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EFFECT OF AXIAL FORCE ON BEAMS WITH SHEAR AND
ROTARY INERTIA EFFECTS

M. MUKHOPADHYAY*

INTRODUCTION

The classical solution obtained for transverse vibration of beams indicate
considerable error for short beams and where higher modes are required. Rayleigh [1]
introduced the concept of rotary inertia which however did not explain the higher
modes until Timoshenko [2] proposed a more accurate differential equation which

included both rotary inertia and shear deformation.

Much investigation has since been conducted on Timoshenko beam. A review
of it is available in Ref. 3. For certain types of structures axial forces induced may
impart some effect on the lateral vibration of bars. Examples of such cases are weight of
the tank of the water-tower supported on columns and a rotating turbine blade—axial
force being induced due to centrifugal force of rotation. No study has yet been made
in general terms on this aspect. The purpose of the paper is to present a general
solution for Timoshenko beam-columns. Exact solution for the particular case with

hinged ends has been worked out.

EQUATIONS OF MOTION :
The following equations are obtained for Timoshenko beam when the axial
compression F is taken into account . \
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" where
Y (x, t) =total deflection of the beam
M’ (x, t) =bending moment
V' (x, t) =shear force ’ ‘
B'(x, ) =neutral axis slope due to bending
0’(x, ) ==neutral axis slope due to shear

E =modulus of elasticity of the material of the beam
P =mass per unit length ;

I ~ =moment of inertia of the cross-section

I, =pl
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=shape factor in shear
F=axial force, positive when compression
A=cross-seclional area
G=modulus of rigidity

Equations (1) to (5), when combined, result in the following differential equation for
uniform beams v A : & HHeren]
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Solution of differential equation (6) is extremely involved. So recourse had to be
taken to a simpler approach suggested by Dolph [4].

SEPARATION OF VARIABLES

The following solutions are assumed for Eq. (1) to (5.

Y (x, 1) =y (x) cimt " )
Vi(x,t) =V (x)eivt / ' ...(8)
M (x,£) =M (x) et ...(9)
B'(x,1) =B (x) ¢ivt ...(10)

Eq. (1) to Eq. (5) reduces to thke following after eliminating 0’ and combining with Eq.
(7) to Eq. (10y
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GENERAL SOLUTION

~General solution is obtained by the standard procedure. The following solutions
are assumed., ’

Y (X)=y, cb* ~ ... (15)
M (x)y=My e - ...(16)
V(x)=V, erx ...(17)
B ()C)= Vo erx ‘ ) . (18)

where yo, M,, V, andrl?O are constants. Substituting Eq. (15) to Eq. (18) into Eq. (11
to Eq. (14), ‘ :

pVotowtyy=0 ---(19)
~PMy+ Vo +1wBy+pFy,=0 ' ...(20)
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A non-trivial solution of Eq. (19) to'Eq. (22) is possible only if the determinant formad
by the coefficients is zero. Thus,
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Solution of Eq. (24) gives
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There are four values of p :

Py, py=y ,
D1, Po=tie ...(26)
The general solutions remain same as for beams without axial load
y=C, cosh yx+4-C; sin yx+C; cos éx+C, sin ex .27
2 ' ' 2 :
V=e;1- (Cy sinh yx+C, cosh yx)—l—p—zv- (Cy sin ex—C, cos €x) C .. (28)

' pw? )
M=E] (m+y2) (C}1 cosh yx4C, sinh yx)

o 2
+El (;ZG-—&) (Cscos ex+Cysinex)  ...(29)
pw? : pw? "
—— +-Y2 ‘ +€2
p=K4G (C; sinh yx+4-C, cosh Yx)+KiG—-—

) ——— (C; sin ex—C, cos ex)
- | | ...(30)
APPLICATION TO SIMPLY-SUPPORTED BEAM |

As general solutions remain same for beams with and without axial force,

: : it can
be shown that after applying boundary conditions for the simply supported beam

‘ jf;'% (Where n=1,2,3,...)
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The values of w which correspoxid to é=11£ are obtained by setting p=ie in Eq. (24).
Thus
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: ...(31
Eq. (31) will yield the natural frequencies of Timoshenko beam-column.

DISCUSSION

The effect of different parameters such as axial force, shear deformation, rotary
inertia are best studied by maens of non-dimensional parameters. Timosehnko beam
has already been studied by non-dimensional parameters S, N and A mentioned below [4].
For Timoshenko beam-column, a new non-dimensional parameter 7 is introduced.

- Eq. (31) may be written in the following form
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If T=0, Eq. (32) will reduce to Timo henko beam natural frequency. If the effects of
shear and rotary inertia are neglected, then S=N=0 and naturai frequency for such
beam may be written as )

...(32)

where : S

T o |
Ac;nznz[l—m] . ...(33)

If A, is the natural frequency of Timoshenko beam, effect of axially compression
on natural frequency is best studied by a plot of A/Ay against 7. Such a plot for first
three modes has been presented in Fig. 1. For T less than 0.1, A/A,, is nearly equal to
1 which means axial compression does not have any influence on the natural frequency
of such bars. For higher values of 7, most pronounced effect is observed in first mode
and it goes on reducing with higher modes. The values of A/A, mentioned in Fig. 1 is
practically independent of S or N. It has been found-that these values change only
marginally when § is changed from 1/10 to 1/1000 and N from 1.135 to 0.3. This
observation is confirmed from Fig. 2 and Fig. 3 where A/A, seemed to be nearly constant
for the entire range of 7. It is apparent from the definition that T increases with an
increase of axial compression or increase in length and decreases with an increase of
flexural rigidity. . This parameter describes the relative importance of axial compression
for beams of a given flexural rigidity and of given length, It also brings out the fact
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‘thalxt both length and flexural rigidity ‘are important parameters for Timoshenko beam-
column. ‘ o ‘ o ’
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Fig. 1 Effect of Axial Compression on Natural
Frequency.

Thus it is seen that reduction in natural frequency due to presence of axial load
expressed as a fraction of natural frequency of beams without axial load is nearly same
for both classical beams and Timoshenko beams. If this is considered to be valid for
other end conditions, then it can be seen that axial compression has a more pronounced
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Fig. 2 Shear and Rotary Inertia Fffects on
Frequency for N=0.3,

effect on a cantilever beam which is a more practical case, than a simply-supported.
beam. For a classical cantilever beam with axial compression acting at the ends, the

natural frequency can be written as -
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Ae=bVE_T “ ...(3%

where b=1.875 for first mode, 4.694 for second mode and so on. Definition of non-
dimensional quantities A, and 7 remain same. For T7=0.6, the ratio of the natural
frequency of the cantilever beam with axial load to that of the beam without axial load
for first mode is 0.909. For hinged beams this ratio is 0.962.
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Fig. 3 Shear and Rotary Inertia Effects on :
Frequency for N=0.135.. !

CONCLUSIONS

General solution for Timoshenko beam-column has been derived. Solution for
natural frequencies for beams with hinged ends has been presented. Effect of axial
compression has been studied from a plot A/, against 7. It has been shown that for T
less than 0.1, axial compression has practically no effect on the natural frequency due to
lateral vibrations. For higher values of 7, most significant effect of axial compression
is observed in first mode. Shear deformation and rotary inertia do not sezmto have any
notable influence on A/A,. The effect of axial compression is more pronounced for
cantilever beams than for beams with hinged ends.
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