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BEAM VIBRATIONS WITH CENTRALLY ATTACHED MASS

Y. C. Das*, Member and R. S. Deshmukh**

INTRODUCTION

Frequencies of beams with attached mass are quite often needed to
study the behaviour of structural component in a structural system. Vibrations of beams
carrying mass having moment of inertia have been studied in recent years by several authors
(1, 2, 3). In all these cases, effects of rotary inertia and shear deformation of the beam on
the frequencies of the beam-mass system are neglected. It is well known that classical Euler-
Bernoulli theory is inadequate for the study of higher modes of the beam as well for the
modes of beam for which cross-sectional dimensions are not small compared to their length
between nodal sections.

The aim of this paper is to study the vibrations of a beam with central attached mass
having a finite momeént of inertia, including the effects of rotary inertia and shear deforma-
tion of the beam. Due to symmetry of boundary conditions, and the central location of
the mass, two types of modes, viz. symmetric and asymmetric, exist. By using this property,
only half of the beam is considered to derive the frequency equations. In case of symme-

- tric modes, there is only translatory displacement of the attached mass in transverse direction,
and in case of asymmetric modes, there is only rotation of the attached mass. These properties
are used in setting up the proper conditions at the centre of the beam. The general charac-
teristic equations of the beam mass systems are highly transcendental in nature and are
solved by the help of a digital computer to get the first two frequencies,

This problem has a lot of bearing on practical situations A machine resting on a deep
beam or the wings-par section of an aircraft may be idealised to one of the cases in this

paper.
ANALYSIS OF THE PROBLEM

The differential equations that govern the total deflection y (x, t) and the bending
slope ¢ (x, t) of a beam vibrating freely are
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Here, shear slope b (x t) = % — ¢

bending moment, M (x, t) =—EI == iig

oX
shear foree, . Q (x, 1) =kGA ( gy 5) -
For the sxmp]est conﬁguratlons the boundary condmons are the following :"
Hinged end : 'y = 0; f’l—ll =0 \
Sx

Clamped_end : y =0; ¢ ——;0

. S _o. % _
Freeend : Bx—l’Sx vl/:_-O

Ehmmatmg Y and y from equations’ (l), the followmg two uncoupled equatlons iny
and ¢ are obtained
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Let us take the solutions of equations (1) and (2) in the form
y(x,t)="7(x)elpt }

P (x,t) = ¢ (x)elet (3)
Substxtuﬁng equatxons (3) into (1) and ¢2) and eliminating time t, we obtain, |
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In the above equations prime indicates dernvatxve with respect to § = x/L. The
dimensionless parameter b is related to natural frequencies of the beam and r and s are
measures of the effects of rotary inertia and shear deformations respectively.

There are two sets of solutions of equations (4) and (6). They are,
Case (1) : when . [(r?—s?) 4 4/b2]/2 > (r24sd)- o '
' Y= C,coshba'-—|—C28mhbag+CacosbﬂE,+C smbpg - |
$ = CSinhba g + Chcoshbag + Cysinbpi + C'cos bB } )
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where o =___1____[{ '(v r2—s?9)2 - 4/b2 /2 — (1242 ):)1/2

1
_\_/7_[:{(,2 s? )2 4 4/b2 }1/2 + ( r2+sz ):' 2
Case (2) - when [ (r2—s?)? 4 4/b?]V/2 < (r24s?)
Y=C,cosba" £ +iC,sinba"§ 4 C;cosbBg + Cusinbpg }
y=1Csinba’ £+ C,sinbad £+C’3 sm bpg 4+ CycosbBE

’

where ad = —1ia

o (6):

Only one-half of the constants in equations (5) and (6) are independent, - They are
related by equations (4) as follows : .

¢/ =2 . L ¢ )

c, =—B_ “’2\:’52 C, | |
¢ = —p - 626—82 . Cy l> 0
c, =% B’gsz .C,

FREQUENCY EQUATIONS

The application of appropriate boundary condmons and contmu:ty conditions at the
centre, equations (5)or (6) will give four homogeneous algebraic equatlons for: four
constants C, to C,. The non-trivial solution will give transcendental equatlon to calculate
the natural frequencies. :

Since the boundary condmons and the location of the mass are symmetric, and if we

consider the symmetric and anti-symmetric modes separately, we ¢an consider half of the
beam as follows :

Case (1) : Simply supported beam with central mass.
(a) Symmetric Modes : _
The boundary and continuity conditions for the beam are :

at x=0" y=20
& _
- Bx 0
at x=1L1)2 g =0
M 8y . o
Q= kGA -5 8—[7 ®)
where M = mass of thc attached mass :
Satisfying these conditions, will lead to frequency equation .

(14y) =2 2<Bta ——acian'hpzi‘) O

for [ (12—st)? + 462 > (ri4s?)



