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TRANSIENT RESPONSE OF DAM-LIKE STRUCTURE
SUBJECTED TO EARTHQUAKE

S. Basu* and A. V. Setlur***
INTRODUCTION

The earthquakc at Koyna on December 11, 1967, where a concrete gravity dam of
major importance is situated, has revived the interest_in the dceper study of transient
response of dam structures sub]ected to earthquake motions. : :

A study through the literature indicates that there are available, in general, three
techniques for the theoretlcal analysis of transient stresses m elastic bodlcs caused by such
dynamic loadmgs These methods are :

i) The method of mode superposition

(i) The Laplace transform technique
* (iii) The method of characteristic and numerical integrations.

The method of mode superposition which is by far the most popular techmque
utilizes the normal mode of vibration of the body along with the response spectra for the
earthquake record to obtain the maximum response developed for any given natural freque-
ncy of vibration. The drawback of the procedure is that it tends to round-off the peaks of
the response characteristics. The Lap]ace transform has its inherent inversion difficulties
and frequently numerical methods of integration have to be developed to evaluate the
mtegrals of the transform. ' '

The method of characteristics is ideally suited for transxent response studies. The
advantages of this approach are :

(a) the problem can be formulated a contipuous one i.e. no dlscrltxzatlon of the
phy swal model is needed,

(b) It gives a simple descrlpnon of the wavefronts.

() Well known technique of numerical integration can be effectively used.

The method of characteristics was used by Leonard and Budiansk® to solve for the
transient response of a Timoshenko Beam subjected to several types of dynamic loading.
Later. the method was further utilised to find transient response of beam, plate, slab and
shell problems 7919, However, most .of the problems solved were either two chara-
- cteristics problems or for a system having semi-infinite length of structure so that reflection
from the support did not arise. - ‘

In this paper a method is proposed to evaluate" trans1ent response of dam like
structure of finite span uamg method of characteristics.

* Post-graduate Student, Department of Civil Engineering, indiaﬁ Institute of Technology, Kanpur
** Assistant Professor, Department of of Civil Engineering, Indian Institute of Technology, Kanpur
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BASIC EQUATIONS, INITIAL AND BOUNDARY CONDITIONS

Concrete gravity dams are generally cast in monoliths. The joint between two subseq-
uent monoliths are packed with water-proof materials to prevent water leakage. For reduction

of thermal stresses, it is
Ccustomary to avoid any
interconnection of two
adjacent monoliths (Fig.
1).. After the earthquake
on_11th December, 1967
independent  deforma-
tion of adjacent monoli-
ths of the ‘Koyna-conc-
rete dam has.been clearly-
noticed. Also these
monoliths are generally
thin compared to the
height and width of the
cross-section and hence

may be assumed in plane. -

stress.  Furthermore, it
is‘assuried in the present
analysis‘that the mono-
lith acts. as cantilever
- beams (Fig. 2). Since the
width of the dam section”
is' comparable ‘to the
height of the dam, shear

deformation and rotary in ertia are included - in - this analysis, ..~ . .
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" Fig. 1. " Structural Details of Dam .

The following assumptions are made in the theoretical developrent :

WATERPROR
MATERIAL

(i) The material of the dam (concrete) is linearly elastic, isotropic and homogéneous.

(ii) Damping is of the viscous type. The damping coéfﬁcierit, G, is assumed to be a

percentage of the critical damping C for the fundamental mode, i.e.~,_

In Eq: (1); p is--thécdém‘;igg coefficient and genefally ranges between 0.05 and 0.15 and

- ‘ C=2pA0n Lo ) 2),
where, p = density of concrete | .
’ A = cross-sectional drea of monohthata particular helght of dam

o; = fundamental frequency of the system - . |

--(@ii). . Effect of cracking

in concrete is neglected:

(D

(iv) The impounding water is incompressible and is subjected to irrotational flow of
- small amplitude. Zanger’s®™ hydrodynamic pressure distribution is assumed..- It -

.may be noted that though the virtual mass
Tepresent the effect of the

simplicity. The hydrodynami
neglected in accordance with Zanger’s theory(,

addition concept does not adequately
impounding water®, it is wused in this analysis for
¢ effect due to deformation of the monolith is
Moreover, this effect is excluded
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in this analysis since inclu- 4
sion of it .leads to artificial | e — ¢
change in the density of the . - . -
concrete, which in turn
changes the speed of wave
propagation in the concrete
and thus gives rise to a
contradiction of physical
situation.

