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INDIAN SOCIETY OF EARTHQUAKE TECHNOLOGY
ROORKEE, UP. (INDIA)

_ The Society (“ISET”) has been formed with the purpose of disseminaiz'ng the
 knowledge in the field of Earthquake Technology dealing with Seismological, Geological
Geophysical and Engineering aspects.

The first bulletin is now being issued. It is proposed to issue bulletins of “ISET”
every six months. Technical papers concerned with earthquake technology are invited for
publication. The last date for submission of papers is as follows.

(a) For January issue - 15th. December of prer)ious year.

(b) For June issue - 15th. May of the same year.

The membership of the Society is open to all individuals, associated with or interes-
ted in Earthquake Technology. In addition to this, he must have the following qualifica-
tions: — ' ' | ' ‘

(a) A recognised Engineering Degree or its equivalent;

(b) A Master’s Degree in any branch of Science or Technology or its equivalent.

" The Subscription for Individual Membership is Rs. 15/- per year and for Institution
Membership is Rs. 100/- per year. The subscription is payable in advance on the Ist

- January for the calender year.

Membership form ard other details are available from the Secretary of the Society.

(i)



SECOND SYMPOSIUM ON EARTHQUAKE ENGINEERING
UNIVERSITY OF ROORKEE

November 1962

The behaviour of soils and structures under dyna-
mic loads is a relatively new problem and has been taken
cognizance of only in recent years. In the past, the
designs of many constructional works like dams, bridges,
tall buildings, water towers and other structures in the
country were based mainly on the equivalent static
forces acting on them. But the increasing tempo of
irrigational and multipurpose projects and construction
works like power houses, office buildings, living quar-
ters, factories and " industrial structures in seismic zones
has necessitated a thorough study of the dynamic forces
‘expected to come into play, and increasing attention is
being paid to this aspect. The starting in 1960 of the
School of Research and Training in Earthquake Engi-
neering at the University of Roorkee has been a step in
the right direction. With a view to apprising the work

done by tie group of research workers at this school to

other interested workers and to exchange the experience
of workers engaged in similar or related work elsewhere
the university organized in 1959 the First Symposium

on Earthquake Engineering and this was followed by ‘

the Second Symposium held at the university during
10-12 November 1962,

Forty-one papers were presented to the symposium
which was attended by about 200 delegates; papers were
also contributed by workers from USA, Engiand and
Japan. The symposium was conducted in five technical
sessions of half-day each. The five sessions dealt with
the following subjects:

DESIGN OF DAMS IN SEISMIC ZONES

1. “Effect of Earthquake on Pore Pressure in Earth
Dam” by V.J. Patel and S.D. Bokil.

2. “The Seismic Stability Analysis of Earth Dams
(Part II)” by N.N. Ambraseys.

3. “Earthquake Resistant Design of Earth Dams” by
Jai Krishna,

4. “Effect of Seismic Forces on Various Power Houses
in Uttar Pradesh” by Ravi Datta and P.S. Nigam.

5. “Water Pressure on Overflow Dams During Earth-
quakes” by V.G. Palnitkar.

6. “Some Aseismic Design Aspects of Hydro-electric

Structures” by Y.K: Murthy, K. Madhavan and
K K. Rao:

VIBRATION STUDIES OF SOILS
7. “Dynamic Behaviur of soils” by Shamsher Prakash
and R. Gupta.

8. *“Earthquake Res1stant Design of Retaining Walls”
by 1.P. Kapila.

9. “Vibratory Response of a Cohesive Soil in Uniaxial
Compression”’ by R.L. Kondner,

10. “Behaviour of Soils Dur‘ing Seismic Disturbances”
by R.S. Mithal and L.S. Srivastava,

11, “A Simplified Method for Computing Resonant
Frequency of Square Footings™. by HA Balakri-
shna Rao,

SEISMOLOGY AND INSTRUMENTATION FOR
VIBRATION STUDIES

(a) SEISMOLOGY
12, “Seismoiogy in India” by A.N. Tandon.

13. “Assesment of Maximum Seismic Intensity and
Ground Acceleration” by A.N. Tandon.
14. “Seismic Regionalisaiion of India’ by S.K. Guha.

15. “On predominant Period of the Surface Layer in
~ the Assam Plateau” by B.P. Saha.

16. “Vibration of Elastic Constants with Frequency and
Under Different Physical Conditions™ by V.K. Gaur

(iv)



17. “Preliminary Investigations of the Problem of Pre-
dicting Earthquake by Measurment of the Magnetic
Field in the Region™ by V.K. Gaur.

18. “Study of ‘Earthquakes Recorded by G:évimeter”
by S. Balakrishna.

(b) INSTRUMENTS FOR VIBRATION STUDIES

19. ““Design of Shock Vi})raiion Table” by Jai Krishna
and A.R. Chandrasekaran

2()' “Pesign of Structural Response Recorders” by Jai
Krlshna and A.R. Chandrasekaran

21. “De51gn ofa Vlbratlon Measuring Devme” by AR.
Chandrasekaran and S.N. Pande.

ANALYSIS AND DESIGN OF STRUCTURES
FOR EARTHQUAKE FORCES
22, “Earthquake Stresses in Tall Buildings with Set
Backs” by Glen V. Berg.

*Study on the Dynamical Response of An Actually
Designed Structure Against Severe Earthquake” by
Hajime Umemura.

23.

24. “Effect of Joint Rotation on the Dynamics of Multi-

Storeyed Frames” by A.R. Chandrasekaran:
«Vibrations of Catenary Arch” by K.V. Mital and
J.S. Tomer.

“Response of Structures to Artificially Generated
Explosion Waves in Earth” by S.K. Guha, G.V.
Rao. R, Nath, B.B. Khade and R.P. Belgal.

25,

26.

27. “Structural Damping of Brick Masonry in Different

Mortars” by D.V. Mallick.

-

28. “Building Constructiop in Seismic Zones of India”

by Jai Krishna and A.S. Arya.

«Settlement Studies on a Model Footing Under
Dynamic Loads™ by A. Sridharan.

29.

30. “Japanese Mode of Thinking of Earthquake Resis-
" tant Design” by R.N. Joshi.

Vibration Problems in Hydraulic Structures” by
Satish Chandra.

31.

33.

v

GEOLOGICAL STUDIES FOR ENGINEERING
PROJECTS IN SEISMIC ZONES

- 32, “Significance of the Moradabad Fault in the Indo-

Gangetlc Basin and Other Faults in the Sub-Hima-
layas, in Relation to the Ramganga River Project,
U.P.” by V.S Krishnaswamy.

“A Geological Evaluation of the Thrusts and Faults
in the Vicinity of the Beas-Sutlej Link Project and
the Uhl Hydel Project, Himachal Pradesh,” by
B.M. Hukku. ‘ '
“Probable Correlation of the Structural and Tecto-
nic Features of the Punjab Himachal Pradesh Ter-
tiary Re-Entrant with the Patterns of Seismicity of
the Region,” by V.S. Krishnaswamy.

34.

35. “Geological studies Relating to the Seismicity of
the Sarpduli-Dhikala Thrust, Ramganga River Pro-

ject, District Garhwal, U.P.”” by R.8. Varma
“Seismic Phenomena in North Eastern India” by
P.C. Hazra and D.K. Ray.

“Regional Geology and Seismicity of the Yamuna
Hydel Project, Dehradun District, U.P.” by P.N.

Mehta.

36.

37.

“Studies Relating to the Seismiciry of the Satlitta
Thrust, Beas Dam Project.” by S.P. Jalote.

38.

39, “The Origin and Significance of the Vindhyan

Scarp,” by F. Ahmad.

40. “Seismicity of the Area around Barauml, Blhar,”'
" by R.S. Mithal and L.S. Srivastava.

41. “Development of Concentric Shear Planes and the
Related Seismic Phenomena in the Gangetic Syncli-

norium”, by P. Kumar.

Presentation of Papers in each session was followed
by lively discussions. ~All the - papers along with discu-
ssion have been printed in the proceeding of the sympo-
sium. The bound Proceedings (575 pp.) are available
for Rs. 12/- ($ 3. 50 for foreign orders) from the 0.C.
Book Depot, University of Roorkee, Roorkee U. P.
(INDIA).



THIRD WORLD CONFERENCE. ON EARTHQUAKE ENGINEERING.

Jan.-Feb. 1965

The Third World Conference on Earthquake Engi-
neering will be held at Auckland ana Wellingron (New
Zealand) from Friday, January 22, 1965 to Monday
February 1, 19¢5. The conference is being oreanised
by the International Association - for Earthqrake
Engincering. A

The New Zealand National Committee has issued
an invitation to Scientists and Engineers from the Seis-
mic Countries of the World to attend the forthcoming
Conference, to take part in the technical sessions and to
join in the post conference tours. ‘

Papers are also invited by the Organizing Committee
for oral presentation at the Conference. The last date
for submission of papers is 30th June, 1964. The official
language of the Conference is English. The technical
papers will t:> separated into five different Themes or

Sessions. These are to be classified broadly as follows:

(1) Soil and Foundation Conditions Related to
Earthquake Problems.

(2) Analysis of Structural Response ; Instruments.

(3) Seismicity and Earthquake Ground Motion.

(4) Earthquake Resistant Design, Construction and
Regulations.

(5) Recent Strong Motion Earthquakes and Re-

“sulting Damage,

Each Session will have a General Reéporter, whose
func'ion will be to summarise the important features of
all papers of that Session.

Vi

A session will commence with a summary by the
General Reporter. Authors will then be allocated
approximately ten minutes’ presentation time. In this
time, he would be expected to high-light principal fea-
tures of his or her paper or to introduce new data not
previously available. After the introduction of papers,
major portion will be devoted to discussion.

Each session will close with a summing-up by the
General Reporter.

An Exhibition has also been planned on the occa-
sion of this conference. Any item connected with earth-
quakes or earthquake engineering would be acceptable.
Exhibits may include photographs, films, drawings,
models, instruments, equipment and publications.

A Book shop will also operate to sell earthquake
engineering publications on behalf of the organisations
or individuals.

Enquiries regarding submission of papers, partici-
pation in the Conference Exhibition and Book'shop
should be made to :

The Administrative Secretary,

Third World Conference on Earthquake Engineering,
P.O. Box. 5180,
WELLINGTON, New Zealand:



. INDIAN SOCIETY OF EARTHQUAKE TECHNOLOGY
ROORKEE, (U.P.) INDIA.

Dear member,

We feel great pleasure in presenting the First Bulletin (Vol. 1, No: 1) in your hands.
Since the inception of the Society in November 1962, we had been considering to institute a
publication. A large part of the year 1963 was devoted to printing of the Proceedings of the
Second bymposuum on Earthquake Engineering organised by the School of Research and
Trammg in Earthquake Engineering, The Proceedings are available from the O.C. Book
Depot, University of Roorkee, Roorkee (UP), for Rs. 12/- each excluding postage etc.

Tmmediately after Completmg \hus work, we invited contributions from members and others
for this Bulletin and we were glad at the encouraging response from . various contributors,
for which we are extremely thankful to them,

The Society has evoked enough interest not only in India, but in other countries also. We
have already received two papers for the Second Bulletin (Vol. 1, No: 2) from the U.S.A,
The Bulletin will be issued in June 1964. The dead line for submission of papers is 15th
December and 15th May for the January and June issues respectively.

. Contributions are welcome on the following topics: —

—

. Analysis and Design of Structures for Earthquake Forces.

Design of Dams in Seismic zones.

Dynamic Loading of Soils and Foundations.

Geological Studies for Engincering Projects in Seismic Zones.

Instruments concerned with Seismology and Earthquake Engineering Studies.
Earthqnxake Records and Reports. |

General Topics Having a Bearing on the Subject of Earthquake Technology.

ol o

2 o

.

Depending upon the response in future, we will consider to increase the frequency -of

publication.

We. have not so far planned any meeting of the Society, mainly because of lack of
funds. A statement of the budget for the year 1963 will shortly be forwarded to you. Despite
shortage of funds we have kept its price about two-thirds of the actual cost, so that more
people are encouraged to buy the same: We are sure that, with your cooperation, we will
have enough funds soon. We, therefore, take this opportunity to remind you that your subs-
cription for the year 1964 is due and vou are, therefore, requested to remit the money as
early as possible. - '

Seeretary

( vii)
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PROBLEM OF EARTHQUAKES

Jai Krishna*

The most uncoritrollable force that nature unleashes
on mankind is that through earthquakes which occur
without warning and which are unpredictable. Science
has not been able to help either in knowing about their
occurrence before hand or preventing them in future.
The man, therefore, looks helpless in the wake of this
destructive force which results in tremendous loss of
life and property in different areas of the world from
time to time. The feeling of an earthquake is most
awful since the very earth to which we look up for
stability, begins to tremble and this naturally causes
fear psychelogically and quite often a very real one. In
the last 4 years sev eral devastatmg shocks have occurred
starting from Agadir in Morocco followed by Lar in
Iran, the five big shocks of Chile coming one after the
other within 24 hours in 1960, heavy damage in Libya,
the devastation of a great part of Tehran last year and
the latest one resulting in destruction of the town of
Scopje in Yogoslavia. Luckily for India we have not
had any major shock since the great earthquake of 1950
in Assam, but we had more than our share in the last
60 to 70 years. The 1950 Assam earthquake was pre-
ceded by Bihar earthquake of 1934, (11,000 people
killed) Kangra valley earthquake of 1905 and perhaps
the greatest earthquake of Assam in 1897 and many
other smaller ones which may not haveleft a deep scar
on the history of the country but did do considerable
damage locally. These four' earth; uake"’ wereé: perhaps
the biggest shocks exper: Where
history, and therefore, Indxa 15
ble loss due to this force of nature on which we have
no control.
occurred in Western Himalayas;. one should be exp"cted
in the near future. It is, however formnate tha ]
last six years there have’ béen seve‘

follow. Similar is the situation in Gauhati-Shillong axis.
The earth as a whole experiences about 800 to:
900 shocks a year which can cause damage locally.
Most of them occur either in sea or in unpopulated
regions. We, therefore, hear only of those which shock
the thickly populated areas. Following are the biggest
shocks of the twentieth century :

Year Country Human Beings Killed
1905 Kangra (India) 19,000
1908 Ttaly 75,000
1915 Italy 30,000
1920 China 1,80,000
1923 Japan 1,00,000
1932 China 70,000
1934 Bihar (India) 11,000
1935 Quetta (Pakistan) 30,000
1939 Turkey 23,000
1950 Assam (India) 1,526
1957 Iran 2,500
1960 Agadir 12,000
1960 Chile 5,700
1962 Iran 10,000
1963 Skopje 2,000

in’ recent .-
scepnble to: éonsidera-
" inside the earth mass co
Since, for many years no; blg shock has",-
‘very high-and " so
ithe . “origin of Earth""‘_
il small - shocks e

which may lessen the intensity of the bxgger shock' to :

It has not been pdéSible so far to givea precise

- -scientific cxplanatlon of hew the earthquakes actually
.. OCCUT, SeVeral theorres have, however, been put forward

from timé to tlme, the most rehab]e among them being
based ont the prmc1ple that volumetric changes take place
0 'uously because the tempera-
ture and' pressure ‘of the materlal inside the -earth are
' 'ustments connected with the
ue'to take place. These changes
result in he earth "_bmg strained and, when the

strams bécome too blg rupture takes place. This rupture

*Director, School of Research; & Traibing in Da,&'thquakb Engmeermg University of; Roohkee ‘Roorkee, U.P. (India)
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Problem of Earthquakes

Taay occure over many miles and the bursting process
-may mvolve hundreds of cubic miles of earth mass,
It would thus be seen that tremendous amount of
' energy is released which traveis in the form of wavas to
_the surface shaking everything that came in their way.
It is only when these waves reach the surface that we
feel the occurrence of an earthquake. Anything stan-
-ding on ground is vibrated to and fro and if the buil-
-dings and other structures are not designed for . earth-
quake forces they collapse resulting in demage to life
and property. Sometimes the travel of the waves causes
loud frightening noise but that by itself is not anything
dangerous. It is the excessive vxbrauons which can be
danoerous Perhaps the greatest loss of life occurred in
‘the Chma earthquake of 1920 and the Tokyo Barth-
quake of 1923, where over 180, 000 and 100,000 people
respectrvely were known to have dred although these
earthquakes in terms of energy released, were not bigger
than our giant earthquakes of Bihar and Assam but,
since the areas where these occurred were thickly popu-
lated, the loss of life was much greater. Energy relea-
sed during an earthquake is so huge that some times
‘big dams crack and are washed away. Even the sma-
llest earthquake of consequence generates much more
energy than the biggest man-made nuc]ear bomb. For

‘comparison series of spheres shown in Fig. 1 indicate

the measure of the enmergy released in different major
earthquakes.

Since it is not possrb]e to prevent the occurrence of
earthquakes nor is it possible even to predict them, the
only alternative available to engineers is to study the
science of strengthening the buildings, dams and other
structures in such a manner that when earthquakes
occur they remain safe. This, of course, poses a diffi~
cult economic and psychological problem. - Earthqua-
kes do not occur every day in one region. Perhaps it
may not occur even once in 50 years and, the public
memory being short, there is always a tendency to
ignore them or minimise their danger. Some designers
would argue that an earthquake may or may not occur
in the life time of the building and we might as well
economise by ignoring these forces. Even when an
engineer decides upon designing a building against
earthquake forces, the problem before him is to decide

compromise between two requirements.

as to. which size of an earthquake he should design it
for. The force thata building is subjected toin an
earthquake depends upon the place where the earthqu-
ake originates i.e. the distance of the origin from the
building, and the size of the earthquake. The greater is

"the force for which a building is designed, the greater

The designer has thus to make a
The guidance
to this decision should come from the more familiar
case of taking out an insurance policy. One always
insures himself according to his financial ability and the
importance of his life to his dependants. Another ins-
tance with which we are more familiar is that of the
design of a bridge. Rivers, in India carry water whose
quantity varies very greatly from onme seasonto the
other and from one year to the other, A designer has

is its initial cost.

always got to take a decision as to what size of flood he

should design the bridge for, and this would depend
upon its importance and the effect on the initial cost.
In the case of earthquake resistant design also this deci-

‘sion has to be made by the designer on the same basis

taking _into account the known history of the place and
assuming that in future also earthquakes of similar sizes
will take place, and the financial implications of the
decision. He must, of course, realise that, whatever

‘he does, he ' is not in a position to guardntee that the

structure was safe for all possible earthquakes that
nature was capable of unleashing if the epicentre happ-
ens to be within a few miles of the structure. He can,
however satisfy himself because the probability of such
an occurrence is very small and, on that basis, whatever

-safety he provides for, is likely to prove adequate agai-

nst failure.  But this uncertainty about the future
should not thwart our efforts to understand the problem,
carry out research and use the existing kuowledge to
the best of our ability: Nor should this make us
take the position that we take no notice of them and
look to the immediate gain by not taking the earthquake
forces into account. The price of this attitude may
have to be paid very dearly later. The recent occurre-
nces in India and outside are a clear pointer to this.

The map of India and the surrounding region (Fig:2)
indicates the positions of the epicentres .of the past



4 Bulletin of the Indian Socicty of Earthquake Technology

earthquakes in the present century, Many more must
have occurted earlier. Bulk of these regions were un-
populated so far but with the rapid pace of industriali-
sation large townships, oil refineries, many industrial
concerns of large and small sizes, dams and irrigation
works, bridges and numerous other structures are being
planned in these regions and the construction of some
of them has already been taken in hand. The question
of determining the cheapest methods of strengthening
“these buildings and other struciures against earthquake
forces is of paramount importance to this country.
Unfortunately very little scientific data regarding the
‘behaviour of structures in these regions is available, and
for a long-term study, steps would have to be taken to
collect this data. In the meantime, laboratory study
will provide considerable information ‘that ‘would be
‘helpful in design work.

Anticipating. these requirements of industry and
.other engineering projects, the Council of Scientific and
Industrial . Research sanctioned the establishment of a
School of Research and Training in Earthquake Engi-
neering at the University of Roorkee in 1960. The
School has since built up the necessary facilities and
has embarked upon the programme of research on the
methods of strengthening buildings, dams, water towers
.and other structures -against earthquake forces, Some
work has already been published. .As a part of long-term
work, Simple Pendulum Recorders have been designed
and it is proposed to.instal them at different stations

shown on-the map. In}future earthquakes these instru-
ments will record more precise information about the

“behaviour of buildings and other structures, so that the

future designer could strengthen these structures more
scientifically. A typical station is shown in Fig. 3. India
has, therefore, ‘gone ahead to meet the designers’ future
need.  Another important step already taken by the
Indian Standards Institution is to draft a code of practice
for “Earthquake Resistant Design” - and it has recently .
been published. - This provides adequate guidance for
the design of simple structures.

Although research will - yield much information in
course of time to make the task of the designer more
precise and the structures consequently more economical
and- safe, a good deal of information already 'exists
which can be made use of for insuring our buildings
and other structures against. failure to a great extent for
normal earthquakes. There is absolutely no need to
fall back on “Fate”, and suffer the - consequences. At
the same time corplacency in areas where a shock has
not occurred in the last 50 years is also dangerous.
Prevention in this case too is far better than cure. Past
experience has shown that the buildings designed for
earthquake forces have stood the shocks much better
than others not designed for them. The konwledge has
further advanced in the last 25 years enabling even
safer construction. Further work is in progress which
will cut down losses to a minimum, ‘
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'VIBRATION ANALYSIS OF STRUCTURES BY THE ENERGY METHOD

Dinabandhu Mukherjee*

SYNOPSIS

This paper deals with the Energy method'fqr deter-
mining natural fteque’nc‘ies of structures. The frequency
orthe period of. vibration is calculated by comparing
the potential enetgy of the  deflected structure with-its
Kineti¢ energy: as it passes through its normal static
position. Rayleigh’s principle, the static deflection
method or a special case of Rayleigh’s method;. Ritz’s
development and' Southwell  Dunkerley: extension - of
Rayleigh’s principle are discussed.

A method, called the method of “Dynamié Conver-
gence”, for:solution ‘of multistoreyed: framed struetures,
is-explained.- A 10-storey reinforced concrete building
frame; which has been originally designed by the: author
for-an-earthquake allowance of 20%.g for comparing
the increase in cost due to earthquake resistant design,
is analysed for its period-of vibration by applying. the
method of Dynamic Convergence and the - Energy prin-
ciple. Any desired accuracy can be obtained by this
method and therefore it is comparable to the other
classical methods.

INTRODUCTION

In the design: of an earthquake proof structure; the
basie seismological data required are the natural  period
of vibration of the structure and-the natural period of
vibration of the ground. The degree to which the
natural period-of vibration of a structure: synchronizes
with the ground movements may determine whether or
not the building will suceessfully withstand the earth-
quake.
building may also be- required in areas other than the
earthquake zones. Thus the housing of a -machine
having reciprocating motion in an - existing. bhildingn or
the design of a new building for such use might well be
conditioned by a vibration study of the building. Diff-
erent methods are available for calculating period of

-Again, study of vibration characteristics ofa"

vibration of structures. In this paper Energy method
for determining the period of vibration of multi-storeyed
frame is discussed:
Energy Method:

The differential equation of motion for a mass m
performing su:nple Harmonxc Motion can be written as-

mx + Kx = O or X + p2x=0.........(1)[P2=*

where K i§ the spring constant or the restoring force.
This equation is satisfied for
X=occospttcysinpt
whence we can see that the time périod T = 5 or the
2n
Natural frequencies can sometimes be advantageo-
usly calculated by using the law of conservatlon of ener-
gy provxded that ‘damping is negligible. Our dlscusswn
will be based on a study of the potentidl and the Kine-
tic energies of a system in motjon and their s:mple rela-
tion with the system’s ‘natural frequency parameter.

frequency f =

If we multiply equation (1) by X , we have XX +

_1‘1% xx = 0. This expression lends itself to a direct
integration, viz. '
1y + l —K— x2 = C
72X
) 1 ¢ 2 l y 2 - iy
or 7mx + 3 Kx?=Cm 2)

The first term of this expression is seen to give the’ inst-
antaneous Kinetic energy of the motion of the mass, and
the second term represents the instantaneous potential
energy content of the linear restoring element with refe-
rence to the potenﬁal energy level requlred by the static
equ111br1um posmon of the system. When the dlsplace-
ment X isa maximum X the velocity X is zero “and all
the dynamxc energy of the syatem is potentlal Slmllarly,

* Lecturer in Applied Mechanics, Bengal Engineering College, Howrah,
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when the displacement xis zero, the veloci,tyx' isa

maximum X and all the dynamic energy of the system
is Kinetic. The energy equation of a vibrating system

can therefore be written as

Lmir 4L Kxr = 3 Rx0= Lk =co=p ‘0

If the characteristic deflection curve of a_ structure,
i.e. the maximum displacement of different points along
its length is known, the work done upon the structure
by the oscillating masses which is the potential energy
of the deflected structure can be calculated. By the law
of conservation of energy, the Kinetic. energy of the
system as it passes through its figure of rest becomes
known. Since the masses are known and the Kinetic
energy has been determined, the period may be deduced.

The formal requiremerits of the deflection curve are
that it must sattisfy the end conditions and that in
between these end conditions, it must coincide with the
actua) dynamic deflection curve. Rayleigh (Rayleigh,
1945) has shown that the fundamental natural freque-
ncy as calculated from the assumed shape of a dynamic
‘deflection curve of a system, will be equal to or higher
than the system’s true natural fréguency.

Static deflection curve has got a wide application
for this purpose. This is the deflection that the system
would undergo under static condition if the gravity
action is supposed to be acting on the masses of the
system.