92 Bulletin of the Indian Society of Earthquake Technology

(1+%) = (Btn-—+a l_,tan——-) ' (10

for ‘HrL4%L+4w”W2<(ﬁ+§)

B‘Z — rz — a2+r2
a2+82 aa_i_sz .

where =

(b) Asymmetric Modes :

The boundary and continuity conditions for the beam

~at X = 09 y = 0
¢ .
§x =0
at x=1L1/2, y=0
. B¢ B 8“’¢«
M, = Elgx 2 50 an
where B = moment of inertia of the attached mass
Frequeney equation in this case will be,
' 4B .b /1 be b8 1
H | (1+§)=E_L_2._§(~coth7 5 oot 3 l
for " [(r2—s%)® + 4/b%]}/2 > (r2+s?) I
4B ba’ bs r (12)
| (1+;) = s b/8 (— l/a cot 5 — L/ cot 7) |: ‘
for [(rS_SE)Z + 4/b2]1/2 < (vrz,*_sz) J
Case (2) : Clamped beam with central mass
(a) Symmetric Modes
The boundary and continuity conditions are
at x=0 y=0, a/u =0
at x=1LJ2
' Sy M &%y
SENCER T
Q=k GA (] -y 7 o 4 a3
These conditions will lead to the frequency equatlon :
l . ba ﬁ bg
B(l+§)[smh2 cos -~ 4 AEcosh—z- sm7
b ba bp . b .  ba
3 |:2 AL (1 —cosh = cos —2-) + ( 1—)2g? ) sin - sin h 7] (14)

for [(P—s2)? + 4677 > (12 + o)
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1 . ba’ BB, ba’ . bp’ |
8 (1 +~§)I: sin - cos 2——[— A G eos -~ sin 7}
M b’ , o ' ,.
=0 .7 ‘:2 A" ¢ {(1—cosba’[2 cos bB/2)-+(14A"L?) sin bTa sin b—zﬁ] (15)
for [(r2—s?)® + 4/b%P/2 < (1® + s%)

(b; Asymmetric modes
In this case the boundary and continuity conditions are :

at x =0 y=0 and ¢ =20
at x =12 y=0
Mg = — v 22
o Bl = 7 500
The corresponding frequency equations are : a
b . .ba 1 . bp . be
(e +20¢ {}) (cos 5 Smhf — 5 sin - cosh —2—)
4B b ba b . ,ba . b
= g 2eosh 5 cos % 24 (% — 1aD) sinh Fsin 7 | ()
for [(r2—s2)% + 4/b2]12 >  (r¥+s?) -
’ ’ 3 l_)_a'_l bB, 1 ba' . bB
(0’ +2A QB)[sm 5 cosT—l—)\T.cos 5 sin —-2] )
M b ba’ b , 1 . ba’ . bB”
=03 |:2——2 Cos - €OS & —I—( NE 4+ :\-,z) sin —5- sin —2—] 17
when [(r*—=s?)® +4/b° /2 < (1 + 87%)

NUMERICAL SOLUTION OF THE FREQUENCY EQUATIONS D

For a given beam with r and s known the by (i = 1, 2, 3......) can be formed from
the appropriate frequency equations and the corresponding p; are then calculated from the
equation : . ' '

Elg
AL*

The frequency equations are highly transcendental. In order to solve them a
frequency chart is obtained from the solution of these trancendental frequency equations - )
for various combinations of rand s and various boundary conditions. It is assumed
that k = 2/3 and E/G = 8/3. Hence E/kG = 4 and s = 2r. 1 is assumed to vary from
0 to 0'10 and M/m and 4B/mL? are taken from 0.00 to 100 and 0.00 to 10.00 respectively.

The frequency equations are solved on 1IBM 1620 computer. The solutions for the
first two symmetric and antisymmetric modes are given. The results are given in figures 1to8.

pit = by
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FSEUDO EARTHQUAKES DERIVED FROM RECORDED ACCELEROGRAMS
Brijesh Chandra* Member and A. R. Chandrasekaran** Member

INTRODUCTION

Accelerogram forms an important part of data in computing structural response due
to an earthquake. For design of structures in seismic zones, the accelerogram of a probable
future shock needs to be predicted  This is a very difficult task as instrumental data for a
particular site would normally not be available. A designer would therefore like to make
an estimate of accelerogram characteristics based on experience in similar condiijons else-
where. Methods of generating artificial earthquakes have been developed ¢ for use in
various situations. Pseudo earthquakes cin also be derjved from recorded earthquakes. One
such attempt® was made by shuffling acceleration ordinates of the accelerogram. This changed
the time of occurence of the impulses while the frequency contents of the accelerogram
were not much altered. Response spectra obtained for such shuffled accelerogram indicated
that the spectral quantities are not much affected by this process. Such modifications,
therefore, do not seem to provide a variety of data to be used in different situations.