) =328 RN 8 )

N

~ The equation of dynamic
equilibrium considering a unit width
of the assumed physical model subjec-
‘ted to  ground acceleration Z are

. given as follows : Yo, X
L INE =P
M+EIy =0 (3 a) RTIA COUPLE=R.Tax
2+ W .
- V—KkKAGW —¢) =0 (3b) , \ 7 M+ MdX
M 4T —V =0 G e L-— - ZARAELEL.T_G XAXS
'V' s E I —_ e X JV.“%\’IO F
4 d) ‘. SHEAR ANGLE "¢
S INERTIA FORCE = (pAW+PAZ+EW)dX *
In Eq. 3) w. ¢, M ‘and V are the o
transverse  deflection - relative to Fig. 2. Force Acting on An Eleinent of Monolith

the base, bending slope, bending :

moment and shear force at any cross-section respectively, I, J, k, are the moment
of inertia. rotary inertia and form factor respectively. Here a prime denotes partial differ—
entiation with respect to x.and a dot that with respect to t. In the foregoing Eq. (3)

oA =PA + Py Ay , (4)

where, pw Ay is the virtual mass of water moving along with the dam per foot width of the
monolith at a given height, x, from the base of the monolith and given by Zanger’s
theory as : :

. N *2 P :
where. H = height of impounding water
Pw = density of impounding water

Cm = pressure coefficient depending on the angle of intersection of the
upstream face with vertical. ‘

The initial and boundary conditions of the system of Egs. (3) may be given as
follows :

W (x,0) = w(x 0) =4 (x, 0) = ¢ (£,0)=0 o ©)
wO.t) =400=ML1=V(LH=0 | (7)
In the Eq. (7), L refers to the total height of the monolith. ‘
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The system of Eq. (3), along with initial corndition Eq. (6) and boundary conditions
Eq. (7), may be solved to obtain response of the monolith subject to earthquake motions.

'DERIVATION OF COM‘PATIBI‘LITY CONDITION

Disturbing forces in the structure are created by the ground acceleration 7, which..
for an earthquake motion: is a highly irregular function with respect to time  Analytic
representation of this acceleration—time chart is rather difficult. Thus closed form solution
of the governing differential equation is not possible Here a numerical method of solution
of the problem is adopted. To facilitate numerical integration, it is advantageous to change
the system of Eq. (3) along with initial condition Eq (6) and boundary condition Eq. (7)
from a physical plane (x, t) to the characteristic form.

Differentiation of Eqs, (32 and 3b) with respect to t yields :

M+ EIJ =0 | | (8a)

V—KkAG(¥ —¢) =0 (8b)

Eqgs (8a, 8b, 3¢ and 3d) form a system of four simultaneous partial differential equations
which in the non-dimensional form are given by :

M+Ia =0 : 9 a)
v k, — _ (9 b)
A= Vg * 70 |
M+ Tz — V=0 , ‘ 99
where, [ = /g ' (10)

Elo

P o

k, = propagation velocity of flexural wave = J

ky = propagation. velocity of shear wave = \/k_G_/P

a = non-dimensional angular velocity = ¢

‘v = non-dimensional linear velocity = }I:‘ W
2
Ao, L2
E. == OJ (k’/kl)s
0 .
k, A, L2
=TT

B': 2/‘Lw1pA0Lsk2
El,
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‘PwlAwb§ :

51 iy oty * 7
pg Ao 1.3
El,

In Eq (9) the dot and prime refer to partial differentiation with respect to T =k, t/L and
with réspect to ® = x/L respectively and will be used hence forth except for Eq. (10) where
dot refers partial differentiation with respect to t. Also all barred quantities are nondimen-
sional form of unbarred quantities and subscripts zero refers to the cross-section at base.
It is also te be noted that parameter a is equal’ to unity when there is no water in the
“reservoir basin or when the hydrodynamic effect of water is neglected. ‘