Better approximations in calculating the fundamen-
tal frequency and also the frequencies of higher modes
of vibration can be obtained by *“Ritz’s method” which
is a further development of Rayleigh’s method (Ritz,
1911). ' In using this method, the equation of the defie-
ction curve representing the mode of vibration isto
be taken with several parameters, the magnitudes of
which should be chosen in such a manner as to reduce
to a minimum the frequency of vibration:

To apply Ritz’s method in calculating the frequency
f of the fundamental type of vibration, the first step is to
choose & suitable ex'pression for the deflection curve, Let
Q: (%), Q; (%), be a series of function satisfying the end

. conditions and suitable for rep esentation of y. Then

y=2a; Q (X) + 2, Q (x) + 3 Qs (x) +
represents suitable deflection curve of the vibrating
system. Taking a finite number of terms in this expre-
ssion means superimposition of certain limitation on the

_possible shapes of the deflection  curve and due to this

fact the calculated frequency is usually higher than the
exact value of this frequency. In order to obtain the
approximation . as close as possible, Ritz proposed to
choose the coefficients a,; @y, @83... 0 as to make the
frequency a minimum. Thus, by equating  to zero the
partial derivative of the expression for frequency with
respect t0.a,, a system of equations homogeneous and
linear in a,, 4, a3 ... is obtaned, the number of which
is equal to the number of coefficients a,, a, as ... . Such
a system of equations can yield for a,, a,, as ... solution
different from zero only if the determinant of these equ-
ations.is equal to zero. This condition brings us to the
“frequency equations” from which the frequencies of
the various modes of vibration can be calculated.

If a composite system can be. split up into several
isolated systems, we can get a lower limit to the freque-
ncy of the composite system as compared with an upper
limit given by the Rayleigh approximation. This exten-
sion of Rayleigh’s principle is ‘due to Southwell and

Dunkerley. In the first case, if the composite system

is such that it is possible to express the total Kinetic

energy in the form of one integral while the potential
energy remains the sum of several integrals or terms,
then the sum of the squares of the true isolated 'freque-
ncies would be either less than or equal to the square of
the true frequency of the composite system (Southwell
1941). In the second case, where the potential energy is
contained in one term and the Kinetic energy is
contributed by various inertia elements, the sum of the
squares .of the reciprocals of the isolated frequencies
furnishes an upper limit of 1/f2 and consequently a lower
limit of f2, i.c. the square of the true requency of the
composite system (Dunkerley, 1894). The true funda-
mental frequency is obtained from the higher limit given
by a Rayleigh approximation and the lower limit given
by a Southwell-Dunkerley approximation.

Application to Building frames :
The dynamic characteristic of a. 10-storey reinfor-
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ced concrete building frame is obtained by applying the
energy method. The frame forms a part of -an R.C.C.
framed structure and has been designed by the author
for Dead load, Live load, and earthquake force of 20 %
g using the standard code of practice given by the
Indian Standard specification. The frame consists of
two bays of 25’ each. The floor heights have been kept
as 12’-0”. The frames have been placed 12'- 0" centre

to centre.

In this problem, as before, the important part is to
determine the characteristic deflection curve. To obtain
the deflection curve and the ‘dynamic forces which pro-
‘duce the characteristic deflection curve, a process called
e “Method of Dynamic Convergence” is employed.
This method is due to J.E. Goldberg and is similar to
Stodola-Vianello method (Bleich, 1950).

Determination of the Deflection Curve: .

Considering the bent or frame as a whole, it is
clear that the shape of the deflected structure, i.c. the
characteristic shape of the deflection curve of the vibra«
ting structure, is determined by the forces exerted upon
the structure by the oscillation of the various particles
or masses, these forces being proportional to the pro-
ducts of these masses times their respective amplitudes.

In determining the shape of the deflection curve to
which the structure oscillates under free vibration, use
is made of physical fact that, irregular though the’
forces may be which initially disturb the structure from
its figure of rest, the structure secks immediately to
adjust its figure to the natural deflection curve of free

oscillation and with each succeeding oscillation appro-

aches the configuration of the natural curve more closely
until, finally, the natural curve is accurately matched
and the previous adjusting oscillations are succeeded by
This fact may be proved

We may, therefore de-

self-sustaining free vibration.

experimentally or analytically.
termine the shape of the natural curve by producing
analytically a chain of successive circumstances closely
resembling the successve aspects of the ‘structure during
its transition from the irregular ngure ‘induced by the

initial disturbance to the final detlection curve of free

oscillation.

_ Thus we may begin by assuming an initial deflection
curve for the disturbed structure which, for practical
reasons, should be as correct an estimate of the final
free oscillation curve as we can make conveniently. In
the absence of specific data on the exact shape of the
free oscillation curve, it would be convenient to assume
some simple curve for the initial aspect of the disturbed
and deflected structure as for example, a straight line
variation of deflection with height.

For the sake of simplicity and convenience in the
consideration of the specific case of building frames, it
will be assumed that the masses of all the bodies
and elements which make up the mass of a storey act
as a single mass, concentrated at the level of the floor
system. y

The force exerted by a mass, m, moving with
simple Harmonic motion is, at the limit of its deflection

Force = CmA @
wharein C is a constant. which applies generally to all
masses of the system. A form somewhat more conveni-
ent for our purpose is obtained by transcribing equation
(4

Relative force = mA (5 ‘

Assummg that eachmass has exerted a relative
force equal to mass times its respective initial displace-
ments, the first adjusted deflection curve is obtained.
for the structure under the action of this group of
assumed forces by the use of the following slope-
Deflection formulae for the diflections of building frames
under transverse loads. Each formula is applied, in
turn, to each storey of the bent to obtain the adjusted
deflection curve. ‘ ‘

6. = hi‘li_l\_d_(l_ (6)
n 123 Kg n f
M, 6 +6
Ry =TIt T2 - O
Where |
= 2 EI/L = Stiffness of column
Kg = Stiffness of girder
= " Shear force x Storey height

M

i

‘Moment acting ata joint
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Angular rotation at a joint

Slope at any storey from the
vertical ‘
Relative diflection

Actual deflection

i

>U ®mo
il

The above expressions for G and Ry are approxi-
mate formulae. But they are simple and can be con-
veniently used for the present purpose. The frequency
or the time period is not appreciably changed due to
this approximation. Equations (6) and (7) are used
for all storeys above the first. For the first storey,
equations (6a) and (7a) are used assuming full restraint
against rotation at the bases of the first storey columns.

= Mi+M,
91 = 122 K81+ E K01 “en (6a)
- M 6,
Rl"‘ 62Kcl + 2 soe (73)
The actual linear deflections are given by
Dn = (Ry) (hn) voo w  (8)
An == — 2'1' Df. see : Yy (9)’
1=1

~ On the basis of the first adjusted deﬁection;cu‘rv‘e or
transition curve thus determined, a new set of relative
forces is computed by means of equation (5). Again
using ¢quation (6) to (9), a second adjusted deflection
curve is obtained. The procedure is repeated until a
deflection curve of the desired accuraey is obtained, i.e.,
until the free oscillation curve is determined with the
desired degree of accuracy. The degree of accuracy
may be tested by co'mpaiison of the successive deflection
curves. '

Determination of the period of vibration :
 Having definitely determined the deflection curve

. to which the freely oscillating structure deflects and,
incidentally, having determined the forces at each storey
which have induced this deflection, it now becomes
possible to deduce a value for the natural period of
vibration, At the instant the structure has reached the
end of its swing, i.e., it is fully deflected, the instantaneous
velocity of each particle is zero. -The total energy of
the system is, therefore, entirely potential at that instant

and is equal to the work done upon the structure by the
decelerating particles or, - what amounts to the sameg

thing, by the relative forces previously determined.

Again, at the instant of passing through its figure of
rest or normal static 'position, the entire energy of the

‘structure is Kinetic and is equal to the summation of

the Kinetic energies of the individual particles or masses
of the system. Neglecting the internal losses due to
fric?ion and other losses of similar nature, these two
‘quantities of energy must be equal by the law of conset-
vation of energe.

Total work=7%, (average force xA\)=3, (Ezé- 10y

where, the F and A values used are the accepted final
and correct values.

2 :
Total Kinetic Energy=z[%—(2—7fr‘é) ] . (11)

Equating (10) and (11) and solving for T gives
| 2p [EMA?) |

5 (FA)
An alterative formula, taking into account the

motion of only a single mass, may be obtained as
T = o [BA - (13)

Being simpler than equation (12) and entirely satisfactory
for normal use, equation (13) is particularly useful as a
means of checking. Equation (12), however, is -more
easily modified for other than the normal motions and
has the further capacity of minimizing irregularities and
the errors resulting thereform,

T = . (12)

Applying the above equations, the natural period yf
vibration of the 10-storey reinforced concrete frame,
already described, is determined analytically, A dimen-
sioned sketch of the frame is given in Fig. (1), on which
the moments of inertia (I) of the external and internal
columns and of the girders are shown. The figures
within bracket are corresponding values of K=2EI/L.‘
Data and calculations are tabulated, all elements of the
calculations being tabulated progressively in the order
in which they are computed. The calculations for the
fifth st(;rey, whicn is typical, are carried out in detail
below. The items are numbered in accordance with the
numbering of the column heading of the table and will
serve to explain each step of the procedure. o

(1) K¢=2EI/L for each column of the designnated
storey; Tabulated stiffness values are in units of 10%b-
ft. At the fifth storey the stiffness of the two.exterior.



Vibration Analysis of Structures 11

columns is 77.5 (x10%) Ib. ft. and that of the interior
column is 149 (x10%) Ib, ft.

ALLGIRDERS Ka - 60°5 xICF Ibft,

922 15450|35¢)  feI'l)
10210 215801499 (23¢)
215800 42800(99) {499
21500 4260099) @99}
33500 64,400/(149) \(77'5)2'
335000 64400(149) 79
37900 72600(682) |67
52000 93600(23)  [122)
s9g00| 124g00l28® (p®)
664000 143,300\(332) | 1537
| k—z:s'—#—z 55— |
ALL GIRDERS I = .54.500 IN?
~ Fig. 1 .

(2) For the two exterior and one interior columns
of the fifth storey, 6 3 Ke5 = 6X(2X 77.5 + 149) =
1824 (x 10%) Ib, ft. '
(3) The stiffness of each girder of the frame is
Kg = 60.5 x 10°1b. ft. '
Therefore, for the two girders at each storey
12 5Kg = 12 x 2 X 60.5 = 1452 (x 10%) 1b. ft.
Note that at the first storey,
123 Kg + 3 Keg = 1452 + 639 4 = 2091
is tabulated for subsequent use in equation (6a), whereas
_' the other itews in this column are for use in equation (6).

(4) Mass is the mass assumed to be concentrated
at the top, i.¢., at the level of the girders, of the storey
in question and includes the floor system, one half of
the columns, walls, partitions, both above and below the
floor level. The total weight of these elements divided
by the acceleration of gravity is the mass for that storey.

(5) For the initial estimate of the deflection curve,
a deflection of 1,00 ft. is assumed at the top of the frame

with the deflection at all other points in proportion to
their elevation. At the fifth storey = 1.00 X 60/120=
0.500 ft.

(6) By equation (5) the force assumed to be acting
at the top of the fifth storey is relative force =myAs ==
3790 x 0.500= 1895 Ibs. ’

(7) The external shear at the fifth storey is the

‘total of all the forces from the top of the frame down

to and including the force attop of the fifth storey.

Shear; = Shears + force 5 = 14,592 + 1895

= 16,487 lbs.

(8) M;==_Shearg X storey height=16,487 X 12=197,
844 1b. ft.

(9) By eqn. (6) 652 = (197844 + 175,104/2X
(1452) = 1284 Radian/10°

(10) Myf6 5 KeS =
Radian/10,

(11) By equation (M Rs =
1284 = 378.9 Radian/10°

(12) By equation (8) Dy =
4547 f1./10°

(13) The total deflection of any storey, by equation
(9), is the running total of item (12) from the first

storey upto and including the storey in question. Thus
= 15854 + 4547 = 20,401 ft/10°

(14) The deflections thus determined are scaled to
a value of 1.00 ft. at the tbp of the frame. Thus at the
fifth storey, relative deflection = 20401 /36219 = 0.563.
This item is useful chiefly in proéressively checking the
accuracy of the successive deflection curves.:

197,844/1824 = 108.5

108.5 4 1420 +

I

3789 x 12

(15) to (23) Comprise the second approximation or,
in other words, determine the shape of the second transi-
tion curve. They are a repetition of the processes of (6)
to (14). The set:ond'approximatioh corresponds very clo-
sely to the final free deflection curve and may, therefore,
be used for all ordinary purposes. However, for comp-
lete convergence and a final check on the accuracy of
the work, a third approximation is made.

(24).to (32) Comprise the third approximation
which is made in the same manner as the first and second
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STOREY

1 2 3 4 6 7 8 9 10
639.4 564.0 4750 3436 3040 3040 198.8 198.8 97.1 78.0 1 = Ke 108 1b. ft. -
3836 3384 2850 2062 1824 1824 1193 1193 583 468 2 65 Ke 10°10b. ft.
2091 1452 1452 1452 1452 1452 1452 1452 1452 1452 3 125 Kg 10°1b. ft,
3790 3790 3790 3790 3790 3790 3670 3670 3670 3510 4 Mass ’
: 0.100 0.200 - 0.300 0.400 0.500 0:600 0.700  0.800  0.900 1.000 5 A, assumed, ft,

- 379 758 1137 1516 1895 2274 2569 2936 3303 3510 6 Force 1bs.
20277 19898 19140 18003 16487 14592 12318 9749 6813 3510 7 Shear ibs.
243324 238776 229680 216036 197844 175104 147816 116988 81756 42120 8 M Db ft.
115.5 161 153.5 142 128.4 111.2 91.2 68.4 42.6 14.5 9 6/2 radians/108
63.5 70.5 80.5 104.7 108.5 96 124 98 140.4 90.1 10 M/6 3 Ko
179 347 395 400.2 378.9 335.6 326.4. 257.6 2514 147.2 11 R radians/10%
2148 4164 4740 4802 4547 4027 3917 3091 3017 1766 12 D ft./10°
2148 6312 11052 - 15854 20401 24428 28345 31436 34453 36219 13 AN fty108
0.059 0.174 0.305 0.438 0.563 0.675 0.782 0.869  0.950 1.000 14 Relative A
224 660 1156 1660 2135 2560 2870 3190 3485 . 3510 15 Force Ibs.
21450 21226 20566 19410 17750 15615 13055 10185 6995 3510 16 Shear 1bs
257400 254712 246792 232920 213000 187380 156660 122220 83940 42120 17 M b ft.
122.5 172.7 165 153.7 137.9 118.5 96 71 434 14.5 18 6/2 radians/108
67 75.3 86.5 113 116.9 102.7 131 102.3 144 90.1 19 M/6 5 K
189.5 370.5 4242  431.7 408.5 359.1 345.5 269.3 258.4 148 20 R radians/108
2274 4446 5090 5180 4902 4309 4146 3232 3101 1776 21 D fi/108
2274 6720 11810 16990 21892 26201 30347 33579 36680 38456 22 A fi./108
0.059  0.175 0.307 0441 0.570 0.682 0.789 0.873 0.954 1.000 23 Relative A
224 663 - 1163 1672 2160 2582 2895 3200 3495 3510 24 Force 1bs.
21564 21340 20677 19514 17842 15682 13100 10205 7005 3510 25 Shear lbs.
258768 256080 248124 234168 214104 188184 157200 122460 84060 42120 26 M Ib. fi.
123 173.5 166.1 154 1385 119 96.3 71.1 43.5 ' 14.5 27 8/2 radians/10%
67.4 75.7 87.2 113.5 117.5 103.2 1319 102.5 144.5 90.1 28 M/6 3 Ke
190.4- 372.2 426.8 433.6 410 360.7 347.2 269.9  259.1 148.1 29 R radians/108
2285 4466 5122 5203 4920 = 4328 4166 3239 3109 1777 30 D ft./i0®
2285 6751 11873 17076 21996 26324 30490 33729 36838 33615 31 A ft. /108
0.059 0.175 0.307 0.441 0.570 0.682  0.789 0.873 0.954 1.000 32 Relative A

Total . . .

24,141 0.02 0.17 0.54 1.11 1.83 2.63 3.42 4.18 4.99 5.25 33 m A?
623.33] 0.51 = 4.47 13.80 28.55 4750 68.00 8820 108.00 128.80 135.50 34 F A

-
I

Ts

B

21 \/24.14]623.33 = 2m +/.0387 = 2mx.1966 = 1.235 sec.
27 +/ (3790 % .021997)/2160 = 274/ 0386 = 27x.1964 = 1.235 secs.
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approximations. The perfect agreement between the
respective quantities of (23) and (32) may be noted.

(33) The next step in the procedure is'to compute
the energy quantities for use in equation (12). Using
~ the actual deflection listed in (31),"again taking the fifth

storey as an example, v
ms As? = 3790 x (0.021996)° = 1.83
s (mAZ)= 2414

(34) Correspondingly,

F; As = 2160 x .021996 = 47.50
and 3, (FA) = 623.33

The procedure to use in any case is briefly :

(a) A simple deflection curve is assumed, linear,
parabolic etc., depending upon the character of the
structure and the distribution of the masses.

(b) The dynamic forces are calculated by means of
equation (5).

(c) The deflections induced by the assumed dyna-
mic forces are determined using the appropriate deflec-
tion calculating method.

(d) The structure is passed through the necessary
number of cycles of dynamic convergence, to determine
the true free vibration deflection curve, by repeating
steps (b) and (¢)

(e) - The period is calculated by means of equation
(12)

CONCLUSION

(i) From the above discussion it may be seen that
the method of Dynamic convergence with Energy
principle can be used, with great advantage in the ana-
lysis of multistoreyed building frames for dynamic loa-
ding.

(i) Instead of the Dynamic convergence method,
the static deflection curve can also be used. But then
the dynamic character of the problem is not acknowled-
ged. Because, actually the dynamic forces which pro-

duce the deflection curve are proportional not simply to
the various masses butto the product of mass and
acceleration of each element of the structure.

(i) Compared to other methods of frequency
determination, Energy Method is more general and can
be made to suit any given condition by incorporating
different losses that may come in actual structures.
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ON THE VIBRATION BEAM AND SLAB BRIDGES

K. T. Sundara Raja Iyengar* and K, S, Jagadish**

SYNOPSIS v

The beam and slab bridge isa complex structure
and the calculation of its natural frequency is quite invol-
‘ved. A simplified procedure has been giveh in this
paper for such a calculation., A Fourier series
expansion in terms of plate-eigenfunctions has been used
to express the deflection of the bridge, the bridge being
considered as a' plate resting on beams. It has been
found that a one-term approximation gives satisfactory
results and numerical work has been carried out for
various bridge aspect-ratios based on a one-term approx-
mation. Graphs have been given to facilitate a rapid
estimate of the frequency.

INTRODUCTION .

The natural frequencies of a structure: especially
of the graver modes, form important basic dat1 necessary
in evaluating  its response under a variety of dynamic
loads. These frequencies are of interest whether one
wishes to determine the dynamic deflection of a bridge
wnder the action of a moving load orits behaviour
under blast loadings and strong-motion-earthquakes.
An easy procedure to calculate the fundamental natural
frequency, without sacrificing the accuracy of the result,
would then be eminently desirable.

The dynamic behaviour of bridges has been studied
extensively by various authors such as Inglis (1934) and
others, but, they have confined themselves mostly to
the study of Railway bridges. The natural frequencies
of such bridges can be obtained. easily by the theory of
beam-vibrations. The situation is more complex when
one considers a beam and slab bridge. The problem is
essentially two dimensional and a one-dimensional appro-

ximation is not reliable unless the spanis very large
when compared with the width of the bridge. A ratio-
nal analysis of the problem then requires, a consideration
of the bridge in the light of the plate theory.

Stiffened Plate structures have been studied in the
literature, most often by the orthotropic plate theory.
Considering the beam and slab bridge as an orthotropic
plate one arrives at a transcendental equation for the
bridge frequency (Hoppmann and Huffington, 1958).
This approach has been utilised by Naruoka and
Yonezawa (1958) for the frequency analysis of the beam
bridge. But the solution of the transcendental equation
for various bridge dinamensions is quite cumbersome
and is not easily amenable for engineering purposes.

In this paper the bridge has been considered as a
plate resting on beams. It has been assumed that there
is no restraint against slippage between the beam and the

‘slab and that the beam offers only vertical forces of

reaction against the plate. Torsional resistance of the
beams and the internal damping in the bridge have been
neglected. The consideration of restraint against slip-
page leads to very involved equations and is not amena-
ble to a rapid calculation. The influence of restraint
against slippage tends to increase the potential energy
of deformation of the structure and its effect may also
be considered by increasing the stiffness of the beam on
the basis of the effective width concept. The question
of effective width in dynamic problems has not been -
well understood and this consideration merits more
detailed theoretical and experimental investigations.

THE PLATE-EIGEN FUNCTIONS
It is well known that the normal modes of a vibra-

* Assistant Professor of Structural Engineering, Civil and Hydraulic Engineering Department, Indian Institute of Science,

Bangalore-12, India,

** Research Fellow in Structural Engineering, Civil and Hydraulic Engineering Department,‘ Indian Institute of Science,

Bangalore-12, India,
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ting plate can be described in terms of known functions
when its two opposite edges are simply supported. A
slab bridge can be considered as a plate simply supp-
orted on two opposite edges and free at the other two

(Fig. 1).-

A

aladetafunhallh iodmindeiiouinbe NI S

Pa—
SRR T R

Fig. 1.

‘Considering the classical plate equation
P W

V‘W-}--—- —5 =0 e (D

ot
where W is the deflection of the plate, P the ‘mass of
the plate per unit arca, D the flexural rigidity of the
plate, one can take for the m-n't mode of vibration

Wmn=Ymn (y) SlnT Cos Pun t e (2)

where ‘a’ is the span of the slab bridge, Pmn the circular
frequency of vibration for the m-n'" mode, m and n
being any two integers. Ymn will now take the form

Ymn () = Ay Cosh mny + Aq Sinh Smnd

As Cos Bm"y+A4 SmBm"y . 3)

where b is the width of the slab bridge,

m2gr2

EBEI}L .. (d2)
an—bA/\/PP mn f_n’_”_“_ .. (4b)

.4 D?
and o’mn — Bzmn=2l'l’127"'2 2 v (40)

The free edge boundary conditions at y =+ —22—

may be expressed as

d? Ymn m27r2
gy TV gz Yme =0 .. (5
y=t
d*Ymn “m?7? dY.
T R Gt Rl v =0 (5b)
y==* b

2
where v is the Poisson’s ratio.
Considering only modes symmetric iny we. obtain

the frequency equation to satisfy these boundary condi-
tions for the slab bridge as ’

. 2
ﬁg2mn+vm2ﬂ.2 bT
tan &’m = — Jmn 2

X
2 Bm \gzmﬁ(z—u)m%wz—?y

tanh _‘312’_"-. : , ()

This equation has to be solved together with (4c) to ob-
tain the frequency pai'ameters omn and PBmn. These
equations will have an infinite number of roots for each
value of m. The eigenfunction corresponding to the nth
root may now be taken as

2

amn, . b
Cosh -~ Bl omn— vm?7? F

Yma (y)= —t T X
Cosh —m,zll B%mn+vm27? o
Cos Brumy
b . 7
Bon w0
Cos 5

The first roots of the equations corresponding to the
fundamental mode of vibration have been obtained by
an iteration procedure given in Appendix I. The values
of the roots are given in Table 1 for v=0 and v:==0.2,

It can be shown that integrals of the type
e 8

It may thus be seen that

b/2
j ) r Youn Yy Sin ™2 Sin 1’2‘ dx dy =0

-b/g JO
whenever i = morj # n

the functiohs Ymn Sin’%?5 form an orthogonal set in

b

thc domain x =Oto aandy = — — o + —



This property of the plate-eigenfunctions allows a Four-
ier series expeusion of an arbitrary function in terms of
these functions. A knowledge of the value of the integral

‘ 1 [+bfe

8 . o M7X
—_— 2 3 0 = vee
ab -.b/g Io Y mn Sin a dx dy Kmn (9)

is essential for such a Fourier series expansion. The
values of this integral have been given in Table 2 for
mz= landn =1

ANALYSIS
A typical beam and slab bridge with k beams

disposed symmetrically about the x-axis, the free edges
being parallel to the x-axis (Fig. 2) may now be consi-
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Fig. 2.
dered. The analysis of free vibration of this structure
will now be based on the following assumptions.

- (i) There is no restraint against slippage between
the beams and the slab,

(i) The torsion of the beams may be neglected and
(iii) The internal damping in the "brjdge ‘may be
neglected. ‘ ‘

The Vibration of Beam and Slab Bridges 17

Though the first assumption is rarely realised in
practice, the inaccuracies)arising from this assumption
may be compensated for by suitably increasing the stiff-
ness of the beam based on the effective width concept.
Such an enginecring approach to simplification. is nece-
ssary since the equations would otherwise become very
complicated. The second assumption is besed on the
fact that the rotations of plate cross-sections will be
small in the first mode of vibration.

The motion of the slab may be described by the
equation
k
DVW—pPpW=—3 lS(cr) fr (x) - (10)
I= .
after separating the time variable, where y=c; denotes
the location of the rtt beam, fi(x) is the amplitude of
the vertical force of interaction between the rtt beam
and the slab and § (¢r) is the Dirac-delta function
aty = cr. The deflections of the beams are given by
the equations
d*Wr

El dx*

—Y p? Wr = fi (x) . (11)
r=1,2, ...k :
where EI is the stiffness of any beam, ¥ is the mass per
unit length of any beam and Wr(x) =w(x,cy).
W is now expanded in terms of the plate eigenfunctions
discussed previously and one can write
' w ® L :
W= 2 2 Amn Ymn Sln e (12)
m=1 n=|
It may be noted that the functions used in the above
expansion satisfy all the boundary conditions exactly.
The coefficients Amn now remain to be chosen so as to
satisfy the equations (10) and (11). Expanding

k
3, 8(cr) fr(x) by another Fourier series,

T=

max
a

amn Yo sm"-”-aﬂ( 13)

I M ™

w0 @
S fr(x)=3 3
r=1 m=1 n=1
where
1k a . mnax
n = i 5 Y @ Jr@ Sin=r= dx (14
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Using (13) and (12) in (10),

. . .
og o§ Aun Ppon Yona Sin max
m=1 n=1
2 e 2]
__.Ep_ o% ’ S Amn YmaSin m%
m=1 n=I1 ‘
1 w0

® m7X
e=—— 5 3 amn Ymn S0 —— . (15
D m=1n=1 a
where pmu is the circular frequency for the m—n't mode
of vibration of the slab without beams.