It has been observed? that as the distance from epicentre increases, the accelerogram
shows lower frequency components as also the acceleration amplitudes get attenuated. If
an accelerogram has been obtained at a certain distance from the epicentre, it would be
reasonable to assume that at greater distances than' this, the frequencies present shall be
lower and vice versa.,

. In connection with predicting an accelerogram for a dam sjte it was desired that it
has the important characteristics of two of the strongest recorded earthquakes viz. El
Centro May 18, 1940 and Koyna Dec. 11, 1967. The method of changing the time base
was proposed by the authors so that the response spectra of the pseudo earthquake had the
desired features in the frequency range of interest. Tsai®, working independently, has also
proposed such a method of changing time base to derive pseudo earthquakes.

A definition of intensity of the earthquakes corresponds to the area under the curve
of spectral velocity “versus period. A different interpretation of this definition has been
given which may be useful for multiple degree and continuous systems.

INFLUENCE OF CHANGE IN TIME BASE

The equation of motion of an idealized single degree oscillator with mass m, damping
¢ and stiffness k is given by. ‘ :

mx ¢x + + kx = — my'(t) ‘ ‘ O

in which x is the relative displacement of gnaés With respect to ground and y is the gfound

- A A P

On page 97, equation No. : (1) should be as follows

rr;;'(—i—,c;(-i—kx:-—-—m‘)t(t) (1



98 Bulletin of the Indian Society of Earthquake Technology

) Modiﬁcatio_n of time base t by a factor ) can be accounted for by putting v = ) t, in
which 7 is a new time parameter. Eqn. (1) would then be as follows :

d?y dx diy
2 -~ X bl —_ 2 -~ 7
m ) gz TN g Fkx=—ma Ju ,, (2)
Dividing throughout by A? one obtains, |
dx ¢ dg  k d%y
m»(rrg—!-—/\—a}-!-?)(:——m(m » (3)

Solution of Eqn. (3) in terms of s‘pectral quantities of modified time-based accelero-
gram and those of original one can be written as follows :

(Sa*)\p = (Sa)p.\® (4a)
(Sv*)y1 = (Sv)p.A (¢4
(Sa*)AT = (Sa)T. : '(40)

in which asterik indicates modified spectral quantities.

STUDY OF RESPONSE SPECTRA

Figs 1—3 show the spectral quantities Sa, Sy and Sg respectively for 5% damping for
two recorded accelerograms Koyna Dec. 11. 1967 Longitudinal component (KL) and EL
Centro May 18, 1940 N-S component (EC). Response parameters for KL with A\ = 1.5 and
EC with ) = 0 66 have also been plotted in the respective figures. It is interesting to note
that speciral guantities for KL accelerogram compare very well with those of EC with
A = 0.66. Also. speciral quantities for EC accelerogram compare well with those of KL
- with A = 1.5, This is a clear indication that accelerogram recorded at one site could be
used for determining spectral quantities at another place by a suitable.choice of factor A.
This factor could be obtained as the ratio of spectral velocities of two earthquakes in
the rarge in which 5 tends to be flat. This is clear from eqn. (4 b).

It is thus seen that elongation or contraction of the time base of accelerogram results
in change of the intensity potential of an earthquake. In this context, the effect of A on
‘intensity’ has also been studied.

INTENSITY OF SHOCK

Intensity of earthquake has been used by various authors as a means to decribe the
poteéntial of a shock, Among these, peak ground acceleration, peak ground displacement,
spectral intensity, root mean square acceleration, and time averaged r. m. s. value of ground
acceleration have been suggested’. From the point of view of structural designer, the
spectral intensity given by Housner see ns to be an objective method of defining earthquake
intensity, But all these definitions have limited use for single degree freedom systems and
may not be applicable for systems with multiple degrees or for continuous systems.

A designer would be interested in knowing about spectral quatities in fundamental
mode and a few higher modes. In such cases the quantity of interest would be the area
of Sv Vg T curve upto the fundamental period. With this in view, the following parameter
called “Velocity Intensity’ of shock is defined as,
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SPECTRAL ACCELERATION (5, /9)
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Figure 1.  Acceleration Spectra for Koyna, El Centro, Modified Koyna and

Modified El Centro Shocks (Damping = 57)
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M

T .
Vi= Ti(%.T I Sy (T. ¢) dT : )
0.1

Fig. 4 shows a plot of VI versus T for accelerograms KL, EC, KL with } = 1.5 and
EC with A = 0.66 and corresponding to 5% damping. Again, it will be noticed that VI
plots for KL and EC with X = 0.66 as also for EC and KL with A = 1.5 are in reasonably
good agreement. :

For some of the examples of multiple degfee systems worked out by the authors, the
ratio of response as obtained for two earthquakes corresponds to the ratio of VI forthose
two earthquakes at the appropriate fundamental period. : -

CONCLUSIONS

Elongation or contraction of time base of accelerograms as described in this paper
may be used for generation of pseudo earthquakes.

: It is felt that velocity intensity of the earthquake as defined here will be found very
helpful in comparing response of multiple degree and continuous systems under different
earthquakes,
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