The initia} condifions Eq.(6) and béundary conditions Eq.(7) correspondingly changes to
W) = VRO =4 (x0) = ax0) =0 | | oy
¥ (0,1) = $10,T)= M (L, )=V (1,T) = 0 (12)

~Along a characteristic direction of the system of Eq. (9) discontinuity of  the first derivative
of dependent variables (a , v, M, V) along its normal direction, is possible. ~Given initial
data on such a direction the normal derivative of the variables are not uniquely determined
by the Eq. (9). However, in the region of x , t plane where the dependent variables are
continuous, the following type of relation of each dependent variables must be satisfied :

dM = M’ dx + Mdt (13) -

The Eq. (9) and type of Eq. (13) form a system of eight equations which can be given in
matrix form as : C

B . .Y
&+ dx o0 o o0 0 0 O }M\! } dM %
o 0 df dx 0 0 0 0 }M} | =
1 o o 1 0 o 0 WV i"a— II ll o :
6o 1 ¥ 0 0 0 0 0 <IEL___{l ;\7 | "
0 0 0 0 df dz 0 0 | v l : d'v :
0 o o o0 0 0 dt d=z v } dkT |
0 6 0 0 1g&x O 0 —I v } } - ;
0 0 o 0 0 1A —n O \—V"Jl lL@TjLnale

which can be written as.
ng = W : (14)

o~
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The Eq. (14) may be used to solve for eight first denvatwes of dependent variables

if the distribution of the same are known along the initial curve. Solving for M from Egq.
(14) by Crammer’s rule yields : :

§o det Y | (15)

where det X = determinant of X, and Y is formed by replacmg one column ofX by W
according to Crammer’s rule.

Since the first derivative of the dependent variables may be discontinuous, the
derxvatlve M is undetermined. A necessary and sufficient condition for the mdetermmancy

of M is det X = 0 and det Y = 0. The vanishing of det X leads to :
[I@T)2—T@%)?]. [A@x)E—-(dt)*] =0

Therefore, either

e N EIR I © o (16)
~or ‘ |
———iJMﬂ—iC (a7

Hence the systems of Eq. (9) are totally hyperbolic since the roots of Eqs. (16 and 17) are
real and distinct. The roots 4+ C;y (i = I, 2) are called physical characteristic direction
and it is customary to call their inverse as wave velocities.

The vanishing of det Y yields, the compatibility relations along 4+ C; when

g%t— is replaced by 4+ C; and is given by :

Vdf——fdf¥C{dﬁ=0( (18)
It can be be very easily verified that solving for M’, 2 and 3’ will lead to an identical set of
Eq. (18).

Similarly solving for the remaining derivative, after substitution of g—; = 4 G, in the

appropriate necesssary condition for indeterminancy of derivatives, leads to compatibility
relations Eq. (19) along 4- C, : v

% = * * - * - Al
[—NatBvEraf]ditrdv—dvA=0 (19)

In the Eq. (19) all asterisked quantities are corresponding unasterisked quantities divided
by C,. _

So]ut:on for the dependent variables, in the region where they are continuous, may
-be obtained by solving Eqs (18 and 19) s1multaneously along the characteristics dlrectlons
Eqgs. (16 and 17) and using initial and boundary condltlons Egs. (11 and 12).
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COMPUTATIONAL p
PROCEDURE

Solution of the system of
 Egs. (16 to 19) can be marched ;.7 " s s .
out numerically from T = Obya ! N '
step by step integration process. st
The finite strip in the half plane gz } :
is divided into a net work as
shown in Fig. 3. The dependent y
variables in this process, are con- ‘ ' L
"sidered as known functions of #
at a time <, either as given initial
conditions or as the output of
previous stage computation. Fig. 3. Interior Grids