Collecting the coefficient of each Yun Sinxp—i—:—x in (15)

and using (14)

Am b (D)

i ; Yon (cr) rf( sin ™% 4x (16

="K Dab 21 mn (Cr o T x) Sin a )
—_ @D e s}

Since Wr= 3 S Amn Ymo (cr) Sinm—%)—( , equa-

m=1 n=1
tion (11) becomes, fr (x)
Iy ® ‘ 4
= 2 % Aun Ymo(e)x BI-ST* —¥ p?) Sin
m=1 n=1 a a
_ ‘ an
Substituting (17) in (16)

AmnTP)‘ (P*mn—p*)

1 k ' w» w0
S Ym@ | £ T AnYy@

- Kmnab r;l ) 0]: J=1 -
_ mmx o, inx (Bl i*n*_¥p®
Sin TSIHT ’]—5 at —T) dx .. (18)

a .9

. L IR o, MTX
Since j Sin e Sin
o]

a

dx= 0 wheniz*m
=—g~ when i=m,
(18) reduces to
b4
Amn%‘ (p2mn—p°)

k
= : g EI minbt
=7 2Kmn fi] Jil Amj Y (€r) Yuy {cr) 5 at
_ Y FPo’t
P D )
n=l, 2’ v . (19)

. ‘Here one has an infinite'set of homogéneous equa-
tions in Ap; for each value of m. -

, _Pptamb* . _Ppb* o _EI
Putting Amn -— D y A= D ,K1=‘Db and

K; = %-5" the equation may be written as

Amn (Amn—2) i
1 ke o
™ S, Amj Ymj () Ymalcr) X
me=li=t » 4,448
b
n=1, 2, ves . (20)

For non . trivial solutions of Anpj the determinant of
the coefficients of Amj should vanish. The roots of this
determinant give the values of A, the frequency parame-
ter, for various modes.- :
CONVERGENCE OF SOLUTION

For purposes of numerical analysis it is necessary
to consider a' finite number of terms in the series, the
number of terms depending upon the rapidity of the
convergence of the solution. A typical case has been

examined by taking% = 2.0 and considering a three-
beam bridge such that ¢, = %—? , € =0, and cz= __3_;.) .

Putting m = 1, one obtains modes with no nodal lines
in the x direction. Taking three terms in the series
corresponding to Au, Ay, and Az a third order determi-
pant is obtained: The determinant is given below
putting K; = 2.0 and Ky = 0.2

749.0910 —1.58871A —29.6167+0,48647\

—34.6162 +0.56859\ 15488.7—1.50991A

~—8.2618+0.1357
—4.3230+-0.07100

— 5.1452 +0.08451n

—8.11354-0.133260 | = 0

91053.3—2.04541A

The values of /A for the first mode corresponding
10 a one-term approximation, two-term approximation
and three-term approximation have been determined
and they are, '
No. of terms 1 2 3
CWN 21.714 21.669 - 21.669
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It may be noticed thaf the convergence is very rapid
and that a one-term appioximation is sufficiently accu-
rate for engineering purposes. The rapidity of conver-
gence stems from the fact that the diagonal terms are
very large when compared when the others,
and they increase very .rapidly as the order of
the diagonal term is increased. The same situation
prevails in other determinants corresponding to various
aspect-ratios of the bridge. The results of one-term
approximation may therefore be used for a practical
calculation of the bridge frequency-.

ONE-TERM APPROXIMATION

Theé' frequency analysis now becomes very much
simplified since no determinaintal equation need be
solved. As the frequency of the first symmetric. mode
is the most important data, numerical work has been
carried out only for this mode. Putting m=1 and tak-
itig the first térm in the seriés corfesponding to Ay, the
frequency equation becomes

o sapa ko
2Ku M+K ”ﬂ;ff EI Y (cr) ‘
. r—
=RKu+Ks % Yy (eln - (2D)
==

The calculation of )\ is now quite straighit forwafd
once the values of Ky, s, 24 and By for each %— ratio
are known. The values of ay, Bn, and K, are to be
found in Tables 1 and 2. The values of Ay are given
in Table 3. ‘

The frequency paramctérs for various bridge dime-
nsions have been presented in the graphs (Figs. 3 to 14)*
both for v=0and v=0.2 to facilitate rapid frequency
determination. The variation of 4/A with respect to K,
is very nearly-a straight line in the range of values of
K, chosen and the graphs have been drawn as such.
The graphs cannot be extended much beyond the value
of K; = 10, since then the variation will not be linear,
and also the accuracy of the one-term approximation
is affected for large values of K;. Nonetheless, the
approximation gives satisfactory results in the range of
bridge dimensions met with in practice.
CONCLUSIONS

The procedure outlined in the previous sections
provides a rapid way of calculating the bridge frequency

unlike the one using the orthotropic plate theory. The
orthotropic plate theory necessitates the solution of a
cumbersome transcendental equation for every frequency
calculation. The present procedure owes its simplicity
to the fact thatthe bridge deflection is expanded in
terms of the plate-eigenfunctions and also to the ortho-
gonal properties of these functions.

It may be noticed from the graphs that in general,

except for %: 1.5, the bridge frequency is less than
the frequency of the corresponding beamless slab, in the
range of values of K,_ and K, considered. This indicates
that the influence of the mass of the beams dominates
over the influence of the stiffness of the beams in the

above range.

The graphs also clearly demonstrate the influence
of Poisson’s ratio on the bridge frequency, which arises
due to the presence of free edges. A decrease in Pois-
son’s ratio is attended by an increase in the frequency.
This is in conformity with the well known theorem due
to Rayleigh that the introduction of constraints raises
the frequency of a system. One may also notice that as
the span/width ratio increases the Poisson’s ratio effect
is less pronounced. For span/width ratios beyond 3.0
the neglect of Poisson’s ratio introduces only negligible
errors. This mey be considered as being due to the pre-
dominently -one-dimensional action of the bridge at large
span/width ratios.

It is necessary to remark here that the assumption
of absence of restraint against slippage leads to fre-
quencies lower than the actual, since this absence of res-
traint is not realized in practice. This again follows
from the well known theorem due to Rayleight (1945).
The consideration of this restraint in the problem would
render the equations sufficiently complicated as to make
the numerical labour prohibitive: As mentioned earlier
in the introduction this difficulty may be circumvented
by suitably. calculating the stiffness of the beam by
taking a portion of the plate to act with the beam.
This altered stiffness may then be used in the procedure
developed in this paper to calculate’ the frequency. A
similar problem has been encountered in the treatment
of bu’ékling‘of plate-beam systems (Timoshenko and

*Figures given at the end of this paper,
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Gere. 1961). It is needless to emphasize that the width
of the plate to be included in the stiffness calculation
can 6nly be determined by detailed theoretical and expe-
‘rimental investigations.

Table 1

FREQUENCY PARAMETERS FOR THE SLAB

a v.—:O ‘U:O.Z

? Q1 Bi1 Gy .311

1.5 5.9283 5.1353 - 5.8439 5.0376

20 - 5.4609 4.9886 5.4013 4.9233

2.5 5.2188 4.9069 5.1757 4.8610
- 3.0 5.0784 4.8576 5.0463 4.8241

3.5 4.9902 4,8261 4.9655 4.8005

4,0 4.9315 4.8049 4.9120 4.7848

Table 2
VALUES OF K,

% v=0) v=0.2

1.5 0.71599 0:67541

2.0 0.62231 0.60131

2.5 0.57881 0.56587

3.0 0.55501 0.54619

3.5 0.54056 0.53415

4.0 0.53113 0.52626

Table 3
VALVES OF 1,

-t‘)l v=0 v=0.2

1.5 946.056 885.912

2.0 748.229 713,235

2.5 658.269 635.473

3.0 609.754 593 825

3.5 , 580,649 568.846

4.0 561.850 552.767

APPENDIX I
(i) Iteration Procedure to obtain amn and Bmn
The frequency may be writtén as

m?72b? 2
B% mn+v —
fanfmn _ _ %mn 2 X
2 B m?7w?b? :
o \,.82,_,,1,—{-(2—‘0) an
Amn
tanh 5

First approximations to the values of apn and Bmn
. b . .
for various values of vy ratio have been given by

Thein Wah (1961) using a graphical procedure. These
values have been used as the initial values for the itera-
tion. Substituting an initial value in the right hand side
of the above equation, a rew value.of 8mn was obtained .

by equating tan E%‘J}L to the calculated right hand side.

Using this second approximation to PBmm, a second
approximation to amn was obtained by the relation

b2
afpn = BPmn-+2mm? - The procedure was then
repeated using these second approximations. The
iterations were repeated until the differences between
successive approximations were negligible. The resuits
of such an iteration are presented in Table 1.
(ii) Expression for Kmn

Substituting the expresson for Ymn in the relation

+bj/2 _a m
Kmn= ot J' j' Y Sin 2% dx dy
~b/2 0
| e
=-—2—-b ]. Yzmn dy
. Y bya
one obtains,
‘ 2
i tanh O%?—‘— (azmn_vm%ﬂ??z)z
"Kan = , s X
4 Cosh? ———a;’n Zemn (B?mn + vm?a? ;lg)z
Bmn
1 tan = 2

' x
4 Cos? Bma 2fBmn +(°«2mn+32mn)
2 ‘

b2
(Pmn—vm*n® —5) cmn
) (amn tanh —2—-+ an tan
(8%ma+ vm®z® 3 )

a

The values of K;; are given in Table 2.

Brmn

2




NOTATION

a

b

Cr

D

EI
Kmn

k

K,
K.

fr (X)

The Vibration of Beam and Slab Br}dges 21

APPENDIX II

Span of the bridge

Width of the bridge

y-co-ofdinate of the " beam

Flexural rigidity of the slab

Flexural rigidity of any beam

A definite integral depending on m and n
No. of beams

EL
Db

.

Pb ‘
Amblitude of the reaction of the rth Feam
against the slab

m,n,i,j Integers

Pmn

Wi
W
amn

Brn

Circular frequency of the slab alone for
the m-n*h mode

Circular frequency of the beam and slab
bridge

Deflection of the bridge

W (x, cr) Deflection of the r*h beam

Deflection of a slab bridge in.the m-—nt
mode of vibration

Frequency perameter for the slab

Frequency parameter for the slab

Mass of beam per unit length

8 (cr) Dirac~delta function in one dimension at
y==¢t ‘

2 4
Amn EB—’“];—b Frequency parameter of the slab

Pp2bs )
A SN Frequency parameter of the beam
and slab
v Poisson’s ritio

P Mass of slab per unit area.
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"EARTHQUAKEV RESISTANT DESIGN OF AN ELEVATED WATER TOWER

Jai Krishna* and A. R. Chandrasekaran**

SYNOPSIS

This paper deals with the design of Water Towers
in seismic zones with reference to a specific problem.
‘The criterion for design suggested is that the system
temains elastic under the effects of moderately strong
ground motion which are expected to be more frequent
in the particular .zote, and under the effect of a severe
ground motion, which may be expected there once in the
life-time of the structure, the system may undergo plastic
deformations.

INTRODUCTION

Liquid containing tanksand towers form a very
important part of the life of a community as well as
~industrial undertakings. Many such structures have
failed during earthquakes in the past résulting in conside-
rable hardship and damage. The Earthquake Engitiee-
ring Research School has consequently undertaken a
programme to study the most economical methods of
strengthehing ‘such structures in seismic zones of diffe-
rent intensities. A study has recently been made for a
50 ft. high, 50,000 gallons water tower proposed to be
built at Rishikesh, a region which is not far from the
main boundary fault running along the length of the
Himalayas. The method employed in arriving at a
suitable seismic coefficient ‘and that of analysing the
tower for earthquake forces have been explained in
this paper. - In estimating the future ground and the
structural response, use has been made of the principles
underlying the recommeundations made by "Jai Krishna
(1960) and Housner (1959).

The design . procedure recommended assures that -

under the vertical and horizontal loads the columns
will deform as springs between two braces with the

point of contraflexure at the mid-leight of the panel.
Further, the structure will stand the small earthquakes,
which occur in the region quite often, remaining “elastic”.
During a major earthquake occurring not very far from
the epicentre of 1905 earthquake, - the structure' will go
“plastic”, permit rotation at the junctions so that the
entire resistance will come from the diagonal braces.

‘It has been estimated that the structure will not deflect

more than 6” at the top even during such intense vibra-
tions. - The provision of diagonal braces in addition to

* the horizontal ones has been recommeded in view of the

expetience gaincd ‘in Chile on account of 1960 shock.
The tower at Rishikesh is founded on river deposits
and, therefore, an -eccentric reinforced concrete raft,
that will resist torsion, small unequal settlements and
excess pressures during earthquakes, has been recom-
mended.

SEISMICITY OF THE REGION:
Rishikesh lies in'the foot-hills of the Himalayas
and is located within a few miles of the main Himalayan
boundary fault which is seismically active. One of the
major -earthquakes that had occurred in the region was
in 1905 with epicentres in Mussoorie and Kangra. The
Mussoorie epicentre was about 25 miles from Rishikesh.
There have .been a number of earthquakes in the south
east near about Almora and Kotdwar regions. The
smaller earthquakes had their magnitude of about 6 and
the major earthquake of 1905 had a magnitude of about
7.9. 1t is, therefore, essential that structures in this
region should be designed for earthquakes. As far as a
water tower is concerned, its safety is even more impor-
tant because quite ofien an earthquake is followed by
fire caused either'by electrical short-circuiting or from
the kitchen fires. The water stordage, therefore, must

* Professor and Directo;, Schoo! of Research and Training in Earthquake Engg.. University of Roorkee, Roorkeo, U.P. (INDIA), '
#* Reader in Civil Engg; School of Research and Training in Earthquake Engg., University of Roorkee, Roorkee, U.P. (INDIA).
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remain in tact so that a fire could be dealt with. Keep-
ing this in view, the ISI code (1893~ 1962) recommends
somewhat higher values for design of water towers than
for other structures. Both these factors have been kept
in view in the design that follows :

DESIGN CRITERION

(a) According to Seismic Zoning Map [Fig. 1 page
7 of IS Code (1893—1962)], Rishikesh is in zone IV.
For soft soil, the horizontal seismic cocfficient is equal
to 0‘08,‘ As per clause 5.2.7.1. this factor is to be
multiplied by 1.20 due to the tallness of the structure.
The modified seismic coefficient is 0.096. The proximity
of the boundary fault, however, necessitates special study.

(b) Itis assumed that the boundary fault might
be responsible for causing an earthquake of magnitude
corresponding to N = 4 (The factor ‘N’ defines the
intensity of earthquakes; N = 4 approximately corres-
ponds to an earthquake of magnitude 8.0 at a distance
of 25 miles or so from the epicentre).

(c) The structure is assumed to have a damping
of 5% of critical.

(d) The design would permit plastic deformations
for the strongest grbund motion (N = 4) envisaged.
This strong ground motion is likely to - occur at least
once during the. life of the structure, Ground motions
of lesser intensity are likely to occur more often. The
deformation, say, for N=1 will be in the elastic range.

DYNAMIC BEHAVIOUR OF WATER TOWERS.

Water Towers consist of a heavy mass (tank proper
and water) supported on top of columns, which act as
springs. 1f the columns are braced only horizontally,
. the column and brace system will act as a Vierendeel
girder to resist -the horizontal forces. In this system,
the lat:ral force is resisted by moments and shears. If
diagonal bracing is provided and if sufficient rotation
is permitted at the joints, the system would act asa
hinged truss system where the forces in the members
would be axial.

A water tower resting on columns could be repre-

sented as a single degree of freedom systém (fig. 1).
m ‘

Y%

—p 2

L—,: Y
Fig. 1.

The equatiori of motion ‘x’ of such a system sub-
jected to a ground motion represented by ‘y” is given by

d?x dx dy
mg + (G —a e =0 O

where ‘m’is the mass, ‘c’ is the coefficient of damping
and ‘k’ the spring constant.
The solution of equétion is given by
l .
x—y = ‘r‘) Sv . ’ XY (2)
where ‘p’ is the natural frequency of the system in radi-
ans/sec. and equal to 4/k/m. ‘

and Sy = Jt y (r)e P (C/Ce) (=) gip p(t—o)dr (3)
o

and known as the “Velocity Response Spectrum” of the
ground motion. An average velocity spectrum curve
is shown in Fig. 7 (IS: 1893—1962), Calculating
the period of the sturcture and assuming a suitable
value of N, it is possible to evaluate the relative displa-
cement (x—y) which the system would undergo during a
corresponding ground motion.

The behaviour in the elastic range could be reaso-
nably predicted as above. Fora severe earthquake a
design would be possible only if plastic deformations
are permitted. The energy input to the structure due
to the earthquake would be stored as plastic strain
energy in ths diagonal braces. The forces in the
members may be evaluated on the basis that diagon»l
braces are subjected to yield stresses. This method of

design will localise the failure, if any.
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ANALYSIS OF FORCES‘.‘N , o where kp = stiffness of one diagonal (refer fig. 2)

(For details of analysis and design refer Krishna F = horizontal force ,
and Chandrasekaran 1963). “ Area of Cross-section of member

A

(A) FEstimation of Weight of the System. A = horizontal deflection due to F
E
L

A part of the weight of the column and braces is moc?ulus of elasticity of metber
equivalent length of member

i

I

assumed to be added to the weight at top, to take care K 30.0 kips/i
of the effect of the weight of column and braces on the m = 30.0 kips/in
vibration characteristics of the system on the basis of — 4
Rayleigh’s method. ‘ '
i. (a) Weight of tank = 301,500
(b) Weight of water = 500,000
‘ 801,500
ii. (a) Columns = 130,100 Tbs. .
(b)) Horizontal Braces ~ = 61,150 lbs. ’ Fig. 2.
: i = 7 S. .
- +(e) Diagonal Braces i_SO tbs Similarly ko, for the adjoining one is given by
194,000 Ibs. kp, = 44.0 kips/in
jii.  Weight at top = 801,500 Ibs. for all braces .
1 weight of columns kp = 4 km.ﬂ' ‘?k"“’
and braces = 64,700 lbs, = 208 kips/in
Total equivalent weight 86¢,200 lbs. o &,
- — \ 9 ANE-
, Say 870 kips. AN £
Without water, equivalent- weight = 370 kips.
(B) Estimation of the Stiffness of the Structure.
In the elastic stage, bulk of the force would be
tesisted by the columns which are considerably more
stiff than the tie rods. =
The supporting system could be assumed to be .
made of springs in series. The stiffness of the spring 77 rrrev? ; by
(one bay) is made of stiffness of columns acting as _ h.gg";: 5.837 I 696’ '

parallel systems with diagonal braces.

(a) Stiffness of one bay:
i. Stiffness of column ke is given by "

ke = 2257 = 70.0 kips/in.

Stiffness for 8 columns acting together will be
_= 560.0 kips/in

ii. Stiffness of the Diagonals.

ko= F/A __—..AIF: '
‘ Fig. 3.
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iii. Total ‘K’ per bay
- = 560 + 208
== 768 kips/in

(b) Stiffness for entire structure
L= —} of K
=. 192 kips/in,

Period of the Structure

2
T=-"— k
Ve A/ wl
=0,32 4/ 870/192 = 0.666 sec,

(C) Lateral Force due to Earthquake,
i. Elastic Range
Let us assume that N = 1

and the damping factor C/Ce = 5% of the critical for
deformations in the elastic range,

From the average velocity spectrum curves (Fig. 7,
IS : 1893—1962) for T = 0.666 sec, C/Cc = 0.05 and
N=1, we have ' '

Sv = 0.46 ft/sec:

_ Sy _0.666 e
x~y) = = 2 x (0.46 X 12) = 0.58 inch

This is the total horizontal displacement, and there-
fore, total shear ‘V’ is given by

V = K (x—y) = 200x0.58 = 116 kips

The horizontal seismic coefficient an is thus given

by
_2000x0.58
50 = 0.133

Displacement per bay

= 1 of total = 0.145"

(a) Moment in the columns = ke X A X }
= 55.2 kips/ft,

16.3

(b) Axial forces in diagonals= Kp; X A X 545

= 10:6 kips.

ii. Plastic Range
It will be assumed that the energy input tothe
structure would correspond to a spectral velocity for

N = 4 and c/cc = 5% and Sy calculated on the basis of
elastic behaviour. The spectral velocity in the plastic
range would be 4 x 0.45 = 1.84 ft/sec,

The lateral force coefficient. would be calculated on
the basis that diagonal braces are subjected to yield stre-
sses, - On this basis the Jateral force coefficient: works
out to be 0.20,

DESIGN DETAILS
(A) Columns
Elastic Range
The columns are subjected to direct load, upward

and downward forces due to moment of lateral force and,
bending moment due to shear in the columns,

(i) Direct load on the columns =125.0 kips.
(adding together the tank and water load as
well as self weight of columns and braces we

get 1000 kips. approximately, * Each column
will thus have 125 kips.)

(i) Maximum Moment in the columﬁ§ (at the junc-

tion of the column and brace)
= 55.2 kips ft.

(iii) Upward and downward forces in columns due’
to moment of lateral force._

(a) ‘Bottom of columns between foundation and
lowermost (third) brace = 4135.0kips.

(b) Bottom of columns between second and

third brace = 4-106.0 kips.

(c) Bottom of columns between first and
second brace = -476.6 kips.

(d) Bottom of columns between first brace

and tank = +47.2 kips.’
Net forces in columns ‘
(i) Maximum moment = 55.2 kips. ft.
(ii) Direct load in kips
(a) above foundation = +260 or —10.0

(b) above third brace = 4231 or +19.0
(c) above second brace = +201.6 or +48 4
(d) above first brace = 4-172.2 or +77 2
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Section Assumed

18" x 18 square

Longitudinal 8 bars 7/8" ¢
reinforcement -+ 4 bars 3/8' ¢
Laterals .

(i) Ties 3" ¢ at 8’ c/c

(i) Spiral 3" ¢ at 4" p;tch for a length of 3 0" on
cither side of brace. :

Minimum ultimate cube strength of concrete 2250psi.

m = 15 ‘

Area provided = 397.4 sq. in.

1 = 12,210 in%

- Stresses
Just above foundation

(a—1) when direct load = 260 k

and Moment = 55.2 k ft,

Stresses == 1144 psi or 166 psi

. (Comp). - (Comp)
(a—2) when direct load = — 10.0 kips

and Moment = 55.2 k, ft.

Stresses are
Concrete = 641.5 psi
Steel = 26,830 psi

These high stresses in concrete (for a—1 condition)
and in steel (for a—2 condition) is .permitted because
these include stresses due to earthquake the force due
to which has been taken to be much higher than that
recommended in the code. The increase of working
stresses by 50, under the circumstances is reasonable.
At all other levels, stresses are lower than the above
condition. In actual practice, - however, there ‘will be

a redistribution of stresses due to semi-plastic rotations,
and will lower the stresses below the values obtained

above.

Plastic range
Loads

(i) Downward load due to self welght 125 kips.

(ii) Upward and downward forces due to moment
of lateral force of 0.2 w = + 202.5 kips.

Net forces
(a) Downward = 327.5 K

(b) Upward = 77.5K
Stresses

824 psi in concrete (comp)
14,800 psi in steel (tension)

(B) Diagonal Braces

Elastic Range

17 ¢ m.s. rqu are used as diagonals

Area of steel = 0,783 sq. in

Stress = 13,550 psi (tensile)

If the earthquake is very severe, the joints would
become plastic and permit large deformations of diago-
nals, In that case, the diagonals would be fully
stressed.

Plastic Range

Energy to be dissipated

=} W/g. 8%

= 45,600 ft. Ibs.
Considering half the diagonal braces acting in tension,
average plastic strain = 0.0068 '

In extreme cases actual values of §train may be
double that of the average strain and this would corres-
pond to a maximum displacement of 6” at the tank level
which is considered as an upper limit.

(C) Horizontal Braces
Elastic Range
Maximum moment = 156.4 kft.
Maximum shear = 22,400 Ibs.
Assume 12" X 21" section
4 bars 11" ¢ at top and bottom
3" ¢ stirrups at 6” c/c throughout. Minimum -
ultimate cube strength of concrete
= 2250 psi.
Stresses.
Stress in tensile Steel
= 27,700 psi
Stress in concrete
= 1,180 psi
Shear stress
= 110.5 psi

This is permissible, but as a precautionery measure
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against small torsion that may develop 3" dia. stiffups
at 6" are provided.
Plastic Range

Horizontal Braces act as structs.
Axial force = 15,600 Ibs.

considering steel alone
stresses in stee] = 13 600/8 =1, 950 psx

(D) Design of Foundation,

Design coefficient an = 0,20
" Depth of foundation = 80

Inner Radius of annular rafts= * 6’ 0”

Outer Radius —do— = 24'0"

Area of the footings A = 177,500 in*
Downward load P = 234 kips.
Overturning moment M = 12,200 kips ft.
Direct Stress = 1536 psf.
Due to Moment = 1650 psf.

- :Totalg pressure =3125 psf. or—114 psf.

w

For the extreme case of a severe earthquake -these

values of stresses in soil may be permitted.

 Width of footing = 10.5'

' 'Max. Moment = 13094,000 Ibs. ft.
Depth regd. =~ =3
Overall depth provided is 42" with clear cover to
bars 3"
Steel required S o= 2.24sq.in.

Provide 1" ¢ at 4" c/c.

At top provide 7¢¢ at 4’ c/c ‘to .take carc of nega-
tive moment.
Check for Torsion and shear.
' \Taking moment of the net forces.
M = 758,000 lbs. ft.

