cijz
+CisCiy+CiyCi+CiyCyy) cOs (2Z1)

2zl o
+ 8Z [2C51CJ'1+ 20‘1C12+(Cilch —Ci,Ciy)
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(8in 2ZI4-cos 2ZI)+(C1,Cjy+CiyCyy)
(sin 2ZI—cos 2Z/)]
e—2Zl

8Z [— 2C13C13—2C14C14+(C13C13 Ci;Cijy)
(sin 2ZI]—cos 2Z1)—(Ci5Cy+ CiyChy)
(cos 2ZI+sin 2Z1)] ...(54)

bl The general equation from where the dynamic displacements are extracted is given
elow : ‘

‘ (1)) (¥)+(Su) (¥ ))=(q1), ...(55)
where \
mjj=mass matrix
¢i =Loading matrix
Sij=stiffness matrix
STATIC CASE (ANALYTICAL SOLUTION) |

The general equation for t he static case and its general solution is same as
equation (45) and (46) respectively. :

The boundary conditions in this case are follows:
d2Y (0)

ro=2Y0_o
r=CTE o ...(56)

Setting these boundary conditions in equation (46), one gets the value of the arbitrary
constants.

Clsz)l (032+a42—ala3+a2a4+a1 —d3) ...(57)

cz=1-<"D—1 (@,0,—aya5+ay+ay), | . .(58)

C:s:]-(%; (4*+a2—aa,+ aya,—a, ‘ff%) ..+(59)
and C4::=C2 - - : T e .(60)
where D= —(a;* +a,°+-a+a,>—2a,a,4 2a,a,) |

a,=eZL cos ZL, a,=—e?L sin ZL

ay=e-2L cos ZL, a;=eZ?Lsin ZL ...(61)

STATIC CASE (MATRIX ANALYSIS)
The governmg equation of the static deflection is given as :
(Si) (¥Y))=(Q) ...(62)
or (Y7)=(Si)™ (Qi) | .. .(63)

Where Sj; and Q; are the stiffness and loading matrices already defined and ¥ 7 are the
elemental displacements of the beam.,
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RESULTS AND DISCUSSION

Thus, for three different "time distributions of the dynamic load, the mid span
displacements are calculated for different times analytically and numerically and they
are plotted in Figs. (1), (3) and (5). As is evident from these figures, there is not
much difference in the values of deflection obtained by the numerical method as
compared to analytical method, thus proving the accuracy of the matrix method even
though, the element size* is not very small and could be made smaller for a larger
computer. Beam displacements are also plotted for different times along the length of
the beam for three distributions of dynamic load, as shown in Figs. (2), (4) and (6).
Except in Fig. (4) it only shows the first vibrational mode. For static loading case, the
two deflection values as given in Table—A are exactly same for both analytical method
and matrix method.

TABLE A .
STATIC LOADING
Span Analytical Deflections Deflections by Numerical |

S. No. Lengths In cms. - Methed In cms.

1 0o 0 0

2 L/7 0.026985 0.026985

'3 o 2L/7 | 0.042689 0.042689

4 3L/7 | 0.048700 0.048700

5 4L)7 0.048700 0.048700

6 5L/7 0.042689 0.042689

7 6L/7 0.026985 0.026985

8 L 0 0

CONCLUSIONS

The simple beam subjected to static and time varying loads, resting on Winkler
foundation is completely analyzed and the deflections compared to exact analytical
solution. In the case of dynamic load for the three time distribution of the uniform
load, the analytical and numerical solutions are very close as is evident from Figs. (1), (3)

* See Appendix.
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and (5). This provés the degree of accuracy of the numerical approach. The three
vibrational modes are represented in Figs. (2), (4) and (6). The vibrational mode of
third case Fig. (6) is not a well defined one because the period of application of the

load considered was only 5 secs. In this case we need a larger period to get one cycle
of vibration. , ‘

The static case deflections by analytical and numerical solutions are exactly same.
Since the numerical solution was developed from the analytical solution, the
computational errors are completely eliminated,

The next step should be to solve more complex problems of platies and shélls using -
‘a nonlinear foundation model. »

APPENDIX

The beam considered has following material properties.
Span of the beam L=7.0 metres
Element size I considered =50 cms.
Cross Sectional area of beam element=65 cm?
element.

I =13200 cm*

E=2x10% kg/m?

Load=10 kg/cm

7o=10 kg

Duration of dynamic load=35 secs.
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