Let the dependent variables be known on a line t = t, and are to be evaluated on a
lineT = © on which a typical pivotal point (J.K) is situated as shown in Fig. 3. There are
four characteristics - C; and + C, passing through each interior pivotal point. This cha-
racteristics intersect the initial line K—1 at four points (I—1,1—2, I+1 and 142 as shown
in Fig. 3) — which hence forth will be called as subgrids. Since coordinate of pivotal
point J, K is known, using Eqgs. (16 and 17) the space X of subgrids may be obtained.
Since the cross-section of the monolith is rectangular C, and C, are constants and Egs. (16

and 17) in finite difference form reduce to :

Bilg = % — AT/Cy (20 a)
Bip = B + AT/C, (20 b)
%, = % — At /C, (20 ¢)
B =% + AT/C, o (20 d)

In the Eq. (20) subscripts refers to the grid or subgrids.

Siqce the dependent variables are known functions at three adjacent main grid points
on the initial line, knowing ‘the coordinates of m th subgrid, a quadratic interpolaticn for-
mula, as given below, may be used to find each of the variables. ’

a = ﬂj"%m — _ -
m k-1 = aj,k-1 — 2h aj+1:k-1 aj-l;k—l)
R——Fm)? -
+ O G — 250 e (D

Where aj45,x1 refers to tho function value of a at grid point J+1 and on the previous line
K —1. & refers to the space coordinate ¥ of point J and a is the grid intervals in x-direction.
Formula similar to the Eq. (21) can be written for the remaining variables.

Now, for a particular pivotal point (J,K) the compatibility relations are written in
first order forward difference form in terms of the known values of dependent variables at
subgrids. Solving the equation simultaneously for the dependent variables at pivotal point

yields the recurrence relation given by
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U=B'Dp+B1Q | @)

where B!, D = coeflicient matrix

U = dependent variables at pivotal'point
_p = dependent variables at subgrids

Q = input ground acceleration :

' Details of matrices and vectors used in Eq. (22) are given in Appendix-I. In obtaining Eq.
(22), it is assumed that AT is sufficiently small so that linear relations hold among sub-
grids and pivotal point and hence averaging of dependent variables may be permitted. -

For the vertical boundary plane (% = 0 and ¥ = 1), suitable recurrence relation may
be obtained using proper boundary conditions and following 'the procedure similar to the
Interior mesh points. At left boundary. where & = 0, two characteristics. —C,and -C,,
21115e)rsect the boundary pivotal point, J, K (Fig. 4), where boundary conditions from Eq.

are :

a (0,T) = v (01)=0 \
Zh |
Knowing the space
coordinate of - subgrid
from Eq. (20b and 20d).
the functional value of _ _ : :
subgrid mh may be ob- o JH1 T 442 " J-2 J=t . ‘/’i,mf
tained by Taylor series N at ot o/ ke
expansion about the piv- 2, i | "
(_\tal point J-41, K—1, g To 172 " - ' A
instead of expanding — 1~ S
about J, K—1 as is ' -
done in Eq. (21), and = T
is given by , ' Fig. 4. Left Boundary Fig 5. Right Boundary
amyk-1 = ajq1,k— — jjghﬂ (ajto.k-1 — @y, k1)
-, R 2 _
+ QEIZhE@l (@411 — 2@ y40,k-1 + Ay k) (23)

Similary introducing known boundarv condition in the first order forward difference
form of compatibility relations and solving for unknown dependent variables yields :

v .
M% — F—l H«,Ij +E-1 S (24)
, IR
where F~*, H = coefficient matrix

L = dependent variables at subgrids
S = input ground acceleration,
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The matrix and vectors used in Eq. (24) are given in Appendix-~I.

At the right boundary, ¥ = 1, two characteristics, + C, and -+ C,, meet the boundary
pivotal point (Fig. 5). Coordinates of subgrids may be obtained using Egs. (20 a and 20c).
"The dependent variables of subgrids are evaluated using interpolation formula similar to Eq.
(23) by writing a Taylor series expausion about the pivotal point J—1, K—1. Recurrence
relation is obtained using identical procedure as left boundary and using proper boundary
conditions from Eq. (12) which may be written as :

a

=RINT+R* M (25)
v Jix
where, R-1, N = coefficient matrix

T dependent variables at subgrids }

. M = ground acceleration
Details of matrix and vectors used in Eq. (25)are given in Appendix-1

Using initial conditions Eq. (11), the solution for the dependent variable ean be
wnarched out with the aid of recurrence relations Egs. (22, 24 and 25).