Torsion = 379,000 lbs. ft.

Torsional Resistance.

Consider a rectangular beam 30” deep and 102" wide

fs = ——gq = 54 psi where q = 0.27
Toal Load = 230 kips
fs = 42 pSi

Direct Shear
*Total Max. Shear = 54 + 42 = 96 psi
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Beam—30" deep and 102" wide:
Moment = 3190 kips in.
Depth required = 15.2" wide beam
As=5.04 5q. in

HYDRODYNAMIC PRESSURES IN THE TANK

Suppose the tank to be glven a maximum accelera-
tion of 0.20 g and subjectcd toa maxlmum displacement

of 6",
For the purpose of analysis let us assume that the
tank is a cylinder of radius 13.5 ft. and height 14.0 ft:

(Formulae from referénce 1).

Impulsive Pressures on the Tank.

tanh 4/3 R/h

Pi=W ~7 Rk

=011W

acting at a height ho from bottom

where ho = & h { 1+(4/ 3 tanﬁ/z/ ?/1}{/ h

=077 h
Convective Pressures on the tank.
P ¢ = 1.2 Ml g 9!1

"}

27
htal1A/
A 27lthJ27h

Pe = 0.019W
Acting at a height of ho from bottom

Cosh ,\/ .~_2 0
8 *—~Smh \/ &

M, g=Wx1 X ﬁ—g! X

On =

where ho=h | 1—

= 077h

' Hydro - static pressure

wh _mx2Rxh
= X yxaRh ¥
~ WhR = 1.07TW

Py =

Acting at a height of 0.33 h from bottom

The sum of impulsive and convective pressures, if
assumed to attain maximum values simultaneously will be
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équal to 0.129 W which is equal to 1275 of that of
hydrostatic pressure. The sum of the moment of impul-
sive and convective pressures will be equal to 0.099 Wh
which is 27.8% of that of hydrostatic pressure.

The above increase in pressure and moment due to
hydrodynamic effect is accounted for by the normal
increase in the working stresses. However, care should be
exercisd ethat all reinforcements are anchored properly.
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" | FREE VIBRATIONS OF BEAMS AND CANTILEVERS WITH ELASTIC RESTRAINTS |

M. B. Kanchi*

SYNOPSIS

Free undamped flexural vibrations of uniform beams
and cantilevers with elastic restraints are studied using
Ritz’s. minimizing method. An approximate mode
shape is assumed in terms of sujtably seleéted parameters
and by adjusting the relative ratios of these parameters,
solutions corresponding to arbitrary elastic restraints
applied at the ends of the members are presented.

Frequency equations, which otherwise would. be in the

form of transcendental equations involving trignometric
as well as hyperbolic functions, are  derived in the form
of quadratic or cubic equations. Suitable charts are
appended to aid analysis and design.

INTRODUCTION

The governing differential equation for free un-
damped, flexural vibrations of uniform member of mass
m per unit length and uniform flexural rigidity EI, is

given by
g?f —MX =0 we (D
io which, |
M= n—ll—%! ‘ v (2)

p, being the natural frequency in angular measure; X, is
the dynamic deflection mode shape and is of the form
X =C, Sin Ax+C;Cos Ax+C; Sinh Ax+C, Cosh ax (3)
Four boundary conditions, two at each end of the
member, determine these four arbitrary constants and
the mode shape is determined .to within an arbitrary
constant, as follows:

X =A, (Sin AxQCos X + G Sinh Ax +

Cl Cl
C
< Cosh M) o (@)

Only three of the four arbitrary constants are indepen-

dent and determine the mode shape which is characteris-

tic of the given boundary conditions. The fourth
determines its magnitude and has to be determined from
the given initial conditions. To calculate the natural
frequency oaly the shape is of concern and is obtained
to within an arbitrary constant.

 For members with elastic restraints solution of the
frequency equation, resulting from the elimination of the
four arbitrary constants from the four end conditions
of the members, reduces to the solutions of transcendental
equations involving trigonometric as well as hyperbolic
functions. The solitions will have to be effected graphi-
cally, or by trial and error. Since the natural frequency
is insensitive to dynamic deflection shape and only
depends on the ‘overall’ or ‘average’ shape an approxis
mate shape always yields values which are in good
agreement with the exact values. Either of the. Ritz’s
methods—the averaging method, er the minimizing one,
can be used to formulate the problem. Analysis of
beams and cantilevers with elastic restraints at their
ends, using these procedures is the main subject matter
of the paper. The Ritz minimizing procedure whose
usage is more popularly known than that of the avera-
ging method, is used here to derive the expressions.

CANTILEVER WITH ELASTIC MOMENT RES-
TRAINT AT THE FREE END.

Consider a cantilever of height h, of uniform mass
m per unit length, and flexural rigidity EI, as shown in
Fig. 1 (a). It is restrained at the top by a moment
which is proportional to the rotation thereat. This has
been schematically represented in Fig. 1(a) by a massless
spring. Let K be the stiffness of such a restraint.
K is the moment per unit rotation, and always opposing
the rotation. This may be looked upon as the free
body of the column of a portal frame in which the mass
of the beam is not considered. Extension of the results
obtained for the present case to include the effect of the

* Reader in Civil Engineering, U;liversity of Roorkee, Roorkee U.P., INDIA,
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mass will be made. Assume that the dynamic deflection
mode shape is of the form

X-———(l —Cos -—)+b(l —Cos 2h)

This is an approx:matlon to the shape glven by Equa-
* tion (3). The first part of the assumed shape corres-
ponds to the case of infinite restraint as shown in Fig.
1 (c), while as the second part to the case of zero restraint,

) K x * a x
+ @F | e lEal =
-1
i, ,
% 38
i I JENS SR I e N .-.-L—w o
"“l,, {b) (<) ()
Fig. 1.

or free end, as shown in Fig. 1 (d). Writing Equation
(5) in the form analogous to that of Equation (4),
namely,

X = AIB- {)(1—Cos "T")+(1—Cos ’ZLD]

. {6)
It can be seen that the ratio (% )determines the shape of

the mode, and A, the size of it.  The shape parameter
(a/b) will now be determined as a function of the stiffness
of the restraint applied, so that for dlﬁ'erent stnffnesses

ranging from zero to infinity, this parameter can be
adjusted.

The maximum strain energy
given by

v-EL jh(-gi)z—()zdx-{—%Kez . )

Evaluating the derivative with respect to x, of X from
Eq. (5), at x=nh, it can be seen that,

_T7b
- 2h ose

of t’he system is

®

9= &l

Substituting X and @ from Equation (5) and Equation (8)
into Equation (7) and evaluating the iutegrals, the
strain energy expression takes the form

Elx* 1+’r
Ten® [ + _ab+

in which © is. the dimensionless ratid of stiffnesses,
denoted by

V= b? ] w 9

8 h
= B .K ... (10)

This actually happens to: be the approximation of the
ratio, K / (’Ehi) , in which (Eﬁl-) represents the flexural

stiffness of the cantilever as used in structural statics.

T

The maximum kinetic energy of the system is given
by
1 h ‘
T =+ mpzj X2 dx e (1)
2 ° -
On substituting Equation (5) into this, and evaluating.
the definite integral, finally,

’;
TP h[s ‘+8(1———— Jab-+8 —ﬁ-)bf_\
- (12)
Equating expressions given by Equations (9) and (12)

and denoting,
2 4 .
_mp?® h (13)

= _ (Y
A= (?) Bl 7t

Rayleigh’s quotient takes the form,
_ at 4 ~——ab+ ljlbz ‘
A = (14)
3a% + 8(1—-3-— ab+8 2~ —)b2

Denoting by N and D, the mumerator and denominator,

we can write

. 15

7 =X
- D
Equations v
ON _ o 0N _ g -
ST 0; %5 0 .. (15

determine the conditions to evaluate the parameters a
and b. The first of these equations becomes

p 2N oD
0a . ¢a
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)

N N D
D(aa D 0a

Since D cannot be zero and %= X :
Equatiens (15) can be written as
. a _ -—“ .
H(N—A D)=0 i N
i(N—XD) =0 e L (16)

Using for N and D, the nurerator and demomnator of
Equation (14), these give, :
1y } b=0

| {2 —6n }.ewr{g;r —8 (1— 34-,;
G e
| 3__ i)f}b:d L)

Therefore, the frequency determmant is as follows :

2—3% ——.-s(l- ~)7\ -

\-3(1 ) (1+T)-16(§~~—)7\ (13)

Expandmg ‘the determinant, frequency equatlon reads
as follows :

-2 ‘ -
» —(11.23544-5.3097)A+1.45134+1.76997=0 ... (19)

. Frequencies being obtained from this equation, Equa-
~ tions (17) then determine mode shapes. These two
. equations can be written, in terms of the ratio:

0 = ( 2—) S - @0)

From Equations (17)

2
< A __at02122 '(21)
ot 4(1_ %, ) " 3aF23024

3 (147) — 16(%—— %)i _.

—_‘}__.g ) y gy e (22)
37 ( - "51?)7\
Between these two, elimination of X gives
_ 6.6632 a* + 4.2564 a — 0.7627
TS T da 23004 (2

From Equation (19) it can be verified that for v =0
A = 0.1307, This case correspondsto the case of a

cantilever. This value of A as given by Equation (13),

v ‘ El Lo
corresponds to p=3.5681f\/ ot which is only 1.48%;

higher than the true value, namely, 3.5159 \/ }%14 .

The value 7 = 0.1307 in Equation (21) gives
o = 0.1459. This states the ratiosin which the two
shapes shown in Figs. 1 (c) and 1-(d) are mixed up.-
Similarly for the case when t = o from Equation (19)
N = 0.3333 and then from Equation (21) o = e, that
18, b == 0, This means that the shape is purely as shown
in Fig. 1 (). The value of the frequency will - be

p = 5.6977 \/ I—;ﬁ% which is of the order only '1.8%

higher than the true value p=5.5932 ,\/ I%T correspo-

nding to 3=0.3211. The exact frequency equation, as
obtained by applying the boundary conditions,

(L =0 )
X=0
aX)
X lx-o
2 o
_ X _g9Xg - (29
dX2 =h dx lx=h :
X
Elax—a o =0 ]

is as follows :

CosaL Cosh AL +1 72 _r_) .
Cos AL Sinh AL—+Sin AL Cosh AL~ 8 \ AL
. (25)

Equation (19) has taken now the place of Equation (25).
The true mode shape governing the frequency . equation
(25) is quite involved. The mode shape corresponding
to equation (25) is as follows : ’
X=A,{(Sin ax—Sinh Ax)+-a'(Cos Ax—Cosh E%})

wherein o is given by

—(Sin AL+ Sinh )L)-l— 8 (CosAL—Cosh AL)

a’ =

(Cos AL+4-Cosh AL) + 8_'J)I (Sin AL4-Sinh AL)
| @)
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Equation (6) has here taken the place of Equation (26)

and Equation (21) the place of Equation (27). It is seen
that Equations (19), (6) and (21) are easier to be handled
than their corresponding true expressions—Equations
(25), (26) and (27). It is indeed fortunate that frequency
is’insensitive to these approximations. . ‘

Equations (21) and (23) are used to prepare the
frcqengy curve as shown in Fig. 2. To obtain » in terms

of t, Eq. (19) need be solved. However, Equations
(21) and (23) togéther can yield a set of values to plot
 Versus 7. Equations (21) and (23) give respectively the
plots of AVsaand v Vg a, From these plots the curve
of N Vs 7 is obtained as shown in Fig. 2. From this
figure it is seen the frequency is sensitive to restraints
onlyin the beginning upto v=2 while as it is insensitive
beyond 7 = 10,

CANTILEVER WITH ELASTIC RESTRAINT AND
A MASS CONCENTRATED AT FREE END

" The free body of one of the columns of a symmetrical
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protal frame, shown in Fig. 3 (a) is as shown in Fig. 3 (b).

. K-G&&
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v
[
) «©

Fig. 3.
The column AB for restraints is equivivalent to a canti-
Jever with moment restraint at top. When sidesway
mode of vibrations is considered, one. has to consider
the kintetic energy as follows :

(a) kinetic energy of the mass of this cantilever
assumed uniformly distributed along its length,
vibrating horizontally-;

kinetic energy, of the mass of the beam BC, vib-
rating horizontally, displacement of each of the
elemental mass of the beam being equal to the
‘horizontal displace-ment at B of the cantilever,
(extensions of the beant being neglected), and

()

(c) “kinetic energy of the mass of the beam BC,
asssumed as a distributed mass, vibrating

vertically. -

Of these three contributions the first two are usually
considered and to include the last, the mode shape
of the beam BC has to be assumed, consistant with .thc
continuity condition at the joint B. If only the first two
are taken into account, the analysis of single bay sym-
metrical portal frame reduces to that of a cantilever with
moment restraint of stiffness,

K; =6EKk, (28)
. and a mass. M, concentrated at free end equal to ‘
M =m = (@

where m; is the mass per unit length of beam. This
has been schematically represented in Fig. ¥ (c).

To proceed to analyse such a cantilever it will be
assumed that the mode shape is still given by Eq. (5).
Strain energy expression, given by Equation (9) remains
the same, while as to the expression of Kinetic energy,
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givetisby Equation (12) the following expression, repre-.
senting the contribution from the mass M; v1brat1ng

with sinusoidal displacement haviag amplitude X .
x=h

namely, (a+b), has to be added : .
T, = % M, (a+b)“’ i e (30)

Addmg this to the right hand side of Eq. (12) and equa-
ting it to the right hand side of Equation (9) one obtains

a? + -ﬂ—ab + L’fﬂ_bz
A=7 Y Y1l p2
G+ % er{sa— s+ 1} b+{8(———-)+ o
. (31

in whxch 7 is the ratxo of the mass of the beam to that
of column, :

M, 1 m L I 7

M= mh T2 m h
and t,, the dimensionless ratio of stiffnesses :
48 k v
Ty = '72-' 'lzl—“ ’. oo (33)

Equation (31) is the extension of Eq. (14). Proceeding
the same way as was adopted in deriving Equations (21)

and (22) we obtain instead of them the following

equations.
2
a + 37

N | (3 +h "a+4(l—— 2 )+-L1
3
" j (147)— %1:%:— ~)+ }7\ &

From these two equations A and e can be obtained for
given values of 7; and 7, either by trial and error, or by
solving the‘resulting;quadratic by -elimination of ¢ bet-
‘ween these two equations. The quadratic would be the
same form as equation (19):

€L

BEAMS WITH ELASTIC RESTRAINTS.

Analysis of the free flexural vibrations will now be
carried to the case of beams with uniformly distributed
mass and flexural rigidity. The ends of the beam are
held against relative displacement, but are elastically res-

trained against rotations, as shown schematically in

Fig. 4 (a). This may be looked upon as the freebody of
the vertically vibrating beam AB of a portal frame
shown in Fig. 5, in which thé columns have different
stifnesses, In analysing the beam AB of Fig. 4 (a) the

(&}
P~ *
e . :

[C1]

I\M - e *
Xa
' e)
Flg. 4,

springs will be assumed massless. It differs from being
the complete dynamic analogue of the beam AB of the
portal frame of Fig. 5, in as much as the Kinetic energy

A .
-]
}— \____7 .
4 k )
k, )
- ‘ ot 5
p— L » v
Fig. 5.

of the.column masses vibrating horizontally™is excluded.
The results obtained for the beam AB hold for the beam



42 Bulletin of the Indian Society of Earthquake Tecﬁnology

AB of the portal frame in which the masses of the
- columns are either too small or are prevented from
vibrating laterally.

For the beam AB of Fig. 4 (a) assume the dynamic
deflection mode shape as

(1 —Cos 2’”‘)+ esin 77X (6)

- Each of the shapes are shown in Figs. 4 (c), 4 (d) and
4 (). The shape function will be

X = A,{Sm = (1 —Cos %ﬂ-x )—{-a, Sm L }
w (37)

oy = (—:-) oy = (‘;—) .. (38

and A, is the size parameter. As in the previous case,
here too o; and a, will be determined in terms of the
stifnesses C; and C,.

X—aSm~—

where

Maximum strain-cncrgy will be given by
EI
j (X ) G+ GO GO (9)

where the second and third terms on the right hand side
represent the energy stored in restraints at the supports.
Evaluating the drivative with respect to xof X as stated
by Equation (36) at x = 0, and X == L, one obtains

oL = __L._. (a+2c);92=—i—- (—a+2c) eee (40)

Substituting Equation (36) and Equation (40) in Equa-
tion (39) and evaluating the definite integrals, one
arrives at

EI7r
T 4L3

2—l~4b’—{—1602—{-- 5 ab+(a2+4c2) (11—1—1:2)—!—

4ac(rl—r2)] . (41

in which 7, and ~, are the relative stiffness ratios
G

('nz El

n2 EI . . L
37 8 Fourier approximation of the exact

T =

(42)

(772 EI

’ The factor

value il—l::—t, representing the flexural stiffness of beam

without vibrations. Substituting for x, its value given by
Equations (36) into the right-hand side of Equation (11)

"and evaluating the integrals, expression for maximum

Kinetic Energy becomes
=—mf~21‘{a’ + b e+ %g ab} e (43)
Equating Equation (41) to Equation (43) and denoting
=2 ) =P, | CT)
one abtains '

a?+-4b2+416¢2-+ 1 6ab+(a2+ 402)(71+Tz)+4ac(71‘7§)

" a4 3b*+ cz+~~ ab

45)
Proceeding in the same way as was adopted in deriving
Equations (16),

2 NP
L (N-AD)=0

!

l . .
a —~
FN—2D) =0 ( ‘ .« (46)
|

@ =0y -
53(N—7\D)—-

Where N and D respectively denote the numerator and
denominator of Equation (45). These equations give
the governing equations of mode shapes. These are as
follows : ‘

-~ 8 -
{1+(71+Tg)—7\} a+37r~(1~—7\)b+2( —-"'2)(::—.01I
S A=W a+ @—inb o} @
Ip \b—/ha —inb |
|
2(t—7y) a + {16-+4(ri+7)— N} c=0J

The condition that the determinant of these equa-
tions should vanish yields the frequency equation.
Alternatively by a systematic elimination of a, b and ¢
the same equation can be derived. From second and
third equations of (47), ratios (b/a) can be obtained.
Using the notation stated by (38)

o = -3":"" . vee (4‘8)
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o o 2T ¢ e (49)
=4 (ty479) —16 -

Dividing the first of Eqgs. (47) by throughout and using
therein Eqs. (48) and (49) and simplifying the frequency
equation will be obtained as
© 0.029533—72[0.868 (t,+715) +3.7810]

7 [29.2360 (s1+-7,) +12 7 75-+56.2240]

—64 7, 73— T77.1180 (1,+75)—52.4720 = 0 (50)

 being determined by this equation Equatlons (48) and

Equat;ons (49) will then give the mode shape para-
_ meters a and ag.

It is seen that Equation (50) is symmetrical with
respect to 7, and 7,. For the case of fixed beam 7,=7,
= o, Equation (50) gives

A= —3— Usmg Eq.(44), p=22.7985 ‘\/ -------- — Wthh

is about 1. 5/0 higher than the true value of
22.36 Ei
mL

For this case ¢y = 0 and a=0

that is, a=0, as givenr by Egs: (48) and (49)

Preparatxon of frequency charts in this case is more
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in)’ One parameter a was mvolved In thrs case Equa-
tion (50) has been solved for 7, in terms of 7y and 2, and
for different constant values of AT has been solved in
terms of ,, For example forx =2, - ST
Equation (SU) reduces to o _ ,
T,+rg+1 8080 Ty Ty—2. 0380 = e (51
This is symmetrxcal with respect to the diagonal line
Te=7 ( Flg 6) Any set of values for 7, and k) that

satisfies this equation gives frequency N =2 If Ty =Ty,
that is, if the end restraints are identical, - then
%,=73==0,644. Also if one of the ends is hinged, then

the other should have the restraint of stiffness ratio”

equal to 2.038, as obtained by putting either of 7, or 7y,
equal to zero. Equations similar to Equation (51) ‘have
Qeen determined for different assigned values for

A rangingfrom A = lﬂtoi = 1;, respectively the lower

and the upper bounds for the frequency.

Curves given in Fig. (6) can be used to try the
various stiffness ratios to produce. a desired frequency,
or conversely, given the stiffness ratios of the restraints
to calculate the frequency, Since the curves are on

logarithmic scale interpolation may cause errors. E‘q'uaf
tions (48), (49) and (50) can .always be used to rectify the-

values picked up. from the curves For example suppose

Ty =Ty=1, From the curves A = 24, To. correct it -

for inaccuracies mvolvcd in, mterpolatron Newton s for-
mula can be applled to Eq. (50). It was. found that the

ﬁrst correction was—O 02, ngmg A =2, 38 A second

eorrection gave 7\ =2, 3802

Mode shape can be determined from Equatlons (48)
and Equatlons (49) when once the value of A is. known.
Suppose A=2.5. From the frequency chart; v, =2, 7,e=
0.6 is one of the. admxssrble sets. Eqbauons (48) and
(49)

4 ABulletin of the Indian Sogiety. of Barthquake Techuology -,

for these values of A, %, and- Ty EIVE ay = 0, 5992 and
= 20,1171, Therefore Eq (37) ecomes

o sm ?_’I%E} . (53

This shape function’ carresponds to ‘points of contr-
flexures at x = 0.22 L and'x = 0.86 L

:CONCLUDING REMARKS
By assuming an approxrmate shape for the dynamw ‘

deflection mode in terms of some suitably selected para-
meters solution for natural frequencies of beams and
cantilevers with elastic restraints can be effected with a

- .greater-ease. The errors admitted in the. frequencies so
‘obtained are of permissible order. Solution of frequency

. equations which are trahseehdental in nature involving
. trigonometric and hyperbolic functions are replaced by
' algebraic equatrons It is easier to vary the parameters

and prepare the frequency charts
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A REVIEW OF MACHINE FOUNDATION BEHAVIOUR

Shamsher Prakash* and U. K. Bhatia**

'SYNOPSIS S ®

‘A machine foundation differs from any other type
of foundation, because of the dynamic nature of loads.
Till about 1930, a machine foundation design was
based upon emperical methods.  These methods . did not
take into account the properties .of the underlying soil.
In the years to follow, attempts have been made to
understand the problem scientifically.

Characteristics of the ' underlying soxl strata affect
the resonance of the system with the machine. “The
available literature on the subjectis scattered and no
systematic investigation, covering the present trend is
available.. The present investigation of the Behaviour
of Machine Foundation is intended to make a systema-
tic study of available literature and is believed-to lead to
a better understanding of the problems connected. . ‘The
various methods to determine the resonant frequency of
machine foundation are critically Teviewed, compared
with each other and their limitations discussed.

A simple emperical equation for deteriination of
 resonant frequency of the system is proposed ‘Sugges-
tions for further research have also been made.

INTRODUCTION:
General :

The function of a-machine ~foundation, -similar
to any -other ‘foundation, is to transmit the imposed

joads safely on to the soil om which it is placed.

special-feature; however, is that in addition to the. static’ .

load, due to the weight of - the machine, and the foun-
dation, vibrating or pulsating forces: varying with time
have to' be' considered. Such- forces .may be of short
duration, such as shock or impact forces in forging
hammers or fay vary periodically as in reciprocating

As a result, waves or steady
vibrations are set up in the foundation soil. If the
natural frequency of the foundatjon soil system happens
to coincide with or. lie close to the frequency of the
exciting. forces generated by the machir‘xes,‘ excessive
vibration amplitudes may occur, which lead to structural
damage or operational failure of the machi‘de.

and rotating machines.

Role of soil mechanics:

" Problems - connected- with - machine -foundations,
were not considered to be important till the advent of
the thirties, when greater use of heavy industrial plants
and consistent failure of machine foundations attracted
attention of deslgners (Tschebotarloﬁ' 1951) Before
that, the design of machine foundatlons was purely
emperical, the sm:plest being to prov:de heavy founda-
tion blocks. It was considered adequate to rest the
machine on r1g1d foundation so as to avoid excesswe
'1mp11tudes of vibration: Tt was beheved that natural fre-
quency of the rigid foundatxon would be higher than the
operating frequency of the machine. But mvarlably the
rigid foundation has to rest on the ground. The result i is
that r1g1d foundation . transmits the vibrations to the
ground, which is- relatively flexible, so that danger of
resonance is still there. ‘The importance of this fact was
realized when even after the provision of rigid founda-
tions, excessive vibrations due to resonance were causeds
With the advent of soil mechanics, the problem of -
machine foundation has been tackled more rationally
and scientifically, - The investigations, both theoretical
and experimental have led to better understanding of
the behaviour of machine foundations resulting in eco~
nomy. At the same time, the number of failurs of
machine foundations which are mostly due to excessive
amplitudes of vibrations have been minimized. '

* Reader in Civil anneermg, School of Reﬂemch and Training in Earthquake Enginéering, University of Roorkee,

Rmrkee, (U Py INDIA,

““‘Aesxstam Professor of Civil anmeermg, Blrla Engmeermg College, lenm, INDIA.
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Concept of Resonant Frequency :
Experimental studies on the phénomena of- ground
vibrations were first systematically conducted by Degebo

(Deustche Gesellschaft fur Bodenmechanik) organisa-
tion in Germany from 1928 to 1939. Their earlier
experiments were with a vibrator with fixed static and
dynamic forces. The results showed that soil at any
site had a natural frequency or self frequancy of vibra-
tions, depending only on the soil type’ (Lorenz 1934).
This was further substantiated by Andrews and Crockett
(1945) who independently determined the natural fre-
quency by a study of resonance between heavy indust-
rial plant, and the ground. At about the same time,
Vios, the Institute for Engineering Foundation Research
performed similar tests in Russia (Barkan 1936).