NUMERICAL INTEGRATION

The height of the monolith of the dam is divided by main grids at an equal interval
(dg = h). The step size in t direction is chosen in accordance with Eq. (16). During
integration it is assumed that the accelerogram reading is linear between one peak to sub-
sequent peak. The time interval between subsequent peaks is divided in n equal parts of
of step size h (since the cross-section is rectangular, C, = 1) and remaining Av forms an-
other step. Hence, n-+1 steps are required for integration from one peak to another, The
procedure for integration when dt = dx = h can be summarised as follows :

Step (1) : The space coordinate of subgrids are located using Eq. (20). |

Step (2) : Since C; = 1 for the problem, the dependent variables at interior, subgrids
1 + 1and I — 1 in Fig. 3 are interpolated from the known variable at grid
point on the initial line, K—1, using a suitable interpolation formula.

Step (3) : Dependent variables at pivotal point are then calculated using proper
recurrence relation. '

For the remaining part At step (1) and step (3) remain identical except step (2) — where
variables at all subgrids have to be interpolated. '

By continuously repeating the basic computational steps the solution can be ma}-qhed
out from ¢ = 0. However, for starting the integration process at T = O initial conditions
Eq. (11) have to be utilized. :



34 Bulletin of the Indian Society of Earthquake Technology

STABILITY AND CONVERGENCE OF THE NUMERICAL SCHEME

In the case of linear hyperbolic equation the numerical scheme is stable if the sizes
for the x and 7 variables are chosen to comply with the faster wave velocity®®). However,
convergence of the numerical scheme is tested by changing grid size and accuracy of the
same is tested with a problem of which a closed-form solution exists.

The solutions for base shear and base moment of a tapered cantilever Timoshenko
beam subjected to a step input of ground acceleration are evaluated for various grid sizes
with the help of numerical scheme develeped in this analysis. Peaks of the base shear with
time show a little deviation (flater, although the trend is same) at net work of 21 grids from .
that of 41 and 81 grids. However, the response base moment with time are same of all the
grid sizes for all practical purposes (difference in fourth significant figure).

Moreover, the accuracy of this scheme is demonstrated by solving for base shear and
base moment of cantilever Timoshenko beam subjected to unit linear velocity,ie. v = L. at
base. This beam possesses a material property such that the flexural and shear wave have
the same velocity of propagation (k G = E). The foregoing problem contains discontinui-
ties along fronts which are taken into account in the programme by tracing out the wave
front and by addition of proper jump along it. The numerical results are in good agreement
with that obtained by Leonard and Bubianaky (1954) by Laplace transform technique. Error
in the numerical analysis is within one percent of closed from solution. '

Hence, convergence of the scheme is shown by variation of grid sizes and similarity of
results obtained by Leonard and Budianaky (1954) and that obtained by proposed scheme
establishes conclusively the stability and aucuracy of the same.

STUDY OF THE KOYNA DAM STRUCTURE

The method developed herein is employed to obtain the transient stresses developed
in the highest monolith of the Koyna Dam (Fig. 1) during the earthquake of Dec. 11, 1967.
Several combinations of viscous damping ration, u, and effect of impounded water were
considered. ,

20 QGO fO 0 @O . 20 .00

The height of the T , WITHOUT WATER
monolith was divided in e
thirty four division in
such a manner that ' the
node points coincided
with the points where
the change of slope occ-
urred (points B and C is
Fig. 1). Non-dimen-
sional bending stress (o/
E) and shear (V) were
obtained as a function
- of time for the first ten ) B -
and three-fourth second Fig. 6. Shear Force ~ Time (Section A)
of accelerogram record,
These quantities are evaluated at base of the monolith, A and at the two points of B and
Cin Fig. 1. Representative results are shown in Figs. 6 -9 for the base shear. force and
pending stress at level C (xp = 0.1 with and without water effect). These results indicate
the rapid variation of stresses during the earthquake motion.
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As a part of this study, the bending stress (¢/B) and shear (v ) were obtained by the
mode su perposition method. In this approach,.the first three modes, frequencies and
participation factors were obtained for the monolith, treated as a Timoshenko beam, by

numerically integrating the differential equation and searching for the eigen value which
satisfied tne determinantal equation.