Later experimental and analytical studies (Lorenz
1953, Reissner 1936, Sung 1953, Quinlan 1953, Richart
1960, Tschebotarioff and Ward 1948) have shown that
the natural frequency of soil as such is meaningless. [t
varies not only with the type of underlying soil v‘but
depends- also on the shape and extent of the contact
area and magnitude of dynamic and static loads. Hence
it will be proper to use the term resopant frequency of
tlxe machine foundation-soil system, or simply the reso-
nant frequency of the system,

The problem of determining the resonant frequency
of the system has been tackled both by theoretical
methods and emperical methods based on past data of
resonance. The theoretical approaches are based on
the assumption of (a) Soil as semi-infinite -elastic solid
and (b) Soil as a spring, usually elastic.

Semi-Infinite Elastic Solid :

One of the theoretical approaches is concerned with
the “Dynamic Boussineg’s Problem’.  This approach
considers the machine foundations resting on the ground
and oscillating on the surface of the semi-infinite elastic,

isotropic and homogeneous medium. Prominent contri-

butions based on this concept are those of Reissner,
(1936), Quinlan (1953), Sung (1953)Afor vertical vibrations
and those of Arnold, Bycroft and Warburton (1955),
Bycroft (1959), and Hesih (1962), for other modes of

vibration viz., horizontal and rotational modes.

This analysis is based on the knowledge of the
dynamic response of the ground in terms of dynamic
soil constants i.e. modulus of eclasticity or modulus of
rigidity, and Poisson’s ratio. Dyhamic testing of soils is
done by measuring the velocities of propogation in the
medium. ~Rayleigh (1865), Lamb (1904), Leet (1950)
and others have analysed the velocity of wave pro-
pegatian in the semi infinite elastic homogencous and
isotropic medium. Bergstrom and . Linderholm (1946),
Bernhard.and Finelli (1953), - Jones (1955, 1958), . Bern-
hard (1956), Vanderpoel (1951), Nijboer and Vanderpoel
(1953) N'jboer (1959) Heukelom and Foster, (1960), and
many others have given the analysis applicable to soils
for determining in-situ dynamic constants.

Mass Spring System :

The other theoretical approach is to assume.the
ground to be a spring, ‘with or without, damping. In
initial studies (Rausch 1936), this spring was assumed to
be weightless and linear. But experimental studies by
Degebo (Lorenz 1934), Vios (Barkan 1936) and their
subsequent analysis have shown that some soil mass also
oscillates - with the machine foundation.. This ‘mass of
soil was found to be 4 to 10 times the vibrator mass by
Degebo. Vibs concluded it to be relatively insignificant
and neglected it to obtain the dynamic _m(_)d/ulus of sub-
grade reaction. But indirectly it was accepted that soil
mass could not be neglected and that:its value ‘must lie
between two third and one and a half times. that of
foundation. The above two statements séem to be cont-
rary, Terzaghi (1943), reccommends the soil mass to be
three times the dynamic force transmitted to the ground.
Andrews and Crockett (1945), Crockett and Hammond
(1948, 1949) suggested that mass of soil which vibrates
with the foundation must ‘bear some relation to the bulb
of pressure  which gives the stress -distribution under a
uniformly loaded area on an elastic- medium. None of
them gave any.precise relationship. It was, however,
regarded that this mass must vary with the area of

~ contact and the dynamic unbalance forces. 'Balakrishna

and Nagraj (1960) and Balakrishna Rao, (_1961? 4“1‘962)
further advanced the concept of pressure bulb and have
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suggested that the mass oscillating should be taken as
the mass. of the soil within the pressure bulb of the same
intensity (Ib./sq. ft.) as the density of the soil (Ib./cu. ft.);

The value of the spring consiant has been taken as
the load required per unit reversible deflection (Barkan
1936, Newcomb 1951). Lorenz (1934) has obtained k"
dynamic modulus of subgrade reaction and Ws the soil
weight, from two vibrator tests ‘under different loading
conditions and with different areas, by assuming both
k' and W;s to be constant. But this assumption-‘is not
justified, as the tests have shown that both spring con-
stant and soil weight vary with different vibrator sizes
and loading conditions even on the same type of soil,

" Pauw (1953) by assuming soil as truncated spring,
has developed expressions for spring factors and mass
factors for different modes. of vibration.

Use of Experzmental Behaviour :

'Another approach uses the past records of resonant
frequencies observed. Emperical relations have been
~ developed. Tschebotarioff and Ward (1948) and Tsche-
botarioff (1951, 1953) have obtained logarithmic rela-
tionship between reduced natural frequency and the
contact area. Newcomb (1951) observed a linear relas
tionship between the resonant frequency and the static
pressures.

Another approach which considers soil as sublinear
spring, uses the resonance curves obtained from the test
vibrator to plot the sublinear characteristic of soil and
‘has been put forward by Lorenz (1953) and- Alpan
(1961).

Scope of Study :

The problem of machine foundation has been recei-
ying importance since the thirties of this century. The
importanee of underlymg soil strata has been realized
in respect of the resonance phenomena. The available
literature is scattered and no systematic investigation

* covering the present trend is available. Itis felt that
this investigation of the behaviour and design of ma-
chine foundation, based on a systematic study of avai-
Iable literature, will lead to better understanding of the

problem connected. ‘The nature of the problem con-
sists of a system to be analyzed (Alpan 1961). This
system consists of the machine, the foundatron and the,
soil and involves the following procedure : ‘

(a) Weight and operating frequency of the machine
and the magmtude of the dynamrc forces is
given.

~ (b) The properties and the dynamic response of the
foundation soil are to be deterrnine’d, or assu~
med. ‘ ‘

(c) The foundation 1s deSJgned based on soil pro-
perties. The general shape and dimensions of
which may be assumed for prehmmary design,

The type of the foundation considered in this paper
is massive block resting directly on the ground. Isola-.
tors and shock absorbers are not considered.

Review of the available literature on resonant
frequency leads to an. interesting observation. Spring
constant in all the approaches can be expressed as a
simple multiple of G ro, while the mass factor a simple
multiple of P ro®, |

where G is the modulus of rididity of u‘nderlying soil,

pis the mass density of underlying soil and,
ro is the radius of the foundation base in.contact

with soil.

Out of the available approaches to resonant fre-
quency determination, Pauw’s (1953) analysis is recom-
mended. = Balakrishna ~Rao’s (1962) modification is
recommended in connection with vertical vibrations only:

Almost all the experimental investigations reported
in literature have been carried out for vertical vibrations.
The approaches already existing should be verified for
other modes of vibrations as well. Pressure distribution
under machme foundation have not been investigated.
Informatxon on effect of dynamic load on bearing capa-
city is not avarlable Based on these observations, sug-
gestions for further research have b_een made.

It is felt that the dynamic behaviour of soil be eva-
luated by observing the resonant frequency of a test
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vibrator under different loading conditions and contact
areas. The information obtained then can be used for
determination of resonant frequencies of the foundation
soil system,

BEHAVIOUR OF MACHINE FOU'NDATIONS’

General :

Machine foundations are important substructures.
For the safety of operation of every factory, dependable
foundations of its machines are essential. If the foun-
dation isnot properly designed, not only the machine
gets damaged but the adjoining structures may also be
damaged. In addition, for proper working conditions
in a factory, the vibrations produced by the machine
should be such as not to interfer with the worker’s
comfort. For a proper design of machine foundation
it is essential that its behaviour be understood. The
discussion to follow has been prepared from evidence
reported in literature from time to time., [t is essential
to know the magnitude of the dynamic forces and its

frequency. Based on its behaviour, the requirements

of machine foundation are also discussed.

Behaviour of a Machine Foundation :

A machine foundation is different from other
foundations, mainly because it is subjected to a dynamic
load, which is usually periodic. Under the influence
of this load, the foundation starts vibrating. For every
system, there is a natural frequency, which is defined
as the frequency with which it will vibrate, when sub-
jected to free vibrations. For a body with spring stiff-
ness as k and mass mo, the natural frequency wg is
given by (neglecting damping). ‘

wo = # kfm, we (la)
= Vkg/W, e (1b)

Under forced vibrations, as in machine foundations
the phenomena of resonance occurs, if the operating
frequency coincides with this natural frequency. For
no damping the amplitude at resonance tends to infinity.
If damping is included in the system, the amplitude. of
vibration is still maximum close to resonance, though of
finite value. The ratio of actual amplitude to free
amplitude (the static deflection of spring, due to dyna-

mic load) is called magnification factor N, (Denhartog
1947). At frequency ratio’ (the ratio of operating fre-

quency to the natural frequency) of 1.0, the magnifica-
tion factor is maximum.

The transmlssnblxty is defined as the ratio of force
transmltted to the foundation and dynamlc force. For
small damping, transmissibility is maximum at frequency
ratio of unity. For machines having dynamic loads
independent of frequency, it is maximum at frequency
ratio of 1.0, for large damping as well,  If the dynamic
load is proportional to the square of the frequency
(which'is true for rotating and reciprocating machines)
transmissibility may be maximum for higher frequency
ratios (Mykelstad 1956). In such cases it is preferable
to keep frequency ratio ‘lower than 1.0. ‘

In addition, at resonance, the power required to
keep the system oscﬂlatmg is maximum, This has been
observed experimentally by Lorenz (1934) Crockett and .
Hammond (1948) and analytically ' by Reissner (1936),
Sung (1953) and Quinlan (1953) Thus it is seen that at
resonance, the awplitude of vibration, the force trans-
mitted, and the power input requirement of the machine,
are maximum, Hence resonance has to be avoided.

In an attempt to avoid resonance, the foundation
was made rigid and firm. The natural frequency of
such a rigid body like mass concrete foundation is very
high. The equivalent sprmg constant (k) is (Tlmoshenko
1937):

where E is modulus of elasticity and

v -is the Poisson’s ratio.

Values of E and v for the concrete are of the order
of 2to 5x 10® psi and 0.15 respectively. This would give
a very high natural frequency of the foundation, with
hardly any'chance of résonance with machine’s opera-
ting frequency. But it has ‘been observed that even
these massive foundations start vibrating and sometimes
the amplitudes become ‘qﬁite large. The answer lies in
the fact, that though the foundation is rigid in itself, it is
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festing on the ground. The grouad is not as rigid. The
value of E for soils is' of the order of 18t0 ¥510* psi
and Poisson’s ratio of the order of 6.3 to &4, This
means that soil and foundation are in series (two springs
in seriesy, with the soil characteristics predominating.
That is why phenomenon of resonamce can be noticed
evén after providing a rigid foundation.

~ Consider a rigid, concrete foundation block, which
Supports a steam engine with speed of 250 r.p.m. resting
on ground. Assume that resonant frequency of the
system is 300 r.p.m. This will lead to fairly excessive
amplitude of vibration, as the frequency ratio is close to
unl ty. If this foundation is made ‘stronger’ by adding
fnote concrete mass to the foundation block, the. value
of mo (equation 1a) inc¢reases. This will lead to decr-
eéased resonant frequency of the system, and the freque-
ncy ratio approaches closer to unity leading to still more
severe vibration amplitudes. This example shows that
the quality .of the foundation does not necessarily im-
ptove with the mass of the foundation- block. ‘

Forced v1brat10ns are transmitted through the
ground. . Even at a distance, if some adjoining foun-
dation has a natural frequency close to the frequency of
transmitted vibrations, resonance may occur leading to
damage. For this reason, the foundation under heavy
machines and forging hammers are isolated, and shock
absorbers are used. : ‘

Classification of Dynamic Loads : ‘
The nature of vibrations and dynamic forces asso-
ciated with a machine can, in ‘general, be classified as ;—
(a) Shock loads occuring at regular intervals e.g.
vertical loads as in ‘punching press, ‘fforgihg
hammers and horizontal shock ‘loads, as m
" Jooms.

(b) Vibratory loads, which repeat after a particular
period and are cyclic in nature, These may
include the vibrations caused in any of the six
degrees of freedom (for ‘a single mass) by three
“‘translatory loads and three rotational terques.

Translatory 'Vi'blfa’t'ions include vertical, longitudinal

and lateral movements along three coordinate axes, X, v,

z. Rotary motion about vertical axis (z axis) is called —

“ya wing” while about longitudinal y-axis is called
‘gotation’ and pitching about lateral axis (x-axis). For
symmetrical foundations, vertical vibrations and ya-wing
dan exist independently, but rocking is associated with
longitudinal vibrations:

In most of the machine foundations, the vibrations
oceur in vertical direction or in rocking. ‘

Requirments of Machine Foundations :

A properly designed foundation for 2 machine must
first of all meet the general requirements for all founda-
tions for the particular load transmitted to the ground,
These are as follows (Tschebotarioff 195D~

1. The loads of the-structure should be transferred

to soil layers capable of supportmg them wnhout
a shear faiture.

2. The deformation of the soil layers underlying the
fou’ndaﬁon should be compatible with those
which the foundation, the super-structure, as
well as adjoining existing structures can safely
undergo.

In addition, the machine foundation must meet
the following addijtional requirements, which are charac-
teristics of dynamic loading:—

ta) Vibrational Amplitude:

It is not possible to eliminate the oscillating metion
'c‘o‘mpietely from a foundation which is subjected to
significant dynamic impulses. The designer can only
attempt to reduce the foundation vibration te.a magni.
tude which is tolerable at the operating frequency.

In the absence of the design specifications for
limiting vibrations, either of the following recommenda-
tions may be used as a guide. One of those is originally
suggested by Rausch, (1936), and reported in English
‘by Converse (1962). Accordmg to this, the permnssxbie
amplitude in inches is given by :

8.54

Permissible amplitude = 5 for frequencies less

than 1800 r.p.m
o «o (323)
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, Lorenz ( 1934) and Balakrishna Rao (1961) observed
experlmentally that the tésonant frequency of thé sysfém
decreases with i mcrease in dynamlc IOad Thi§ may be
exp]amed on the assumptxon that in such 4 casé; the
pressure s to become more intense néar the céntre of
the oscrllator resultmg in sroafler éfféctive tadius.
However, no quantatxve,explanation is available.

Arnold; Bytroft and Warbuitoh (1957) and Byecroft
(195§) have extefided the analys1s to the other vibratory
' 5. Théy have considered circiilar vibrator with
base dlstnbution As the tifcular vibrator i§ the
of axial & y, i teality the vibrating mass has
four degrees of fréedom, i.e., translation horizontally and
vertically and rotation About horizontal and Vértical axes.

" THe work dofis: by Réissner, Quinlan, Sutig and
Anold Bycroft and Warburton, déalt with one of the
$ix fiodes of vibrition at a time ‘and, therefore, is
Fimitéd to the Cate, Where the six modes exist indepen-
“dently. It is possible to ‘evaluate the equations of
‘otion diréctly from-the above theories. An interesting
* Yransformation suggested by Hseih (1962). makes it
possible to find the equations of motion.

But if the machme foundation is symmetrical- about
contact base, the vertical translation and rotatrcn ahout
vertical axis exist mdependently while, the horrzontal

translation ‘is ‘coupled - with rotation -about horlzomal
axis. If the centroid of contact area and c.g. of the
machine foundation coincide all the six degrees of free-
dom are decoupled This 1s a hypothetlcal case and
is not poss1ble in practrce The same conc]usrons are
reached by Pauw (1953) by consxdermg the equations of
motion, whrch are obtained by the soil spring analogy.

. ThlS method offers a correlatlon between the two
theoretical approaches viz:, soil as elastrc solid, and s011
as sprmg

: Ford and Haddow (1960) have obtamed the natural
.frequency of machme foundation based on Raylelgh’
..principle for rigid foundatr_ons - For a conservative
-.System, according to Rayleigh’s principle, the maximum

strain energy. is equal to the maximum kinetic energy.

It is based mainly on the following assumptions :

fay " Vertical Vibration:

1. The systemi mdy be considered as conser-
" vativé in order to deteérmine the natural
) frequency ' T

2 Dynamlc pressure is transmitted through
soil contained in a solid formed by the base
of foundation and a soil surface.

3.. The dynamic stress at depth z is. uniformly
distributed over a section parallel to the
base of the.foundation,

The last assumption is maccurate, but is useful for
the development of expresswns.

(b) Horrzonta] Vlbratron' )

The same assumptron as for vertical vibrations are
made with additional . .assumption that the dynamic
shearing stress is uniformly distributed over a section of

_the solid parallel to x, y plane.

Equating the kinetic energy of the soil and machine
foundation t6 ‘the faximum strain energy of the soil,
the aithor has obtained the natural frequencies in vertical
and ‘h’o‘ri'zlon'tal modés ‘of vibration.

: Dlscussron

“Reisstier’s: analysis {1936) forms ithe ‘basis of the su.b-
sequent analysis given by Quinlan (1958), Sung (1953),
Hseih (1962) Richart (1953, 1960), Bycroft (1959), and
Arnold, Bycroft and Warburton (1955). Tt forms a
sound basis as long as s_o:l ¢dn"be assumed homogeneots,
elastic and isotropic sofid. 'Reissner’s -anialysis ‘dssumes

“the dis’tribdﬁ'on under the ci‘rcul‘a’r-‘bzi’s‘e as ‘uniform, which
obviously is mot the case. Tt ‘is e\ud‘ence"d from ‘the
‘experiments that’ the résonant frequency ‘decreases ‘and

maxrmum amphtude of vibrdtion increases with ‘the

' increase in the excitér forces as indicated by LOre‘nz (1934,
1953, '1959) and ‘Balakrishna ‘Rao (1961). ‘Reissner’s

analysm does not give 'varying’ frequency ‘of resonance

‘for change in'the exciter forCe and as- such- devxates from
. the expemmental data R

r

The modxﬁcatrons by Sung (195.:) and Qumlan (1953‘
for the different load distribution (parabolic, uniform,
rigid) “stiow that as the pressures tend ‘to ‘concentrate

PN



A Review of Machine” Foundation Behaviour - 53

near the centre of circular base, the resonant frequ-
ency“ciecféases and amplitude of vibration increases. ‘The
increase in dynamic force, may quélitatively be assumed
to be associated with the change in pressure distribution
or the decrease in “effective radius” corresponding to
Richart’s (1953) 4sugge‘st'ion. This tries to bridge the
gap between theory and experimental evidence. However,
no quantitative explanation as to the change in pressure
‘distﬁbutior/l, or the change in effective radids, with the
change in dynamic forces is available. Sung (1953) and
Quinlan (1953) observed the natural frequency of verti-
cal vibrations on the test vibrators and compared the
results with theory and found them in good agreement.
Richart (1960) has applied this theory to the design of
machine foundations. ‘.

Bycroft (1953) Arnold, Bycroft and Warburton
(1955) have extended the above theory for other-modes
of vibrations as well. But they consider . only the rigid
base distribution. The expressions obtained by them are
of the similar nature and form as in case of vertical vibra-
tions. Now this can be applied only if the vibration in
a particular mode can exist independently, which is
true only for motion in vertical direction when the
machine foundation is symmetrical -about the contact
base. The theoretical analysis of horizontal and rota-

tional modes of oscillation have not been experimenta-

ily verified.

The equation of motion for six degrees of freedom
cannot be directly obtaind from.this theory.. A trans-
formation suggested by Hseih (1962) makes it .possible
to-obtain the six second order differential 'equations -of
motion which may be solved by means of analogue
computors. For the case of machine foundation. sym-
metrical about  contact base (which is usually ‘the - case)
the horizontal translatory -vibration is coupled with
rotary motion about horizontal, perpendicular to the
translatory vibrations. This has been independently
confirmed by Pauw (1953) by truncated spring analogy.

Only for the case when centre of gravity of machife

foundation coincides with the centroid of the contact
area, all motions are decoupled (This is not feasible,
© practically). '

"'Ford and Haddow (1960) obviously have given a
basically different approach to the problem by consider-
ing the machine foundation soil as a conservatives
ystem. But. this gives the resonant frequency which
is independent of the dynamic load, which certainly is
not correct as showrn by the experiments of Lorenz (194,34,
1953, 1959) and Balakrishna Rao (1961).

For the foundations other than circular ones, which
have been considered in the theoretical analyses, follow-
ing 'modifications have been suggested by various

investigators.

1. For translatory motion, use an equivalent
radius which gives the area of circle equal to
that of the contact aréa of the foundation with
‘ground (Sung 1953, Richart 1960, Hseih 1962).

2. For rotational motion ‘us‘ev an equivalent radiﬁs
which gives the moment of inertia of the circle
equal to that of the contact area of the founda-
tion about the axis of rotation (Hseih: 1962),

3. Bycroft (1959) bas suggested that if Z is the
amplitude for equivalent circular base and Zr
for the rectangular base, then Zr = mxZ,
where m is a shape factor and may be taken
as for static case given by Timoshenko (1937).

4.  As the distribution assumed by Byéroft (1959)

. is the rigid base distribution, the concept of
effective radius is suggested to find the values

of frequency and amplitude for other type of
distribution. ”

In all. the above theoretical methods based on the
homogeneous semi-infinite, isotropic, elastic solid, cer-
tain values of G (modulus of rigidity) and v (Poisson’s
ratio), have to be estimated.. The value of modulus of
rigidity G vareis with depth and so does the Poisson’s
ratio: v.. The test on oscillator, will no -doubt give
certain’ value of G and v, but it is valid only for the
depth, which may be taken approximately equal to three
times the base width of test vibrator, With increase i
prototype area, the value of G and v should be valid for
depth upto three times the foundation width, and these
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. values will- obvxously be different from those in test
vxbrator.

Another short-coming is the pressure distribution
“to be assumed. No data is available from field records,
“regarding the actual distribution and change in distri-
bution with increase in dynamic loads. It has further
been found from the survey of available literature that
“while the ratio of dynamic to static force in the proto-
_type is about 47; to 5%, its value in the model vibrator
:is any where from 25% to 90%. The distribution in
two cases may be different, but no quantative informa-
tion is available.

:’Soil as Elastic S'pring:

The first known approach to analyse the foundation
_vibrations considered the vibrating system to behave as
a single mass supported by a weightless spring and sub-

“jected to viscous damping (Lorenz 1934, and Barkan
'1936).

For undamped forced vibrations, resonance occurs
at fffo = 1.0, where f is frequncy of forced vibrations
and fo is natural frequency of the system. For small
values of damping the peak amplitude occurs at fre-
quency ratio so close to unity that the difference is
‘usually negligible.

Another possible variable with frequency ratio is
‘he work per unit of time required to operate the vib-
rator. This work consists of two parts (Terzaghi*1943).
One part is used up in overcoming the friction in bear-
ings and other resistances within the mechanism. It has
been found that this part increases approximately in
direct proportion to the square of frequency.  The

second part is consumed by the viscous resistance of

soil against periodic deformation. The rate of work for
operation is maximum at resonance frequency,

From 1930 onwards, the work was carried by
Degebo (Lorenz 1934), Their standard experimental
set up consisted of a vibrator, weighing 2700 kgm with
base area | sq. meter.

Experiments were conducted on different sites using

C the above vibrator. Amplitude of vibration, the phase
_angle between the exciting force and the result-ng vib~

rations and the power requircment of the vibrator
were determined at various frequencies. The reasonant
frequency is determined where maximum amplitude
occurs and checked with the frequency where maximum
power is required and also where phase diﬂ‘qfence

is /2. Comparison of the experimental plots
with the theoretical plots gives the value for danping

factor,

‘The frequencies which correspond to individual soil
‘type and hence to bearmg capacity according to Lorenz
(1934) indicate that the higher the natural frequency,
the bigher the safe soil pressure. ) the damping factor was
found to have the following signiflcance. A value in
excess of about 3 to 4 sec~* combined with an important
‘settlement of the base was considered an indication of
high compressibility and sensitivity to vibrations.

During these experiments it was found that W in
equation 1b is not the weight of vibrator alone, but also
includes the weight of the soil vibrating with it. Expres-

~ sion for natural frequency then becomes;

wo = N ) B : )
where W5 is equivalent soil weight which is assumed to be
concentrated at the c.g. of foundation mass.

‘In order to determine Ws, the weight of vibrator
was increased by means of surchatge, and the test
repeated. . The natural circular frequency of system
decreases from o, to /. Assuming, for the sake of
simiplification, that the increase in weight of the vibrator
has no effect on Ws, two equations are obtained which
make it possible to determine W.

Another suggested method is to increase the area of
the vibrator base, keeping weight of the vibrator same.
Replacing k by k'.A in equation (3) wp is obtained as;

k’.Ag - : : 4
NIVE <~
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where A is the area of base plate, and - -~
... k' is the modulus of dynamic subgrade_ reaction.

" ‘Assuming value of k' to be 'same from one test to
another, value of W5 can be determined.

‘By increasing’ the weight of vibrator from -1.8 to
3.4 metric tons, the value Ws was found to be 12.5 tons
(Lorenz 1934). - Similarly keeping the vibrator weight
at 2700 kgm (2.7 metric tons), and changing the area
from 1/4 sq. meter to 1 sq. meter, the value of Wy for
the same site was found again to be 12 5 tons.

“In another series ‘of the tests, Ws was equal to- l me=
‘tric ton; when' the weight of vibrator was increased from
2060 kgm to' 2700 kgrh. ‘These  results’ indicate ‘that
value of W5 is likely to vary betwéen wide limits. For
change in ‘eccentricity (increase in ‘dynamic loads), the
natural frequency was found to decrease

At about the same time, the mdependent tests were
carried out in Russia which are .reported by. Barkan
(1936, 1963)." For the vabrations so.produced as.to give
both gyration (rotation) and translatory d splacement the
system has two degrees of freedom, the. resonant fre-
quencies - are -coupled, and two [fesonant. .frequencies
were noted.