Next the displacement, velocity and acceleration response spectra were obtained®,

The maximum response (¢/E) in each of the natural modes were obtained. These values
have been tabulated in Table-I.

Table I—Comparison of bending stresses (o/E)

Section Mode Superposition Proposed Method
I 11 111 R.M.S.
=034 1, =0134 1, = 0069
0.0507 x 103 0.183x 10-4 0.323 x 1095 0.054 x 10‘.3 0.17x 10-3
B 0.0685x 10-3 -0.0669 x 10-* -0.0696 x 10-* 0.0692 x 10-3 0.175x 10-3
C. 0.0912x 10-3 -0.0505x 10-*  0.113x10-3 0.105 % 10-3 0.294 % 10-8

From Table 1 a wide variation is noted between the results of three mode theory
and that of the numerical scheme developed in this study., Although the highest peak in the
response is quite high compared with three mode theory, the average of the response is quite
close to that of mode superposition. Moreover, the maximum step size chosen for step-by-
step integration is t = 001121 which is less than one sixth of third mode’s time period.
Hence the response obtained is more accurate than the three mode theory(). The theory of
mode superposition always predict average of response rather than maximum value of
response and hence the discrepancy with the proposed scheme’s results.

The maximum bending stresses are more than the allowable tensile stresses in all three
cross-sections of the monolith when hydrodynamic effect of impounding water was considered.
The stresses predicted are in higher side owing to the limitation of Zanger’s theory. The
concept of addition of virtual mass is liable to predict maximum stresses on the higher side
than that of actual because the mass of water moving with the dam will not remain constant
for the whole interval of time. '

However when effect of impounding water is not considered the predicted bending
stress is more than allowable value at the cross-section C only.

CONCLUSION

A method to obtain transient response of an elastic structure treated as a continuous
problem is presented. This method utilizes the well known method of characteristics and
finite difference scheme for step—by-step integration. Stability and convergence of the

“method is demonstrated by numerical experiments. Furthermore, the solution obtained for

the Leonard and Budiansky problem compares very favourably with its known closed-form
solution. :

v
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The transient response .of the highest monolith of Koyna dam for the December 11,
1967 earthquake is obtained. The results indicate that, (a) the response by the persent analy-
sis is much higher than usual mode superposition method, (b) the virtual mass concept accen-
“tuates the effect of impounding water, (c) wide variation of stress levels is seen with the
change of damping ratio. : '

For an accurate prediction of the response of the dam structure for a given earthquake
the effect of impounding water and the material damping property should be more thoroughly
- studied.

The method is equally applicable to obtain transient response of other elastic stcruc-
ture subjected to dynamic loading.

NOTATIONS
A Cross-sectional area
Ao Cross-sectional area at base
A Non-dimensional area = A/A,
Aw Area of water moving with the monolith
a Non-dimensional angular velacity = L d—¢
‘ ki dt
C Fundamental critical damping = 2 p Ao,
ol Damping constant
GG, Families of physical characteristics
Cum Pressure coefficient
E Modulus of elasticity
F = 7* (fx.; + fi)/4
f Non-dimensional forcing function = Z /g
G

b Shear Modulus
g Acceleration due to gravity
H Height of water in Reservoir basin
I Second moment of area about y-axis
Io ‘ , Second moment of area about y-axis at base .
1 Non-dimensional second moment of area about y-axis = I/,
J Rotary'intertia about y-axis
Jo Rotary intertia at base about y-axis
T Non dimensional rotary inertia abont y-axis