-+ .'The experimental foundations weighed upto 30
tons and had an area at bottom upto-8. sq.m.. Value of
k=k'".A was determined - by the staucal tests (reversr-
ble drsplacementx k = normal stress) k' was deter-
mined for areas 2, 4 and 8 sq. m, From the determined
values of k’, the’ ‘frequencres of the vertical vibrations
only were calculated: The foundation was subjected
to forced vertical vibration - with the:aid of -vibrating
machine " and’ resonance - recorded.’~In ‘nearly'all the

cases, frequencies differed but: little “from the . theoréti-

cally calculated ones. Tn-the analysis the weight of the
soil..partjcipating. has been neglected Barkan (1936)
also observed the resonant frequency of 11 cps for the
eccentncmes of 22.5 mm, 17.5 mm, 65 mm. This
seems | erronous aa the resonant frequency has ‘been
found to decrease with increase in eccentricity or the

1948 1949 "Lorenz. 1953)

~Later experiments in Sweden (Bergstrom and
Linderholm 1946) have shown that for large base plates
(of the--order of 3' m, radius), the value of subgrade
reaction k' corresponds to the values obtained from
wave velocity measurements. ‘

Andrews and Crockett (1945), and Crockett and
Hammond (1948, 1949 1958) also measured natural. fre-
quencies usmg a vibrograph to prck up the oscillations
in the vicinity of Jarge hammers. These frequenmes

.are roughly the same as those reported by Degebo

(Lorenz 1934). Crockett and Hammond (1948) also
obtained the same natural frequency irrespective of the
size of the foundation for any particular type of ground‘
The largest foundation tested had an area of 2500 sq. ft.

However, they suggested that mass of soil whlch
vibrates with the foundation must bear some relation
to bulb‘ of stress, which gives the stress distribution
under a uniformally loaded area on an elastic medium.
The active ground weight is assumed to be within a
certain bulb of pressure, but no relatmnshlp had been
mdlcnted

Pauw (1953) has given an analytical procedure
whereby the dynamic soil’ constan__ts required for the
prediction of natural frequencies of a foundation- soil
system may be determined. The foundation soil system
is treated by 'considering the foundation to be suppor-
ted.by a truncated pyramid of “soil springs. v .

"Based’ on' the concept that the modulus of elhsticity
is approxrmately proportional to the shearmg strength
Pauw made the following assumptrons e

1 For Cohesionless soils the modulus of e]ast:mty
s propomonal 10 the effective depth which equ-
a}s the actual depth plus equivalent surcharge_,

:2. For cohesive soils the modulus of elasticity is
. constant. Intermediate soil conditions may be
interpolated on the basis of Coloumb’s law, ;- °

:8. The distribution of stress takes place within 8
- truncated pyramid,

4, The soil pressure below the found mon and also
" at any depth is uniform, ‘ o
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Spring factor is defined asthe force or moment
exerted on a system when it is displaced.a unit dis-
fance or rotated through a unit angle, from the equi-
librium -position. For a foundation with six degrees
of freedom, six spring constants are required for each
surface in contact with soil. Apparent mass of soil
vibrating with the foundation is estimated by cquating
the kinetic energy of an equivalent concentrated mass
at the surface to the total kinetic energy in the effective
zone. He has given these factors for horizontal and
vertical surface. o

The integral for mass factor in case of translatory
vibrations for cohesive soils does not yeild to a converg-
ing solution, He has also considered  the equations of
motion for a symmetrical foundation (c.g. of machine
foundation dlrectly above centroid of the contact sur-
face) and found that onmly vertical vibrations and rota-
tion about vertical axis exist. independently. The hori-
zontal translatory motion is coupled with rotatlon about
horizontal axis. Balakrishna Rao and Nagraj (1960)
and Balakrishna Rao (1961, 1962) have developed fur-
ther the concept of oscillation of Bulb of pressure as
advanced by Crockett and Hammond (1948, 1949).
This. has been modified to the density pressure bulb
concept.

The weight of the soil mass participating in vibra-
tion (equation 3) is estimated by taking the weight of
the soil contained in a definite pressure bulb. This
pressure bulb is. obtained by considering the sum of
static and maximum positive dynamic load of the ma-
chine and the foundation block to "act as concentrated
load at the mass centre of the foundation block, The
reason advanced for adding the dynamic load is that
the additional static stresses are developed by dynamic
Joad (Nagraj and Balakrishna Rao 1959). The boun-
dary of this pressure bulb is supposed to be given by
pressure intensity of | ¥ | Ibs per sq. ft. where ¥ is the
density of the soil mass in Ibs per cft.

- The above authors have suggcsted to take the value
of K or spring constant according to that given by
Pauw, or for that matter from the dynamic soil tests:
Knowing the value of K and Wy, the natural frequency

can be determined.

Balakrishna Rao has checked the resonant frequency
as calculated by pressure bulb concept with the published
results of Converse (1953) and Eastwood (1953).

Barkan (1963) has developed . an analysis on the
analogy that soil acts as spring. For horizontal forees,
the foundation soil system has been considered to be a
two degree of freedom system. ‘

Discussion

The approach is based on the assumption that soil
acts as-a linear spring, and for the purpose of resonant
frequency it is sufficiently accurate to state that reso-
nance occurs at the frequency ratio of unity. Barkan
(1936) has verified this for the assumption that no soil
mass is participating .in the vibration, but Lorenz
(1934, 1953 b), Crockett and Hammond (1948), East-
wood (1953), have shown that this soil mass cannot be
négl'ected, though it'is an uncertain factor. Hence it
seems that neglecting the soil mass in denominator may
have been compensated by the fact that Barkan has
taken the value of spring constant from the static defi-
ection test. (He has defined the spring constant as the
load required to produce the unit reversible settlement).

It seems only proper that while giving Ws a certain
value, the spring constant also must be considered.
Tt is both W; and K that vary rather than any single
factor. Hence to suggest that Degebo obtained Wy as 4
to 1D times the static weight and Vios got Wy as
2/3 to 1.5 times the static wexght is an indefinite ‘state-
ment,

Obscrvatlons of Crocket and Hammond (1948)
that natural frequency of foundation soil system is
independent of the size of the contact areais inconsis-
tent with recent tests of Eastwood (1953).

Pauw (1953) has given the spring factors, and mass
factors for different modes of vibration based on theore-
tical derivation which assumes soil as truncated pyramid
spring' 'But these spring and mass factors seem to be
alright for the soils where Young’s modulus increases
hnearly, with depth. If the Young’ s_ modulus is a con-
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stant, the approach does not give definite results, and
a modification in surcharge as suggested by ‘Converse
(1962) may be used.

Andrews and Crockett (1945) Crockett and Ham-
mond (1948, 1949) have suggested that the mass of sail
oscillating may be taken as . that contained within a
pressure bulb, which they have not speeified. Also as
stated earlier, specifying W is not significant unless the
spring constant is also defined. S

Balakrishna Rao (1960 1961, 1962) considers the
pressure bulb for the combined static plus dynamic load,
and has given 3 specific value to this pressure bulb. This
explains the phenomenon of decreased resonant frequency
for higher dynamic loa’d_:as it assumes thth the soil mass
will increase. The pressure bulb for distributed load
based on equivalent sphere did not give appreciable diffe-
tence. He recommended ‘the use of spring constants
according to Pauw’s approach. Thus W;s is calculated
on the assumption of soil "as uniform,  homogeneous,
clastic medium (having same Young’s modulus at various
depths), the spring constant K is calculated on the
assumption that Young’s- modulus-increases with depth
(Pauw’s approach). That is, the value of Ws and K are
‘calculated on the basis of contrary assumptions. ' But it
offers’a good emperical means to evaluate the effect of
changed dynamic force. oo

It is important therefore, that unless and untill both
values of K and Ws are specified, the approach is not
bound to be rational. Inm latter experiments with road
subgrades Heukelom (1959) and Heukelom and Foster
. (1960) have kept the spring constant same, and embo-
died the deviation solely. in the mass of vibrating soil.

Misqelldneous Methods :

Emperical approaches to the problem of determining
resonant frequency will be discussed under this
section ;— e )

" Tschebotarioff and Ward (1948) and Tschebotarioff
(1951, 1953) have suggqstcd'élogarithmic relation bet-
ween the area of fouljdatiqhﬂand the reduced natural
frequency. The resonant frequency is given by ;

I [K.Ag -
fo‘ == 2—71' m e (5a) ’
1 kK. g

A
=27 N TFWe/Wo A/‘VVZ S O
Wo/A is equal to the static load on foundation per unit
area (ost). Thus at unit static pressure, the frequency
would be ;

=21 T V1 (59
14+Ws/Wo B
This is termed as the reduced natural frequency.
of fur = foy/ ost ‘ . (6)

Tschebotarioff worked out values of reduced natural
frequency from the published data of Degebo, Vios,

Newcomb and other records and also the result of some

tests which be simself carried out in a C.B.R: test
mould and found that a straight line relationship existed
between ‘area of contact and reduced natural frequency
on a log log plot for one soil type. For different: soils,
the straight lines were parallel and can be represented
by an equation, ‘
o (73)

A =j; (far)t
where A is the contact area,

ji and t are constants for the plot.
Substitute for fur in terms of fo. we get ;

A =i (\/ ‘%—" AT . (7

N (++D) |
Whencc fO - jlb-llt_ A i Ty (7c)
\/Wo ; i

Goyal and Alam Singh (1960) have expressed the
emperical equation of the straight line of above "blot for
sands and clays. Transferring their value to the form
of equation (7c), the expoiient of A for sands is 0.242
and for clays is 0.248. ’ ’

Alpan (1961) found the value of t in the above
equation as — 3.98 and hence, ﬁhe ‘éxponent of A is
0.248 for all type of soils. Equation’ (7c) can then be
written is ; o '

J’ ‘-‘ v L
Lofy == W—:A”“.»; | ‘ e - (8)

where J' is a constant,
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The contact area in Tschebotarioff’s diagram ranges
from 1to 1000 sq. meters (0 . to . 10000 sq ft). For
smaller areas, results. of laboratory - experiments with
model footings are available (Eastwood. 1953). These
_lests were made to investigate the factors influencing
the resonant frequency on dry and mundated ‘sand.
The oscillations were generated by impact. The sand
employed in his tests had a dry density of 1.74 g/c.c.
.and a void ratio of 0.525.

Alpan (1961) plotted the results of Eastwood in
‘terms of reduced natural frequency far versus area A
on log-loge scales and compared it with extrapolated
values as obtained by Tschebotarioff’s plot for sands.
The lines -obtained by ‘Alpan are quite - different from
‘those - of Tschebotanoﬂ' ‘Actually the peints are any-
‘thing upto :100%; - high or 50% low, -the -errors being
'masked by. the -log:log scale (Eastwood’s ‘commients
:1953). ‘From the data which Tsclicbotarioff has used
for his plot (Tschebotarioff 1953} it .will -be . seen - that
‘the.resonant:frequency was obtained by forced: vibration
test and shock or impact and exciting force was either
vertical or horizontal and vertical or, ‘only .horizontal.
But'it is a known fact that the nature of.the vibrations
and the method by whieh ‘they are induced ‘materially
affect the frequency response of the system. Hence
Tschebotarrioff’s plot is not the true picture of fre-
quencxes

Eastwood’s (1953) -tests show that for the same
‘applied load per unit area, the natural frequency. of a
12" X 3" model footing is the same as that for a
24" x 3" model footing. Thus they will also have the
same reduced natural frequency even though area of
one is iwicethat of the other. He has suogested a pos-
sible relation between reduced natural frequency and
the least dimension of footing,

To obtain same values of for (for same area), what-
ever be the applied load expressron vV kgl g/l 7 Ws/Wo
in quation (5b) has to be.con,stant for different areas.
This means that either W must increase at exactly the
same ratio as W or alternatively W is always negligible
compared to W,. The latter is impossible and the
former extremely unlikely (Eastwood 1953).

Alpan (1961). has made.an attempt to analyze from
first principles, the relation between frequency and  area
and obtained an expression for natural frequency as;

constant ~ A%25 <
PV W O
where m is shape factor. - Equation ©) differs from equ-
ation (8) in only that ashape factor i is itivolved, ‘and
that exponential power of A is 0.95 instead of 0248,

Now shape factor is not: orly dependent upon - the
length width ratio, but may. depend also on.the type  of
the load distribution. This probably may be able to

remove the dlscrepanmes in the plot of Tschebotanoff

For example, Eastwood ( 1953} obtamed ‘the same natural
frequency fo, for 247 % 3" and 12" x 3" foundation models,
for the same static load intensity though the area is
twice, This may be explained by introduction of shape
factor, 'F urther ‘work has to be done along these Imes

From the results of the. field :testing programme
mainly .conducted to note the effect of various para-
meters, onthe compaction of sand. by vibration in a test
Ppit 6 feet deep, 10 feet - square, an empirical equation
(Converse 1953} for resonant frequency of a vibrator
sand mass was developed. as follows :

£y = -.2;; \/ 840 —3 (1.64—Fo/Wo) +0,55 Gro/W,

| e (10)
o< \l;; <1

where fo is frequency-in eps
G is'modulus of rigidity of soil, .psi.
‘Fo is maximum dynamic force, 1bs.
Wo is static weight of vibrator 1bs. and
Io - is radius-of vibrator, in. and
Y s unit weight of soil, Ib. per cuft.

Converse verified the resonant frequency based
on the above formula with that of the field test results
obtained with base plates 15.7, 19.2, 24.0 and 45. 0 inch
in diameter, ‘

The development of the emperical equation is signi-
ficant, as it involves not only the soil constants, but also
the vibrator drmensxons (ro), werght (Wo) and dynamrc
force (Fo) still, the equauon is developed only for one
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type of soil and it is only reasonable to expect that. this
will vary with the type of soil and such an equation is
not universal in nature. .

Blessing has presented curves “for determination of
" resonant  frequency and amplitudes . of compressor or

engine fondations. These are based - partly -on elastic.

analysis and on the experience gained from their instal-

lations. These curves have been adopted-in the Indian

Standard on Design of Machine Foundations.

BASIC SIMILARITY OF VARIOUS APPROACHES.

In all the methods for predicting.resonant frequency.
which assume soil to be homogeneous, an, interesting
similarity is pointed out. Based on this an empirical
férmula for resonant freqnency is suggested.

For static loads, the value of spring constant for
various contact pressure distributions are reported by
Jones (1958) and Heuklom (1959).

k =4 Gro/ (1 — ) v e (113)
For rigid plate condition. (Snpddon 1951)
k=nGro/1—v : o (11b)
for. uniform stress distribution, (Boussinesq 1885).

. ir Gro . o

k= T T—v - e (llc)

for parabolic stress distribution. (Frohlich 1934).

‘Bquations (11) show:that spring constant is- -multi-
ple of Gro. Now consider the' theory . of vibration
of elastic homogeneous, semi-infinite, isotropic wedium
(soil). In this analysis, mass ratio ‘b and dimensionless
frequency term ‘a’ are used, where

b= P’f{;’a and ao=uqTo \/WG v (122)
Mo 4.5 P
.. bagt= ang wo? To® G - ‘ e (12b)
which after re-arranging gives,
ot = O (baoh) o . (12¢)
Mo

Value of equivalent: spring constant is, therefore,
(assuming wo? = k/mo).

k = Gro. (bas®) e (12d)

(bag?) is, a function "of load distribution Poisson’s

ratio and ‘a’.

Hseih’s transformation (1962) gives spring constant
as
k = Gro F,; . (13

where F; has been evaluated in terms of ‘a’ for rigid
distribution and different Poisson’s ratio
. __ GroF,

e Wy

(14a)

mo

Putting value of F; as given by him, we get (for
v=1/2), ‘
Gro (8—2.0 a,?)
N

moz =

.. (14b)

Substituting value of ‘ay” =wero VpIG and rearra-
nging we obtain,
8 Gro

2 TR e
“T met2p 108 (15a)
Similarly for v =.1/4,
5.3 Gro
e Q0 MO
Yoo = m0+Pr03 see (15b)
Forv=0,
4.0 Gro
“" = Wet0.5 pro® - (15¢)

Values of spring constant from equation (11a) for
rigid base distribution is 4 Gro/1 — v, which for v =
1/2, 1/4,0 is 8 Gro, 5.33 Gro and 4.0 Gro- respectively.
This tallies with spring constants in equations (15).

In Ford and Haddow’s analysis (1960) it can be
shown (Bhatia 1963) that the equivalent spring constant
is a- multiple of Gro, and the mass of soil participating
in vibration is a-multiple of p ro®,

Now consider the emperical plot of Tschebotarioff
(1948, 1951, 1953). ' The equation of the plot is

¥ S
f — — A0-248 o 8
T Ve - e @
Substituting A =7ro®in equation (8), we get
fo, = const X o 2 16
o= Ve (162)
0.992
= constant X J o v (16b)
Wo
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where the constant depends upon soil type (and
hence‘on value of G)

Therefore spring constant may be taken as a mul-
tiple of Gro. Note very small power difference between
1. 0 and 0.992,

Converse (1953) has given an emperical equation
for resonant frequency of sand vibrator system (Eq. 10).

For large values of G, first term under the root is
small and may be neglected and this reduces to,

__Gro

Wo
\‘

fo= X a constant .. a7

Pauw (1953) has evaluated the spring constants for “

the cohesive soils for which values of E' or G .can be
assumed to be constant. Though it was not possible to
evaluate the mass factor, it will be of interest to see
nature of spring constant by given him. ~Expression for
vertical vibration i is ;

k=EaBY, . " e (18a)
where tan-* ¢/2 denotes the angle of pressure distribu-
tion and ¥; is a factor depending upon L/B ratio. .

For circular vibrator B = 2 ro,
(Pauw 1953).

k=Ea2ro).l =2G(l +v). (2ro).
= Gro{4 (14 v)}

i.e. the spring constant is a multiple of Gro.

and ’}'z = 1.0,
(18b)

Experiments by Nijboer (1953, 1959) Vander Poel
(1951, 1953) Heukelom (1959) Heukelom and Foster
(1960), obtained the value of spring constant as appro-
ximately 7.6 to 7.7 Gro, in their dynamic tests.

i.e. k = 7.6 Gro e (19)

From consideration of equations (11), (12), (14a),
(15), (16b), (17), (18) and (19) a simplified form of the
natural frequency expression is suggested viz.,

2 .. __l!.&,_
00 = e L A PIO° e (20)

Introducing the shape factor ‘m’ in equation (20)
we obtain,

Gro

Mo -+ As. Prod 2D

we? = (7\1/ )

where A;, N, are constants for the system and
m is the shape factor depending upon L/B ratio

The effect of change in dynamic load upon A
and A, will have to be investigated'experimentally.

DESIGN OF A MACHINE FOUNDATION

The general method of desrgnmg a foundation 1s_
to determine the natural frequency of the system based
on analytical mothods discussed in this report and ascer-'
tain the amplitude of oscrllatron The various steps in
these methods are : ' ‘ ’

1 The dyn‘amic ‘unbalanced forces, and their freque-
ncies of operation are calculated, or these may be
supplxed by the manufacturers.

2 The dimensions of the foundatron block are assu-.
med, taking care that allowable soil pressures
(which are less than in case of statrc loads only)
are not exceeded. ‘

3 The soil type is analysed by borings, and sampling.
To analyse beéhaviour of the soil, in-stitu vibrator -
tests, should be conducted. In these tests, either
the resonant frequency and amplitude of vibration
are determined for different combination of static
and dynamic weights, eor the velocity of wave
propogation is determined. The value of 8 (rate-
of increase of Young’s modulus with depth) can
also be calculated with the help of Pauw’s analy-
sis. The values of decay factor or B, a constant
in Ford and Haddow’s analysis can be calculated.
It is recommended that tests with at least 3~ diffe-
rent areas of wibrator be performed. Balakrishna
Rao (1962) has suggested a linear variation of 8
with area A, based on analysis of data of Ford
and Haddow. Pauw (1953) has however, assum-
ed B to be constant. :

4 Knowing .the above soil properties, the resonant
frequency of the actual machine foundation soil

- system can be calculated by any one of the me-
thods described previously.
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.5 Resonant frequency is thea checked with opera-
tional frequency of the machine, and if the freq-
uency ratio is within safe limits (less then 0.5, or
more- then 2.0), the design may be checked for
amplitude of vibrations.

6 Usually the amplitude of vibrations, can be deter-
mined with sufficient accuracy by assumption of
a simple spring, in which the damping value may

“be neglected or a reasonable value usually 0.25
may be assumed.

7 If this is found to be within permissible limits,
" which can be tolerated by the machine and the
structure, then the design is safe.

8 If not, assume another preliminary design and
~ ‘repeat the above steps,

Usually vertical vibrations exist independently. If
the vibrations occur in more then one direction the fre-
quencies will be coupled as shown by Pauw (1953),
and, Hseih (1962). In that case Pauw’s method is
recommended: Pauw’s method is applicable only for
cohesionless soils.

For fairly homogeneous soils, either modification
in surcharge as sugggsted by Converse (1962) may be
used, or Barkan’s (1963) method may be used.

SUGGESTIONS FOR FOURTHER RESEARCH.
In view of the study made, the following sugges-
tions for further research are made :

1 Asimple equation for the natural frequency of
the system is evolved (Equation 21), The factors
affecting 2, and A, need be studied systematically.

2 Shape factors (m) i.e. the effect of shape of base
area (characterized by L/B ratio) needs to be
investigated experimentally.

3 Balakrishna Rao (1960, 61, 62) has evolved den-
sity pressure bulb coricept. It accounts for the
change in the natural frequency of system with
change in dynamic loads. This approach has
given good results for vertical vibrations when
Pauw’s spring factor for cohesionless soils (E
increasing ‘with depth) is used. The procedure
needs experimental verification for cohesive soils.

4 Experimntal investigations of bearing capacity
of soil under dynamic loads are being undertaken
(A.S. T.M. 1961). A systematic study of the
problem will prove useful to the designer of
machine foundations.

5 The problem of machine foundations on piles has
" not been tackled at all. Experimental and anal-
ytical investigations of this problem need be made.

6 No data from the actual machine foundations in
India is available. It is suggested that a questio-
naire be prepared and sent to various industries,
designers, and research workers dealing with
machine foundations. The purpose will be to un-
dertake a systematic analysis of field data regard-
ing actual behaviour of machine foundations. This
will help in co-ordinating the efforts of various
workers and will consequently lead to a standard
practice for the design of machine foundations.

COCNLUSIONS
From the study of the available literature the
the following conclusions could be drawn : —

1. Resonance phenomena cannot be ignored in
machine foundations and design should account
for it,

2. For soils in which the value of E increases
linearly with depth (for sand, and normally
loaded clays), Pauw’s method is recommended.
For vertical vibrations only, Balakrishna Rao’s
(1962). method to calculate apparent mass
factor should be used.

3. For soils in which value of E, can be assumed
to be uniform, Pauw’s method cannot be
applied as such. Modification in surcharge as
suggested by Converse (1962) is recommended.

4, For other modes of vibration, Pauw’s (1953)
_ analysis can be used.

5. .In most cases the amplitude of vibration can
be determined with sufficient accuracy by
simple mass spring analogy.

6. A simple equation, based on the general simila-
rity of analytical approach is developed, for de-
termination of the natural frequency of system.



62 Bulletin of the Indian Society of Ea-r‘thquake Tecﬁno]ogy

ACKNOWLEDGEMENT.

f "‘l‘he junior‘a‘utih'or. was provided with a Scholarship
by the Ministry of Scientific Research and Cultural
Affairs under the Technical Teachers Training Prog-
ramme, The investigation was carried out in the School

of Research and Training in Earthquake Engineering
University of Roorkee, Roorkee (U.P.).,

REFERENCES

“ASTM, (1961), “Symposium on Soil Dynamics” ASTM,
Sp. Tech. Pub. No. 305. ‘

Alpan, 1, (1961),  Machine Foundations and Soil Reso-
_nance” Geotechnique, Vol. 11, pp.95-113.

Andrews, W.G., and J.H A. Crockett, (1945), * Large
~ 'Hammers and Their Foundations” The Structural
Engineer, Vol, 23, Oct., 1945, pp. 453-492.
Arnold, R.N., G.N. Bycroft and G.B.Warburton, (1955),
“ Forced Vibrations of a Body on- an Infinite
.. Elastic' Solid”. Journal of Applied Mechanics
Trans.. ASME Vol. 77, pp. 391-401.

Balakrishna. Rao, H.A. (1961), “ Design of Machine
Foundation Related to.the Bulb of Pressure”
Proc. Fifth Int. Conf. SSM.F.E. Vol. I, pp. 563-
568.

Balakrishna Rao. H.A. (1962), “A New Mecthod of Pre-
_ dicting Resonant Frequency for Square Footings”
Second Symp. Earthquake Engineering, University
of Roorkee, Roorkee, Nov.,:(1962), pp. 153-166.
Balakrishna Rao, H.A,, and C.N. Nagraj, (1960), “A
New Method for Predicting the Natural Frequ-
ency of Foundation Soil System® The. Structural
Engincer Vol, 38, Oct, (1960) pp. 310-316.
Barkan, D.D., (1936), ¢ Field Investigation of the The-
ory of Vibrations of Massive Foundations Under
Machines” Proc. First Int. Conf. S.M.F.E,
Vol. 11, p.285-288,

Barkan, D.D., (1963), “ Dynamics of Base and Founda-
tions” McGraw Hill Co., New York.

Bergstrom, S.G. and S.Linderholm, (1946), “ A Dynamic
Method for Determining Average Elastic Proper-
ties of Surface Soil Layer” Handiinger No.7.

Svenska ForsKings—-Inétitutel fur cement och
Betong vid. Kungl, Tekniska Hogskolan Stock-
holm. ‘

Bernhard R.K., (1956), “Microseisms” Papers on Soils
ASTM Sp. Tech Pub. No.206, pp.80—102.

Bemhard RK., (1958) “A Study of Wave Propaganon
Proc. HRB pp. 618-646.

Bernhard, R K. and J. Finelli, (1953) “ Pilot Studies on
Soil Dynamics®” Symp. Dynamic Testmg of Soils,
ASTM, Spec. Tech. Publ. No.156, p. ‘211‘—253.

Bhatia, U.K., (1963), “ A Review of the Behaviour
and Design of Machine Foundations”, Master of
Engineering Thesis, University of Roorkee.

Blessing, W. J., (19 ), “Compressor and Engine Foun-
cations™, Worthington Corp. U.S.A, Bull. No.
(G—-2311). £y

Boussinesg, J., (1885), “ Application des Potentiels -a-
I'etude de Pequilitre et du Mouvenient ders Solids-
Elastiques **, Paris Gauthier-Villars, 1885.