k Shape factor

k, Velocity of flexural wave = J E__'f
P

k, Velocity of shear wave v/kG/p~

L Hight of the highest monolith

M Bending moment
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M Non-dimensional bending moment = ML/EI,
r Radius of gyration about y-axis
t time
t Non-dimensional time = Lll-t—
v Shear force
S . . VL2
A4 Non-dimensional shear force = “EL,
v Non-dimensional linear velocity = 1 dw
k, dt
w Displacement in Z-direction
w Non-dimensional displacement in Z-direction = w/L -
X Distance from base
X Non-dimensional distance from base = x/L
z Ground acceleration
L Aw‘

a = 1.0 + &FA_
8 _2ue, p A, L3k,

E I,
ﬁ* = B/Cz
: = A I (i oyt

]
A = Me_rf
k, Jo
a* = AC,
I = Damping ratio
e/E Non-dimensional bending stress
é Angle of taper with X — axis-
P Bending slope :
» _ Pg A, L2
: El,

¥ = 1/C,
oy Fundamental frequency
P | Mass per unit volume of concrete
Pw Mass per unit volume of water
S Matrix
S Row vector
.S or {S} Column vector
detSor|S]  Determinant

St . Transpose of matrix
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APPENDIX-1

Details of Matrix, Vector and Determinant

The details of matrices, vectors and determinants used in the analysis of the problem
are as follows : :

B! = [b-mn/!B|] ; mn=12 .,4 _ (A LD
where, '
|B| = — C,(8*dT /2 + 2% ( A )+A*d€2)

Atpy Aty

b=t = by = — Ca* di (B* dt /2 +2¥)

by = byt = C, T (B* dF /2 + A*)/2

byl = byt = — C; A* dt (A — A)/(Arp A

bas? = — C, (\* dT2/2 + J/Aw)

byt =C, (\* di*/2 + J/A141)

byl = byt = 2 A C, (B* di /2 + 2¥) [ (Al Aiy)
bs,™' = byt = Cydt (B* dv /2 + A%)
~ A J1+2 i P
-1 _ (p*% * o vlte * 2
by~ = (B* 0t 2 + 1) (e Ak 2)

b= = byg™ = i’ (B* T [2 4+ A*) (e — J1-0)/4

. o ' A, S )
-1 — — (B* # [ Ti-8 * d¢ 20 )

bur (B* di 2 + A )(Al+1 T ArY

Jipe =J5 + i -

Jing = T3+ T1y

T =274+ Ty + Tz

A ‘——"—- 2./_5\] + AH.] + .7\1—1

Ajy = Aj - ;\’+l

Ay = Ay + Ain

D= [dma] ,m = 1,2, 4:n=12,.,12 - (A 1.2)
“where,. dj; = dyq0= — dt /2

d12 = - C1

djz = — J_o/2

d24 = — '2/Ai—-1

d,s = A* —p*de 2
d26 == d39 = A*‘ d{ /2 ‘

da; = — 2/A1yy
dgo = B* dT/2 — 2*
d4 n = C1

d4_ 12 = — J1+2/2
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allotherdma =0 ; m=1,2,..,4 ; n=1.2 ..12

In

© % o

10.

11

—_— -

P={Vis My ap Viy Viet ai—; Vig  Vier atp Viee  Mige
- B | o ke (ALO)
Qt=1{0 —F(y+andi Flo+a)di 0} (A 1.4
F = 7% (fi., + fi0/4
the Eq. (A 1.5) fx refers to ground acceleration at time ¢ = K and so on

l — A2 O:I ‘
= A 16
F [Am de /4¢, 1/C, | | (A 1.6)
[ =2/Ap —2*4prE2 %2 0 0o ]
H—[ 0 0o 0  —di2 G —Jt] BFD
LT ={ Vi virr atsr Vie  Viga  aliehka (A 1.8)
ST = {F(aj + a)dt. 0} (A 1.9)
R = 2 [ a2 Tief2. :‘ (A 1.10)
Jiog (B* /24091 —(B*dY 24+2%) 0
—di 2 —C, T2 0 0 0
N = | | (AL
0 0 0 —2/A;, N —B*T /2 W*dT)2
T ={, Mo a, Viu M- amlid (A 1.13)
MT = {0 —F(y+ ay)d} | (ALY
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