Bycroft, G.N., (1959), “ ‘Machine Foundation Vibrat-
ions” Proc.IME. (London), Vol. 173, No. 18.

Converse, F.J.; {(1953)—“Compaction of Sand at Reso-
nant Frequency ” Symp. Dynawmic Testing of
Soils, ASTM Sp. Tech.Pub:No.156, pp. 124-137.

Converse, F.J., (1960), « Compactnon of Cohesive Soils
by low Frequency Vibrations” Papers on Soils,
ASTM Sp.Tech.Pub.N0.206, pp. 70—81

Converse, F.J., (1962), “Foundations Subjected to Dv- .
.namic Forces” ch.8. Foundation Engmeermg
Edited by G.A. Leonards, McGraw Hill Co.

Crockett, J.H.A., (1958), « Forging Hammer Founda-
tions” Civil Engineering and Public Works Rev-
iew, (London) Parts I to 1V, June to Sept.

Crockett, J.H.A. and R.E.R. Hammond, (1948), “Natu-

_ ral Oscillation of Ground and Industrial Founda-
tions” Proc. Second Int. Conf. SMFE, Rotterdam,
Vol. 3, pp. 88-93.

Crockett, JH.A. and RE R. Hammond (1949), “The
Dynamic Principles of Machine Foundations and
Ground” -Proc. IME (London) Vol 160,_1
pp. 512-531.



A Review of Machine Foundation Behaviour ‘ 63.

Den Hartog, J.P., (1947); « Machanical Vibrations”
Mc Graw Hill Co., New York.

Eastwood, W., (1953 a), “* Vibrations in Foundations”
The Structural Engineer, Vol. 31, March,
pp. 82-93. -

Eastwood, W., (1953 b), ¢ The Factors Which Affect the
Natural Frequency of Vibrations of Foundations
and the Effect of Vibrations on the Bearing
Power of Foundations on Sand” Proc. Third Int.
Conf. SMFE Vol. I, p. 118-122.

Ehlers, G. (1942), “ The Soil as Spring in Oscillating
Systems” Beton und Eisen, Vol. 41, pp. 197.

Fisher, J.A. and J.D., Winter (1962), “ Evaluation of

. Dynamic Soil Properties” Paper sent to ASCE.

Ford and Haddow, (1960), . Determining the Machine

Foundation Natural Frequency by Analysis The

Engineering Journal Vol. 43, No. 12.

Forhlich, O.K., (1934), - Druckverteihung in Bakigru-
nde” (Pressure Distributions in Foundations)
Springer; Vienna.

Goyal, S.C. and A. Singh, (1960), “Soil Engineering

Aspects of Design of - Machine Foundations”

Bull. Ind. Nat. Soc. Soil Mech. ‘No. 6, New
Delhi.

Heukelom, W:, (1959), “ Dynamic Stiffness of Soils and
Pavements” Paper No. VI, Syup. Vibration Tes-
ting of Roads and Runways, Amastermam. '

Heukelom, W. and C.R. Foster, (1960), “ Dynamic Tes-

L iing of Pavements” Prcc. ASCE, J. Soil Mecha-
nics and Foundation Dn., Feb., 1960:

Hseih, T.K., (1962), “ Foundation Vibrations” Proc.

~ ICE (London) Paper No. 6571, June, 1962, pp.
211-225. .

Jones, R., (1955), * A Vibration Method for Measuring
the Thickness of Concrete Road Slab Insitu”
Magazine Concrete Research 7 (20) p. 97—102.

Jones, R., (1958), ¢ Insitu Measurement of Dynamic
Properties of Soil by Vibration Methods” Geo-
technique Vol. VII, pp. 1-21.

Jones, R., (1959), * Interpretation of Surface Vibration
Measurements” Symp. Vibration Testing of Roads

LS

and Runways”” Amasterdam,

Lamb; H., (1904), “ On the Propagation of Termors
Over the Surface of Elastic Solid” Trans. Royal
Soc. (London) {A), Vol. 203, pp. 1-42.

Leet, L.D., (1950), *“ Earth Waves” Harvard University
Press.

Lorenz, H., (1934), ““ New Results obtaind from Dyna-
mic Foundation Soil Tests” Natural Research
Council of Canada Technical Translation . TT
521 (1955), )

Lorenz, H., (1953 a), “Elasticity and damping BEffects
of Osc‘ivl]ating Bodies on Soil”* Symp. on Dynanic
Testing of Soils, ASTM Sp. Tech. Pub. No. 156,
pp. 1132122, ‘

Lorenz, H., (1953 b); “ The Determination of Dynami-

‘ cal Characteristics of Soils, a Good Help in the
Calculation of Dynamically Excited Foundations”

Proc. Third Int, Conf. SMFE, Zurich, pp. 400-
408, ‘ '

Lorenz, H., (1959), “ Vibration Testing of Soils” Symp.

Vibration Testing of Roads and Runways-
Amasterdam,

Miller, G.F., and H. Pursey, (1955), *“ On the Partition
of Energy Between Flastic Waves in a Semi-In-
finite Solid” Proc. Roy. Soc. A., Vol. 233,
pp: 55-99.

Myklestad, N.O., (1956), * Fundamentals of Vibration
Analysis” McGraw Hill Book Co., 1956.

Nagraj, C.N, and H.A. Balakrishna Rao, (1959), “Stress
at a Point within a Semi-infinite Elastic Medium
Subjected to a Surface Vibratory Load” J. Indian
Roads Congress, Vol. XXIV, Part 2, Nov., 1959.

Newcomb. W.K., (1951), * Principles of Foundation
Design for Engines anrd Compressors’ Tran
ASME, Vol. 73, April, p. 307-309.

Nijboer, J.W., (1959), “ Vibration Testing of Roads”

Symp. Vibration Testing of Roads and Run-
ways, Amasterdam.

Nijboer, J. W. and C. Vander Poel, (1953), “ A Study
of Vibration Phenomena in Asphaltic Road Cons-

truction” Proc. Assoc. Asph. Pav. Tech. 22,
pp-197-231,



64

Pauw, A., (1933), « A Dynamic Analogy for Foundation
Soil Systems* Symp. on Dynamic Testing of
Soils .' ASTM - Spec. Tech. Pub. No. 156,
pp. 89-112.

Quinlan, P. M., (1953), “The Elastic Theory of Soil
.Dynamrcs * Symp. Dynamic Testing of Soil,
ASTM, Sp. Tech. Pub. No. 156, pp. 3-34:

Rausch, E., (1926-a), “ Machine Foundations’® Der
Bauingeneiur 7 (44) Oct. 1926, CBRI, Translation
‘ No. 49, Part 1.
Rausch, E., (1926-b), “Machine Foundations” Der
Bauingenieur, 7(44) Oct., 1926, CBRI, Transla-
lion No. 50 Part II.

Rausch, E., (1936), “ Hammer Foundations® Der

Bauingeneiur, 17 (33/34) Aug. 1936, pp.342-344,
CBRI Translation No. 27, May, 1961.

Rayleigh (1865), “On Waves Propogated Along the
Plane Surface of an Elastic Solid ”” Proc. London
Math. Soc., Vol. 17, p. 4.

Reissner, E., (1936), “ Stationare, = Axialeymnetrsche
durch eines Schutteinde Masse “erregte Schwin-
gunger eines Homogenen Elastischen Halbrau-
mes >’ Ingenieur Archiv, Vol. 7, Part 6,‘ Dec.
p. 381

Richart, F. E., (1953), “ Discussion on Vibrations in
Semi-Infinite Solids due to Periodic S'ﬁrface
Loading by Sung” Symp. Dynamic Testing
Qf Soils, ASTM, Sp. Tech. Pub., No. 156,
pp. 64-68. "

Richart, F. E., (1960), *“ Foundation Vibrations > Proc.
ASE., Jour. Soil Mechanics and Foundations D.v.
Aug.; pp. 1-34.

Bu]}etin of the Indian Society of Earthquake T‘echrrology

Sneddon; 1. N., (1953), « Fourier Transform » McGraw
Hill Co., New York. ‘ ,

Sung, T. Y, (1953), « Vibrations 'in Semi-Infinite
Solids due to a Periodic Surface Loading™ Symp.
Dynamic Testing of Soils, ASTM, Sp. Tech.

Pub. No. 156, pp. 35-63.

Terzaghi, K., (1943), “Theoretical Soil Mechanics” John
Willey & Sons, Inc. New York, Chap. XIX.

Timoshenko, S. P., (1937), “ Theory of Elasticity ”
Chap. XI, McGraw Hill Co., New York.

Tschebotarioff, G. P., (1951), ““Soil Mechamcs, Founda-
tions and Farth Structures ™ McGraw ‘Hill Book

~ Co.; New York, Chap. XVIII

Tschebotarroﬂ‘ G. P, (1953) ¢ Performance Records
of Engme Foundatrons” Symp. Dynamic Testing
of Soils, ASTM, Sp Tech. - Pub. No. 156,
pp. 163-168.

Tscheborarioff, G P., and E. R. Ward, (1948), “The
Resonance of Machine Foundations and Soil Co-
efficients which Affect it” Proc. Second Int.
Conf. S.M.F.E. Rotterdam, Vol. 1, pp. 309-313.

Vander Poel, C., (1951), “Dynamic Testing of Road
Construction ”” Jour. App. Cheni, 1 (7). pp. 281-
290.

Vander Poel, C., (1953), ¢ Vrbr'mon Research on Road
Construction” Symp. Dynamrc Testrng of Soils,
ASTM, Sp. Tech. Pub No. 156, pp. 174-1835.

Warburton G., (1957), “Forced Vrbratrons on an Elas-
tic Stratum* Journ. of App. Mech. Vol. 24.
pp 55-58.



COMPUTING PERIODS OF VIBRATION OF MULTISTOREYED BUILDING FRAMES

A. S. Arya*

‘ SYNOPSIS
It is emphasised in this paper that in the dynamlc

anatysis of multlsmreytd buildings, the flexibility of
- girders must be considered along with the stiffness
“columns because assuming the girders rigid may lead to
farge errors in the calculated periods of vibration. A

‘simplified ‘method is suggested for computing the natural -

periods - and the corresponding mode shapes taking the
‘girder flexibility into account.

“INTRODUCTION

Dynamic analysis of any structure subjected to im-

‘pulsive or vibrating forces reyquires the knowledge of
its stiffness and the damping characteristics.  Stiffness

-determines the natural periods of: vibration and the

corresponding mode shapes aimost exclusively since the
effect of damping on natural periods is small and negli-
.gible.
plification factors under forced vibration, The effect is
more pronounced when imposed period of vibration is
close to the-natural period, otherwise when forcing fre-
quency is considerably less or more than the natural
frequency, the effect of damping is small and negligible.
“The amplification of displacement and consequently of
forces produced in the structure depends upon the ratios
of forcing periods to the natural periods and the corres-
ponding mode- shapes. Therefore, determination of
natural periods of vibration of a structure constitutes

Damping has the influence of reducing the am-*

the most important step in the process of its dynamic

analysis.

Mutltistoreyed buildings are very complex structures
from the point of view of structural analysis especially
under horizontal - loads causing sidesway. This fact
alone has resulted in the introduction of a large number
of approximate methods of analysis for sidesway prob-

lems under static loads. Under dynamic loads the
problem is all the more complicated because thé natural
periods of the building are found to be influenced to a
great extent by the method of construction, , floor slabs,
wall panels; partitions, etc.,”which are ‘otherwise assu-
med not to contribute'to the stiffness of the building.
How far they, influence the stiffness and whether such
contribution is of a permanent nature or may be destro-
yed in the very first shock given to the building is not
known. - It has been found (1)t that for existing mul-
tistoreved buildings with steel frames, the measured
fundamental period comes close to that computed by
assuming building floors: ‘to be rigid, that isl having in-
finite moment of iﬁe’rtia as compared with the columns
But for a bare frame or if the contribution to stiffness
of filling material (which is not deéi‘gned to carry forces
due to shocks) is destroyed the stiffness is bound to de-
crease and actual girder stiffness. must be considered for
computing natural periods. Whereas assumption of rigid
girders greatly simplifies the problem of analysis and
much literature exists on this- procedure, consideration
of flexibility of girders complicates the problem because
of conscquent joint rotations. ' But this must be taken
into account since the influence of girder flexibility on
the natural periods is considerabie. For example, for
a particular 19-storey steel-frame building, the funda-
mental period was 1.3 sec. when girders were assumed
rigid hut 3.4 sec. when girder flexibility was considered(2).
Figure (1) further shows the influence of girder flexibility
on the fundamental periods of single bay multistoreyed
frames (1). In the case of actual buildings, where beams
are stiffened by the floor slabs, the ‘margin between the
two assumptions decreases considerably.

From the above discussion it follows that in dyna-
mic computations stiffness properties of beams and.

» Reader in Cwnl FEngineering, Umversxty of Roorkee, Roorkee.
1 Numbers in parentheses refer to the list of References at the end of the paper.’
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columns must be taken into account. Where a digital
computer is available, such caiculations may be done
easily. But where such a facility is not present, this
computation involves too much work. it is the aim of
this paper to present a simplified method for calculating
the fundamental period by Rayleigh’s procedure, or- all
the periods and mode shapes if desired by the flexibility
equations.
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METHOD OF ANALYSIS

It has been shown in (3). (4} and (5) that any general
multistoreyed frame can be represented by a modified
frame with single column. The stiffnesses in the single-
column frame‘ are modified in such a wav that for the
horizontal loads producing sideway of the original
frame, the modified frame could be analysed as a non-
sway frame. Thée sidesway deflections and moments in
the modified frame are thus determined in a direct man-
ner. From these, the: moients- in the original frame
are then obtained by moment distribution done on the
original frame. For determining: the time-periods and
corresponding mode shapes, the horizontal -displace-
ments are the only quantities required which can
be obtained from the modified frame itself. Therefore
" no further reference to the original frame is necessary
and hence the simplification. The modified frames
for a few cases are shown in Fig. 2. In case: (a)

a two—column symmetrical frame is shown. The

modified frame has its column twice ‘as stilf as the
individual columns of the original frame and the beams.
are twelve times as stiff as the. corresponding beams.
In this case the equivalence of the modified frame is.
“exact”, The |e~ullinu deformations — slopes and displa-
xmnts—of the modified frame will be exactly equal to
those of the original frame without, any approxlmanon.
In case (b) a frame obtained on the principle of mu]tlo
ples-is shown together with the component one-‘,‘pqy\
franes which may be assumed  to be making it. ,lft_h,c‘
aprlied hoiizontal load is proportionedv in the two com-
ronent frames in the ratlo 1:m, it is easily seen that thc
retations and dnsplaccmems of joints in the two com—
perent one-bay frames will be the some. Thus if the
two aciacent columns of the one-bay frames are com-
kired in onc. neither compatibility. nor equilibrium:is
disturbed.  Therefore, for this frame also the column
stiffness of medified frame is the sum of corresponding
colurnn. stiffnesses of the original frame and - the ‘beam
stiffress of the single column: frame is 12 times the sum
of ¢ al]y corresponding beam stiffnesses. The “equivalence
is again exact since the rotations of ‘all the Jomts at any
floor of such a frame are. exactly equal. Tn case (c) a
general frame is shown with irregular -stiffness and
nontniferm heights in different bays. Tt is well” known
that the joint rotations at any floor of this frame will'in
general be unequal:  If the average vahie of all - such
rotations at any floor is ‘considered, the general’ frame
can be represented by a single column frame stownin
Fig. 2 (e}
an aggregated stiffness of all columns i any. Storey but
the factor.with beam stiffnesses will be’ different from. 12.
A study of large number of frames (3) indicates ‘that a
factor ‘A’ may be used for'the floors' and ‘A’ ” ‘for ‘the
roof. Factors A and A’ are in general different from -2,

In this case also the single coluinn will-have

but near to it.. For certain frames their values may be
taken from Table 1.

If the bases of the coliimns are hinged, the stiﬂ'néss
of single column of the modified frame becomes: zero in.
the bottom “storey as shown in Fig. 2 {d). The modi-
fied frame in cases (c) and (d) is not exactly -equivalent
to the original frame as its joint rotations are approxima-
tely equal to the average of joint rotations at any floor
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of the original frame. Fortunately the effect -of this

approximation on the horizontal displacements of the

frame is small. Therefore, the storey displacements
and hence the periods and mode shapes may be compu-
ted with sufficient accuracy. If values of Aand A’are
assumed according to Table 1, the results are expécted
to lie within 4- 2%.of the exact values.

TABLE 1.
T)}pe of Frame Factor A Factor A’
for for
Fioors Roof
1. Symmetrical two column frames
or frames on principle of Multi-
ples 12.0 12.0
2, Frames approximately asin 1.  11.8 11.8
Irregular two  column frame,
. column ratios on any floor not
to exceed 4 to 1. 11.8 10.8
4. Irregular two column frame with
higher ratios say 10 to 1 of
column stiffnesses on any floor, 9.5 9.5
5. (a) Three column frame with
same beam stiffnesses 11.9 114
(b) Many column frame with
same beam stiffnesses © 120 11.6
6. Four column frame with same ‘
beam stiffness in outer span and
uniform in the interior spans of
all storeys. 11.4 10.5
7. General Frame with 1rregular
beam and column stiffnesses
11.5 11.5.

within ordinary limits.

For finding the moments in the single-column fra-
me, the method of moment distribution is used with the
modification that the carry over factor becomes ‘—1°

instead of + 4. Then from the end moments of the

column, the storey displacements, are determined imme-
diately. The following example will iliustrate the pro-
cedure.

E‘xamplé 1.
To determine the horizontal displacements of
frame shown in Fig. 3 (a)

Fig. 3 (b) shows the modified frame obtained by
%4kmg A and A’ equal to 11.5 as per case 7 of Table-1.
The various steps in the calculation are as follows
(Refer Fig. 3 a).

1. - Distribution factors are determmed as usual.

Factors for column ends only need be written.

2. Initial moments are obtained by multiplying the
storey shears by half of the storey heights that
is, Fhj2. Here anticlockwise moments are
taken negative.

3. Unbaldnced joint moments are distributed and
carried over as usual excepting that the carry-
over factor is" *—1".

4. Column moments are found by summing the
initial; the distributed and carry-over moments.

5. To obtain the relative storey displacements it
was shown in Ref. (5) that the relative displace-
ment /A between the two ends of. a storey may
be found from the following relation:—

Q:SA_ == (Initial end moment)— (3 X sum of distri-

Bhted toments at the ends of the storey)

=— 5" —E (3 x Dist. moments)

Fh .
B .._,__2:: . 3 la
A = 658[ 5 (3 x Dist moments)]( )
where S is the columin stiffness in the story:

,Th‘is explains the calculations of A’s through steps
(5) to (8).

9. The floorwise displacements are obtain~d by
summing up the relative storey displacements starting
from the foundations,

Fig. 3 (d) shows an alternative tabulation in case
only horizontal displaceménts are required as in t me-
period calculation. Here the distributed mements are
ommitted from writing. The carry over momeants are
Written directly since these may be obtzin.d from the
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unbalanced moments in proportion of the distribution
factors and of the same sign as the unbalanced joint
moments. The rciative storey displacements may now

be obtained from the following equation:—

6ES[ Fh +(3, 3 x Carryover momentS)] (2)

FUNDAMENTAL PERIOD

The fundamental time period of a structure may
approximately be determined most easily by -Rayleigh’s
method. In this method it is assumed that the mode
shape is proportional to the deflection curve produced
by a static load at each floor equal to mass times the
acceleration due to gravity. . When. the building vibra-
tes freely in the first mode, the horizontal displacement
Xn at any floor ‘n’ at any time ‘t’ is given by

= CXn'sin pt ‘

where Xj, is the mode shape at floor ‘n’

C is a constant depending upon stiffnesses..

p is the fundamental natural frequency of free
vibrations.

The mode shape is chosen to have the displacement
at the top level Xn equal to 1.

energy of mass my is given by,
T mn (Can)2

and the maxnmum potentlal energy is given’ by

The maximum kinetic

-mn g CXn

Summing up the kmetxc and potential energxes separately

and equating we get _

Yy (CaXo p)t = 2 mgCoXe

where Cg is the value of the constant 6btéined when
horizontal load-of 1g is considered in calculafmg static

deflections, Puttmg P = 2 @/T (where T is the funda-
mental period) and solvmg

Cg “mn Xn? ‘t} '
T =27 2
[ g Smp Xn ] ®)
“Example 2 given below illustrates the procedure of

calculating fundamental period of a bulldmg by Ra

Y-
leigh’s method.

T=2n

Example 2.

The four storeyed frame of 'Fig,'4 has ' the -rélative
stiffnesses as shown. The actual stiffness of beams is
Ko. The floor weights including weights of walls are
4wo, 4wo, 3w, and 2w, respectively. It is required to
determine its fundamental period of vibration.

T T

aem Y ‘{t N
+ L

am 3 4 Iz
‘*‘ | s ¢

4 5 e 4 3

-
r

»
e oviyw  whve e M'L'

Fig. 4.

Using vRayleig\h’»s method let us give a horizontal
acceleration of g to the floor masses. Then the horizon-
tal load applied to the frame at first floor level is

— xg = 4w,

Simil‘arly for the other ﬂdors the loads will be 4wy, 3w,
and 2wo. The deflections of floors are computed in
Fig. 5. The modifying factors A and A’ are assumed
12 and 11.6 respectively. h

Using the deflections camputed in Fig. 5, we get
the approximate mode shape given in the last line adjus-
ted. in such a way that the displacement at the topis 1.

~This gives Cg = 13.33wo/EKo

Usihg Equation 3 we get the time period

13.33ws’ 4x.3152+4x 62823 x 8552 +-2x 1T}
¢EK, - 4><.3,15+4><.628+3><.855+2><1

= 6.3 -2
;\/ EKO seconds.

TIME PERIODS AND MODE SHAPES
" To determine all the time periods and mode shapes,
the flexibility or the stiffness equations are used. In
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the present scheme, the flexibility equations are easily
derived by obtaining influence lines of horizontal displa-
cements.  Let Xyr denote the displacement of r*® floor
produced by a unit static load applied at .** floor level.
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If the building is vibrating with a freugency p, the
inertia force applied at the r" floor is m; p’xr where
xr denotes the dynamic displacement. Therefore, the
ﬂexipility equation for the n™ floor becomes,

Xn == P2 Emr Xr Xnr

By transposing
(1—p*mn Xur) Xn — p? Z mexr Xnr =0 (4)
n#r

Such equations written for all the floors of a building
give a set of homog:neous simultaneous algebraic equa-
tions in X1 Xz, X3 etC. For a possible non-zero solution,
the determinant of the coefficients of X3, X etc. must
vanish. This condition gives the characteristic equation
for obtaining values of p and hance the mode shapes.
The following example illustrates the prodedure.

Example 3.
All the periods and mode shapes for the frame of
Fig. 4 will now be determined.

To obtain the floor displacements due to unit loads,
we shall use the modified frame method. The calcula- -
tions are shown in Fig. 6. Part (a) shows the modified
frame assuming A = 12 and A’ = 11.6. The calcula-
tions for a unit load at first floor level are shown at
(b). The initial moments for this case are

~Ix 6/2 = —3.00 tm.

"The calculation of deflections follows the pattern of
Example 1, Fig. 3 (d). The final numerical values of x’s
are to be muitipiied by IJEK, and the results will be in
tonne metre units.

The computations of deflections for unit loads
applied at other floor levels are shown in Figs. 6 (c), (d)
and (e). Since deflections obey the Reciprocal Law, it
must be verified that the computed deflections are reci-
procal. Results in (b), (¢), (d) and (e) satisfy this con-
dition. Now if p is the frequency of vibration of
the building, we get the loads.
4wy 4wo 2. 3w 2 2w, )

Xys X9y — Pp°Xy and — pX
z pXy g P » g PXy g .
acting a+ the first, second, third floors and the roof res-
pectively, Hence the compatibility equation at first
floor may be written as follows :
dwo , 02453 4wy . 0346

X1 TBK, + g PXa EK, +
3w, 0.366 2w0 pix 0.37
g PR OUER, K, g PMER,

2
Let A= z’éf( . Therefore, we get for all the floors

X, ==

a1




and roof the foliowing cquations ; .
(1—0.981n) %, 1.384 x5 1.098) x3-—0.74) x4=0 6
—1.384% %, (1—2.8280) xa—2.463 x5~ 1.688A x,=0
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— 1464N%; —3.284N%, +(1—3.66N)xa— 2.706X%,=0 (iif)
 —1.4800%;—3.376 A%, —4.059\x3+(1 — 4.1462) 2,=0
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Multiplying eqnatioﬁ (ili) by my/m; =3/4 and equa-
tion (iv) by m,/m;=1/2, we shall see that the equations
become symmetrical abotit the main diagonal. Thus re-
arrainging the equations we get
—(1—0.9817)x+1.3840x,4-1.098 x5 +0.74Nx, =0
1.3842%,—(1—2.8282) X, +2.463Ax3+ 1.688A%, =0 1
1 0982%, +2.463 0K, (0.75—2.75\ )8y +2.030%, =0 f )
0.74 7%, -+ 1.688Axg+ 2.030x3— (0.5—2.0730) x,=0 J

The above equations are now in the standard form "~

for determining the eigen values and the eigen modes.
The equations are homogeneohs, simultaneous algebraic
equations and for a possible non-zero solution, the
determinant of the coefficients of x’s must be zero. This

gives a fourth degree characteristic equation in A the .

four roots of which are thz2 eigen values. Knowing the

solving for x,, X3 and x, say by taking x, equal to I,

- This procedure becomes involved as number -of degrees

of freedom increases. In that case, some numerical
method must be used. Many such methods, such as
Rayleigh quotient method, Holzer’s: procedure, ploting
value of determinant against assumed A values, method
of intensification or successive approximations, etc. are
available., In any case, the procedure for obtaining
periods and modes after obtaining the compatibility

. equations is the same as used when the floors are assu-

med rigid and does not involve any new principles. As
such it is left out of consideration here. Just for com-
parison, the following table gives the time periods and
modes for the frame under consideration as computed
from above wherein actual girder flexiblility has been
considered and as calculated on the assumption of rigid

eigen values the corresponding modes may the deter- floors.
mined by substituting for A in the obove equations and
TABLE ‘ g
Rayleighs’ method Actual Stiffnesses Girders taken Rigid
' 2nd “3rd  4th Ist  2nd ~ 3rd = 4th
Ist mode mode mode mode mode mode mode  mode mode
Period X -E"% sec. » 63 631 222 123 0.687| 3.44 156 096 0715
. .
" Mode  x, | 318 373 —3.06 090 —019 | 2.67 —2.44 ° 0.66 —0.23
Shape. = X, k 272 2.96 033 0.72 010} 2.06 024 —1.25 +0.99
B 7 2.00 2,12 182 —1.90 —0.39| 159 107  0.07 —1.39
X1 1.00 100 1.00 1.00| 100 1.00 1.00 1.00
CONCLUSION No. EM 4 Aug. 1963

Time periods and mode shapes of multistoreyed
buildings are appreciably different when | fiexibility of
flour is neglected by assuming them rigid as compared
with columns and when it is taken into account. Hence

actual stiffness of members should be considered for

dynamic calcutations. Such computations may be carrjed
out with sufficient accuracy without spending too much
Jabour and time by using the method suggested in the
paper. =
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LIST OF SEISMOLOGICAL OBSERVATORIES IN INDIA
WITH THEIR INSTRUMENTAL EQUIPMENT

A. N. Tandon *

Station Instruments in operation
1. Bokaro 2 Milne-Shaw seismographs
(23° 50''N, 85° 48"°E) 2 Wood-Anderson type torsion séismographs
: , 1 Sprengnether microseismograph
2. Bombay (Colaba) 2 Milne-Shaw Seismographs
(18° 54'N, 72°49'E) 1 Sprengnether microseismograph
1 Benioff vertical seismograph (short-period)
3. Calcutta 1 Milne-Shaw seismograph
(22° 32N, 88° 22" :E) 1 Wood-Anderson type torsion seismograph’
2 Omori-Ewing seismographs
4. Chatra (Nepal) 1 Benioff seismograph (Short-period vertical)
(26° 50’ N, 87° 10’ E) 2 Milne-Shaw seismographs
2 Wood-Anderson type torsionseismographs
1 Wenner three-component accelerograph
5, Dehra Din 2 Wood-Anderson type torsiofi‘seismographs
(30° 19' N, 78° 02' E) 2 Milne-Shaw seismographs .
1 Short-period Wilson-Lamison type vertical seismo-
graph
6. Delhi 1 Short-period sprengnether microseismograph

(28° 41 N, 77° 12' E) 2 Short-period Wood-Anderson horizontal seismograph
1 Three component short period Benioff seismograph
1 Three component long period Press-Ewing Seismo-

graph.

7. Howrah (Govt. of West Bengal) 1 Three component Benioff seismograph (short period)

(22° 33' N, 88° 19'E)-
8. Hyderadad (Andhra Govt.) 2 Milne-Shaw seismographs
(17° 26’ N, 72° 27 E)

9. Kodaikanal 1 Milne-Shaw seismograph

(10° 14’ N, 77° 28’ E)

*Director (seismology), Meteorological Observatory, New Delhi,
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10,

11,

12.

13,

14.

15.

16.
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Madras
(13° 00" N, 80° 11" E}

Poona

(18° 32’ N, 73° 51’ E)

Port Blair
(11° 40" N, 92° 43’ E)

Sehore
(23° 10’ N, 77° 05’ E)

Shillong. - ~
(25° 34’ N, 91° 53’ E)

Tocklai (Indian Tea Association)
(26° 45N, 94° 46’ E)

Visakhapatnam (Andhra University) -

(17°53' N, 83° 18’ E)

1 Sprengnether microseismograph

1 Sprengnether vertical seismograph (short period)
1 Wood-Anderson type torsion seismograph
Milne-Shaw seismograph

e

1 Milne-Shaw sejsmograph

2 Wood-Anderson type torsion seismographs

1 Sprengnether microseismograph

1 Benioff short-period vertical seismograph (Installed iz
January, 1963).

2 Wood-Anderson type torsion seismographs

1 Three component short-period Benioff Seismographs.
1 Three component long period Press-Ewing Seismo-
graph.

1 Wood-Anderson type torsion seismograph,

1 Sprengnether horizontal microseismograph
2 Wood-Anderson type torsion seismographs.



BADGAM EARTHQUAKE OF SEPTEMBER 2, 1963

L. S. Srivastava*, S. E. Hasan*, R. S. Mithal*,
A. R. Chandrasekaran{ and Jai Krishnat

INTRODUCTION

The valley of Kashmir was vigorously shaken by an
earthquake which occured at about 7.10 brs, (01 :34: 31

G.M.T.) on September 2, 1963. The shock had a mag-

nitude of 5.5 and was felt over an area of approximately
100,000 square kilometres including practically the entire
Kashmir valley.

About sixty-five persons were killed and many
others were injured as a rcsult of this ‘earthquake.
More than 2000 houses mostly of mud construction,
collapsed and had to be completely demolished while
about 5000 houses suffered par‘tiél damage. The villages
worst affected by this earthquake are situated in Badgam
Tehsil” (Fig. 1) about 15 to 30 kilometres from
Srinagar, the capital of Jammu: Jand Kashmir State of
India.

Considering the size of the shock and the nature of
construction in the area, the damage would have been
even more extensive, if the shock had occurred during
night and had its focus somewhat shallow. The "depth
of focus for this shock ~was about 44 kilometres and
hence the shaking was less intense but was felt over
quite a large area causing general fright to the people.

HISTORY OF THE REGION

_ During the past century this region has been sub-
jected to considerable seismic activity. Appendix I
(Gutenberg and Richter, 1954) lists most of the large
and important earthquakes that have occurred after
1904 and have caused considerable damage in Kashmir
during the first half of this century. A big shock which
has been well documented occurred on the 30th May,
1885 with its epicentré 20 kilometres west of Srinagar

not far from the present shock. About 3000 persons
lost their lives in this earthquake. This is a large num-
ber considering that the valley is thinly populated
Fig. 4 shows the meisoseismal area and first and second

. isoseismals of Jones (1885), which approximately corres-

pond to intensities IX and X on the MM scale.

SEISMOLOGICAL DATA _

~ The seismological data for thjs earthquake as recor-
ded by the India Metcorology Department at their
observatories is given below :-—

Approximate| Time of Time of
Statio n distance from | arrival of ‘P’ | arrival of
‘ epicentre in phase in ‘S? phase in
kilometres G.M.T. G.M.T.
h m s h m s_
Dehra Dun 510 01 35 41,01 36 33
New Delhi 625 01 35 55|01 36 59
Bombay 1650 01 38 07|01 41 07
Poona 1680 01 38 10|01 41 11
Madras 2325 01 39 1601 43 11
Origin time 01 h. 34 m; 31.6s. G.M.T. of
September 2,
1963
Epicentre Lat. 33.8° North
Long. 74.7° East
Magnitude 5.5 (Delhi)
Depth : about 44 kms,

GEOLOGICAL SETTING
The “Vale of Kashmir® a saucer-shaped yalley with -

* Department of geology, University of Roorkee

% School of Research and Training in Earthquake Enginrering, University of Roorkee.
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a length of about 135 kilometres, a breadth of about

. 40 kilometres, situated at a mean height of 1500 metres
above sea level, lies snugly between the Pir Panjal and
the Great Himalayan ranges. Table 1, shows the general
geological succession of rocks in Kashmir.

The Panjal range consists of high mountains (3600-
4500 metres) cut into by deep ravines and precipitous
defiles. 'In the Pir Panjal, a singularly well defined
range of mountains éxtending from the Kaghan Valley

to beyond the Ravi Valley, the mountains are composed

of highly compressed and altered rocks of various ages

from the Purana and Carboniferous to Eocene, and the

axial zone consists of Permo—Carboniferous formations

(Fig. 2). The range forming the north-eastern border

of the valley consists of peaks, from 4,500 to 6,000

metres in height. These Great Himalayan ranges are’
composed of formations similar to those of the Pir

Panjal (Fig. 2).

TABLE 1.

The table below gives the general succession of rocks in Kashmir (Modified after Wadia, 1957)

Age Formations

| Typical localities
!

Recent & Pleistocene

River terraces, moraines, Karewas (Upper)

River valleys, alluvia

Pliocene Lower Karewas, Siwaliks Foot hills

Miocens Murree series Murree hills

Eocene Nummulites, Laki, Raﬁikot series Pir Panjal

Cretaceous Chikkim series, Spiti shales Hazara and Ladakh

Jurassic Spiti shales, Kioto limestone Banihal, Amarnath

Triassic Productus beds, Triassic shales with limestone and Lidar valley, Pir Panjal
dolomites, Panjal trap '

Permian Zewan beds, Productus shales Pir Panjal and Lider valley

Carboniferous Panjal lavas, slates and agglomerates, Lower Pir Panjal Range, ‘Zanskar Range
Gondwanas - Gangamopteris beds Banihal

Devonian Muth Quartzite Lidar anticline

Silurian Sandy shales, shaly sandstones and impure yellow Poonch
limestone

Ordovician Quartzites, Limestones Hemdawar

Cambrian Cambrian of Hemdawar Hemdawar

Archean Dogra slates, Salkhala series, Gneisses and granu- Cores of Dhauladhar, Zanskar

lites

~
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Siwalik (Upper Tertiary)

Salkhala Series (Pre-Cambrian)

Eocene and Cretaceous.

Triassic, ’Permian, Carboniferous.
Devonian, Silurian, Cambrian,

Dogra Slates with unfossiliferous Paleozoic.
Murree (Middle Tertiary)

Gneiss and granite.

Figure 2.—Geological Sketch map of the Kashmir Valley (After D.N. Wadia). |

The intervening ‘Vale of Kashmir,” between the
above ranges is filled up with the Karewa formations
of Pliestocene to Recent age, which were formed in a
sinking lake between two slowly rising mountains on
either side; The Karewa beds, 1500 metres in thickness,
consist of fine grained sand, loam, sandy-clay and gra-
velly conglomerate, with few lignite horizons. The
Karewas, forming flat topped hillecks, plateaus, and
terraces, are mostly horizontal or occur with low dips
of 2° to 5°.  On the flanks of Pir Panjal, where they are
found at an elevation of about 3450 metres, these rocks
are tilted and their dips vary from 2° to 20° away from
the mountains. Dips of over 40° with some folding
have also been reported recently.

As indicated above the ‘Vale of Kashmir’ has deve-
loped from a sinking lake between two slowly rising
mountains. The big lake, in which the Karewa beds
were laid is considered to have been formed by a barrier
which was a spur of the mountains between Baramula
and Rampur. This divide represents a fault scarp on
the Kashmir side and the ancestral Jhelum cut back
through this ridge and drained the lake and finally cap-
tured what now forms the upper Jhelum, which was
originally part of the river Chenab (Krishnan, 1956),

The presence of the river deposits at heights of 360 to

420 metres from the present bed level of Jhelum on this
spur, and the Karewa beds on the flanks of Pir Panjal
at an elevation of 3450 metres indicate that the valley
has been subjected to vertical displacements from the
time of uplift of the Pir Panjal upto. the Present time.
The Kashmir Vale thus appears to be a tectonic depres-
sion similar to the Gango - Brahamputra region (Mithal
and Srivastava, 1959). The present drainage over the
Karewa formations and the trend of the escarpments in
the vicinity of Badgam (Fig. 1) both indicate a possible
existence of criss cross faults in the area. Fig. 3 shows

the rose diagram of the trend of the escarpments and

e FREQUENCY

Figure 3.—Rose Diagram Showing Predomi-
nant Trends of main Streams Flowing on
Karewnas and the Predominant Trends of Steep
Escarpments in the Meisoseismel area of the
2ad Sept. 1963, Badgam Earthquake
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the main streams flowing over the Karewa formations.
As the drainage pattern of a continental region is con-
trolled to a large extent, by the tectonic alignments of
the formations of the area, the predominant trends
N.N:W. and N.E. of the rose diagram indicate the exis-
tence of certain’ tectomc lineaments in . these directions,
which had probably controiled the angular drainage
pattern of the area.

The Kashmir valley, thus, appears to be a subsided
block with criss cross of faults along N.E. and N,N.W.
directions. - These faults appear to be still active and
are responsible for the occasional earthquake shocks in
the area. This is a tentative view of the authors and a

detailed study of the dramdge pattern from zrial photo: -

graphs, and geological mappmg of the area, supported

by géophiysical mvesngatxous will reveal the tectonics of

the, regxon. ‘

INTENSITIES

Numeric-;ll ratings of intensities during the Badgam
earthquake as given in fig. 4; are based on the modificd
Mercalli Intensity Scale (modified version, Richter, 1958)
as applied to observed effects. Data on effects were
obtained from reports, field survey and . questionnaire
card (Appendlx Iy coverage. The results of the ob-
served ‘effects are summarised in figure 4, where the
Kashmir valley has ‘)een divided into zones- by isoseis-
mal lines. Max1mum mtenemv based on vibration effects
during the earthquake _dld not exceed' a weak eight
(VIID). Howe"ver, thé_inténsiﬁes as indicated by some
secondary effects of landstides at few places are of higher
ratings upto IX. But such ratings are very - local and
even a few feet away ‘the nntensmes are much lower and,
therefore, these have not been taken into consideration
in arriving at the different ratings of the isoseismals.

DAMAGE TO BUILDINGS

No major structures existed in the epicentral area,
Most of them are of residential type—single, double or
three storeyed buildings. They are predominantly of
mud or lime masonry construction. The material used
in the mud houses are blocks of dried mud moulded in-

situ, each block measuring in length a metre or more -

and about half a metre or more thick. Pillars made of

»

sun-dried or burnt bricks in mud mortar support the

roof, and such blocks are used as filler walls. Almost
in all houses, a gable ended roof, generally thatched,
rests on pillars. The mud houses in the epicentral area
completely collapsed. Figures 5a and 5b show such
examples. Figure 6 shows damage to a mosque. This is a
double storeyed structure with timber frames and brick-
in-mind filler walls. There is a relative movement of the
top storey with respeet to the bottom storey and the: filler
walls have given way. Figure 7 indicates a structure
made almost fully of timber. It did not collapse,
afthough it got out of plumb and distorted.

The brick mascnry houses existing in the area,
suffered considerably less damage than mud houses,
The walls of such houses consist of two 12 cm. thick
brick shutterings with Tubble, broken bricks and mud
-filled in between them, with total thickness of about
half a metre. In such buildings the roof thus rests on
12 cm. thick shuttering walls. - Such walls during the
earthquake failed by buckiing and warping (Fig. 8),
which caused collapse. of the upper portions and roofs
of the houses.

In the town of Badgam, in addition to houses,
there are a court building, a dispensary, a schoo} und
other community buildings. Most of these community
buildings have been recently built, They were essentia-
Iy made of random rubble ﬁlasonry of brick construc-
tion in mud or lime mortar. The jambs and corners
were supposed to have been built in lime mortar.  This
mortar, however, was of very poor lime, Figures %a
and 9b show damage to the court building. The vertical
crack at the junctibn of -the side wall has probably re-
suited from the horizontal bending of the side due to
the earthquake jerk helped by small settlement of the
corner. Other cracks were typically shear cracks. Figure
10 shows cracking on the floor due to vertical accelera-
tion. This should beexpected at a site so close to the
epicentre,
lintel level due to imperfect bond between the linte] and

Figure 11 shows shear movement at the

the wall.  Figure 12 shows a collape of an interior wall
which apnears to have been loosely packed in rubble.
Figure 13 shows cracking of chinneys cven though they
were built in good lim: mortar, and emphasises the
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Fig. 5.(a) —Collapse of mud houses in
y Kolabug village.

Fig. 5 (b) —Collapse
of mud wall and
overtopping of mud
block - in . Kolabug
Village;




Fig. 7—New, centre of timber construction
at Kolabug which suffered very little
demage. '

Fig 9 (a)—Court Building, at Badgam with crack
in Pont wall. R o

' Fig. 8—Buckling of ““brick shuttering™ at first floor of
a brick masonry house at Kolabug. } .
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Fig, 10u—Crai:king' and Settlement - of
the corut at Building, Badgam.

Fig. 9 (b)—Cracks along the juncli'onv ofiche e
front and side wall of the

Court Bﬁilding at s
1 - Badgam. ‘ ’ ‘

Fig. 11--Crack at lintel in Dispensary at Fig. 12—Collap3e of interior wall of the
Badgam. ‘ v office of the Maib Tehsildar, Badgam,
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Fig. 13—Cracking of chimneys of thé Dispen.
sary at Badgam,

Fig. 14—A well constructed house near court
Building, Badgam which suffered no damage.

T
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importance of either omitting the cantilever projections
or anchoring them suitably into the roofs with adequate
reinforcement to take the horizontal forces. Figure 14
shows a house made of diagonally braced timber frames
with masonry fillers which had absolutely ne damage.
This structure is located very close to the structures
"shown in Figures 9 to 13. This used to be the normal
‘construction in the past.

Damage to structures .in the city of Srinagar has
.not been severe. Some buildings had cracks in filler
walls, some floors sunk, and in some others only the
plaster had fallen off at places. In the city, the construc-
tion is generally of better quality than that described
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Figure 15.—Slump in Valley East of Chun
Village. There is a “gbol” (2 feet open un-
lined water channel) at ‘the base of the
slope. '

earlier, Poor construction would have been more

severely damaged. No building constructed in cement .

mortar was affected. One of the other reasons of less
damage was the depth of focus (44 kms.) of the shock.
The waves passing through the soft alluvium lost bulk
of theirenergy. ’
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Land Slides and Fissuring :

No large scale fissuring of the ground or- landslides

~occurred during the earthquake. However, isolated fai»

lures of potentially unstable slopes were noted by the

~authors in the area, The landslides in the valley east of

Chun village occured in greenish buff silty sands with
development of ‘cracks. (Fig. 15) upto two inches wide.
A slide was also noted in a small area of 10 metres by
350 metres in fullv saturated buff coloured silty sand
northeast of Arampura (Fig. 16). A retaining wall
(Fig. 17) made of rubble stone in lime-sand mortar colla-
psed in Dragam. All these failures indicate that even
a small earthquake shock can be disastrous for the

stability of poorly designed retaining walls

~and steep slopes.

BUILDING CONSTRUCTION IN THE
REGION

The older structures constituted of com-
pacted earth or brick construction duly rein-
forced by timber framing. Provision of the
horizontal timber members at different levels
and also diagona) members in walls was con-
sidered as typical Kashmir construction in
the old days. The earthquakes inthe past
have shaken such houses but were not able
to cause collapse because of the timber fra-
ming. Some of the houses have existed for
inbr_e than a -hundred years with some of the
walls - .out of plumb but still intact due to
the reinforcement thus provided. This practice
has, somehow, gone out of use recently
because of the fact that timber prices have

gone up considerably and it is expensive to provide
timber framing. Further if, to compensate the expense
on timber framings, the wall thickness is small, the severe
winter that this valley experiences for nearly six months
does not leave such houses comfortable. Thus, to
balance the cost, thicker walls without timber framing
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have become more common.
te the new buildings is heavy compared with the old
buildings in the same locality. This is a problem which
is governed by economic considrations but it is generally
understood in the area that timber framing or rein-
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Figure 16.—Slide North East of Arampura. The Soil Was

fully Saturated due to Seapage from the “ Gool.”

9 3% WOreer

Figure 17.~Failure of Rubble Stone Retaining
Wall at Dragam. The Back Fill was fully Satu-
rated due to Seepage from the ‘Gool”

forcing the walls with steel would be desirable from the ‘

Consequently the damage
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point of earthquake resistance of buildings.

RECOMMENDATIONS FOR FUTURE
CONSTRUCTION

It is possible to strengthen each of the categories of
construction so that they could with-
stand the lateral forces better than

N at It is,

present. not

of course,
] possible to have the same degree of
lateral resistance in all the types of
construction for a similar percentage-
increase in costs. The recommendations
contained here aim at providing the best
return in terms of additional resistance
against earthquake force for more Of
less the same precentage increase of

cost,

In mud construction, it is recom-

mended. that split bamboo jafris or
290

_3FEET be use d as

timber reinforcement.
The use of compacted earth at optimuin
moisture content will improve its resis-
tance. Considerable improvement is possible if a.
bituminous material is used to cover the plinth course
so that water does not seep into the wall. A water

soaked mud wall has no strength at all.

A composite construction with corners and jambs
made of brickwork in good lime mortar or 1:6 cement
mortar will greatly strengthen the mud houses and
prevent their collapse in a moderate size shock. The
bamBoo jafrior timber frame should, of course, be retai-
ned even if the corners and jambs are made in brick-
work. Each of these steps will increase the cost to a
certain extent, but much more than that is the question

of this information being available to the villagers. If
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Badgam Earthquake of September 2, 1963 o1

these devices are known, they will gradually be used,
cutting down losses in future shocks.

If brick costruction in cement mortar is adopted,

PRINCPAL ISOSEISMALS AND EPICENTRES OF THE
IMPORTANT EARTHQUAKES FELT IN KASHMIR
) (AFTER HAZRA AND RAINA)
o 70 75
~J
35

If the lintels over doors and
windows are extended round the whole structure as a
band with the same reinforcement as in the lintel throus
ghout even without extending - concrete and embedding
steel in brickwork only, the building gets framed with

' resistance greatly.

the vertical steel at corners
and jambs, Such construc-
tion will have resistance
very similar to that of a
0 ‘ reinforced concréte frame
and will stand even strong

VALLEY

earthquakes. In areas where
earthquakes are frequent
this would suggest a very vs-
eful form of construction
short of a steel frame cons-
truction; This type of rein-
forced brick construction
can be achieved within 10 to
129, of the cost of a brick
building.

If a structure has ‘more
than one storey, then the

ol o S reinforcement in the corner
\ gAS of the lower storey should
* E e be extended through the
. upper storeys also.
o LEGEND .

ISOSEISMAL NO

9 _VERY STRONG SLIGHT 1O MODERATE DAMAGE’
TO0 POORLY BUNT STRUCTURES

& _DESTRUCTIVE D&MAGE CONSIDERABLE iN
ORUINARY BUILDINGS IN PARTIAL COLLAPSE

§ .. DEVASTATING DAMAGE OREAT IN SUBSTAMTIAL *

BUILDINGS WITH PARTIAL COLLAPSE CONSPECUCUS
GROUND CRACKS

_ Figure 18.—Principal Isoseismals and Epicentres of the important

Earthquakes felt in Kashmir Valley,

it is recommended that at least 1: 6 cement mortar be
used. Mortars poorer than1:6 cement mortar have
their strength reduced rapidly with the decrease of
cement content. In addition, steel reinforcement in
jambs and corners in the vertical direction adds to the

ISOSEISMAL X

Wherever possible, the
old Kashmir type construc-

x

ISOSEISMAL VIi o—o— -
ISOSEISMAL VIt ——e——e— tion may not be discarded:
If a structure is made of
EPICENTRAL INDEX . ‘
—— Reinforced concrete or steel
AGNITUDE 75 T0 8 ;
M , frame construction, a proper
Fc MAGNITUDE 70 TO75

allowance could be made
for lateral forces. This
would, however, be very
expensive compared with
reinforced brick cornstructions

MAGNITUDE BELOW 7

Seismicity of the Area:

Kashmir valley is one of the active seismic zones of
India. Fig. 18 shows the intensities of the important large
earthquakes that have affected the valley. The maxi-
mum intensity of X on the M.M. scale have been noied
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in the past and considerable loss of life and property
Las taken place. Tectonic movements are still active
in the area, and care should be exercised in the design of
structures. If the recommendations included in this
paper are adopted, damage in future shocks will be cut
down considerably.
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APPENDIX " I

Max.
Time Approximate: Richter ocus Intensity
Date (G.M.T.) Epicentre Magnitude Depth of f M/M Scale

1. April 4, 1905 00:56:00 33N, 76 E 8.00 Shallow shock X

2. April 13, 1907 17:57:03 36 1/2N, 70 1/2E 7+ Large intermediate shock  VIII
3. Qct. 21 1907 (4:23:06 38 N,69E 8.00 Shallow shock X

4. Oct. 23,1908 20:14.01 36 1/2N 70 1)2E 7.00 Large intermediate shock  VIII
5. Oct. 24, 1908 21:16:06 36 1/2N 70 1/2E 7.60 . Vil
6. July 7, 1909 21:37:50 36 1/2N 70 1/2E 7.15 . VHI
7. Feb, 18, 1911 18:41:03 40N, 73E 7.75 Shallow shock IX

8, July 4, 1911 13:33:26 36N, 701,2E 7.60 Large intermediate shock  IX

9. April21, 1917 00:49:49 37N, 70 1/2E 7.00 - Vil
10. Nov. 15, 1921 20:36:38 56 1/2N, 70 1/2E 7.75 " vl
11. Dec. 6, 1922 13:55:36 36 1/2N, 70 1/2E 7.5- ” J vill
12. Oct. 13, 1924 16:17:45 36 N, 70 1/2E 7.30 e Vill
13. Feb. 1, 1929 17:14:26 36 1/2N, 70 1/2E 7.10 . vl
i4. Nov. 14,.1937 10:58:12  361/2N, 70 1/2E 7.20 . v
15. Feb. 28, 1943 12:54:33 36 1/2 N, 70 1/2E 7.00 o vl
16. Sept. 27, 1944 16:25:02 39N, 7312 E 7.00 Shallow shock viil
17.. Nov. 2, 1946 18:28:25 41 1/2N, 72 1)2E 7.60 Large intermediate shock Vil
18. March 4, 1949 10:19:25 36N, 70 1/2E 7.50 V11l
19, July 10, 1949 03:53:36 39N, 70 1;2E 7.60 VI




