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EARTHQUAKE ANALYSIS OF MULTISTOREYED BUILDINGS
INCLUDING ROTATIONS OF FLOORS

V. S. Kelkar* and P. G, Utagikar**
INTRODUCTION

A multistoreyed building in vibration is an extremely complicated system. Tt has
infinite degrees of freedom. Findirg precisely the motion of such a system' except by actual
measurements is beyound accomplishment, However, the system can he simplified by
means of reasonable approximations to reduce it to a solvable mathematical model,

One of these simplifications is to assume the mass of the building to be concentrated
at the floor levels. Itis also assumed that the floors act as rigid diaphragms. Then
neglecting the displacements of the floors out of their respective planes, the building can
be considered to have three degrees of freedom per floor, viz. two translational at right
angles to each other and one rotational'.  The translational motion in two principal
directions are usually considered independently of each other. In addition, if the centre
of mass coincides with the centre of rigidity at each floor, the translational motion of the
floor will occur without any rotation when the building is subjected to ground motion
in one of the principal directions. Dynamic analysis of the building can then be carried
out considering only one degree of freedom per floor. ‘

If the building is symmetric in plan the centre of mass can be considered to coincide
with the centre of rigidity at all floors. But in many practical cases, building is not
symmetric in plan, and hence the centre of mass does not coincide with the centre of
rigidity at various floor levels. In such cases dynamic analysis of the building must be
carried out by taking into consideration rotations of the floors also i.e. by considering
two degrees of freedom per floor. However, this analysis becomes somewhat complicated
and hence. hitherto there has been a tendency to neglect the floor rotations when carrying
out the dynamic analysis of a multistoreyed building subjected to earthquake motions.

In the present paper it is shown that the dynamic earthquake analysis of ‘a multis- -
toreyed building including floor rotations can be carried out by using a procedure very
similar to the one used when rotations are not considered. It is also shown that the
method of response spectrum can be very well applied in this case also, and that the
response spectra developed for one degree of freedom systems can also be used in this
case with a small modification in the definition of the participation factors. '

Because of the similarity of the two procedures of calculating the response of
structure with or without considering floor rotations, theoretical derivations are first given
below when no rotations are considered. Subsequently, it is shown how this procedure
could be medified for including the floor rotations also. A numerical example of a
2-storeyed shear building is considered for comparing the design forces obtained on various

frames by the two methods viz. when floor rotations are considered and when they are
neglected.
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THEORETICAL DERIVATION NEGLECTING FLOOR ROTATIONS

Figure 1 shows the plan of a typical 't floor of a multistoreyed building having n
floors and m frames per floor. Assuming that the centre of mass coincides with the cemtre of
rigidity at each floor we can write the equation of motion of the building for free vibration
in the X direction in matrix form as?: :
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Figure 1. Typical Plan of rtt Floor

IM] {q'} + [Kl{a} =0 (1)

Here {q} is a column vector containing displaf:ements‘_ X1, X3 — — — Xa of the n floors.
[M] is a mass matrix which is diagonal and [K] is the stiffness matrix.

If the building is now subjected to a ground motion X (4) then equation (1) gets
transformed to ‘ '

[MI (i} + [K] {u} = — & [M] {i @
where {u} = {q} — X, {i} (3)

and corntains the relative displacements of floors with respect to ground and {i} is a unit
vector.

Equation (2) isa set of coupled second order differential equations. To uncouple
these equations we make a linear transformation :

) = 4] 3 | S 4
where [¢] is a transformation maxtrix and {£} are the new variables.

Substituting eqn. (4) in eqn. (2), we can write

(€} + A8} = Xs [0 (i} | ! &)
where [A] = [¢1 [D] [¢] ©)
and [D] = [M]-! [K] )

Equation (5) will be uncoupled if we choose [¢] such that matrix [A] becomes diagonal.

It can be shown that this is achieved by constructing [¢] from the eigenvectors {X}; of
matrix [D] as follows? :

[¢] = [{Xh {X}s — — — {X}u] ®)
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It is easy to prove that the elements of matrix [ A] are the squares of the natural frequencies
of vibration of the building and vectors {X}1 represent the mode shapes. Using the
orthogonality relations of the vectors {X};, the unit vector {i} on the right hand side of
eqn. (2), can be expanded in terms of these eigenvectors as

i} = [(Xh (X} — — — — {Xa}] ()
Cor {i} = [¢] {c} . )
where {c} contains unknown constants ¢;, ¢, — — — Cg which are also called as partici-

pation factors and are given by

{XhT [M] {i}

T BT M X ~ | (19
Substituting eqn. '(9) in equation (5) we get ‘
&+ A8 =—%X an

Equation (11) represents a set of uncoupled second order differeatial equations with right
hand side containing the ground motion X; (t) multiplied by the participation factor C;.

Hence the response of the building, say, in the rth mode for a given ground motion
X, (t) will be same as that of a one degree freedom system, having the same period as that
of ; mode, and hence the response spectra developed for one degree of freedom system can
also be used for obtaining the response of the building in different individual modes, by
multiplying by the participation factor. In the earthquake analysis of multistoreyed build-
ings the responses of the building in different modes are obtained separately and then a
most probable response is obtained by taking the square root of the sum of squares of the
response in the individual modes. We will show now that a similar technique can be used
when the floor rotations are also taken into consideration,

. THEORETICAL DERIVATIONS WHEN FLOOR ROTATIONS ARE CONSIDERED

Figure 2 shows the plan of a typical r** floor of a multistoreyed building in which,
now the centre of mass does not coincide with the centre of rigidity, and is having an
eccentricity er. As before, the building has n floors and m resisting frames in the direction
of ground motion. The distance of the frame j, from the centre of mass is denoted by
Ir,; (j = 1, 2...m) taken positive to the right of the centre of mass. It may be noted that
if the centres of masses of all floors lie along same vertical line, a case which may be
encountered in many practical buildings, Ir, j will be same for all floors. r = 1, ...n. Each
floor has now two degrees of freedom, viz. the displacements x; and rotations ;. If the
building has n storeys then it will have 2 n degrees of freedom.
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The definitions of the stiffness coefficients are the same as before. When the
structure is subjected to a ground motion in x direction all floors will translate as well as
rotate and the displacement of the j*t frame at r't floor will be given by equation

Xryy = Xr -F lr,j X Or (12)
where, Xr,j = displacement at th floor of ji* frame.
Xr = displacement of the centre of mass of rtt floor
f: = rotation of the rtt floor taken positive counter clockwise.

The equations of motion for the rth floor of a shear building can now be written as

.. m m
My % = — 2 Krj &g — Xeopnp) + 5 | Krtpss (Xrang = Xr,3) (13)
]1=1. 1= .
and
.. m. m
Ir 0 + . EIKY:J X g (Xr 5= Xrogg) — = Krtios Xlegg,g (Xr+13—Xr,3)=0 (13a)
J= J=1
Here, I is the mass moment of interia of the 't floor about its centre of mass. We define
m
.2 Kl':j = Kl‘
1=1

Wher;, K: = total stiffness of all frames at v floor. Also, by definition of the centre of
rigidity we can write :

m
E Kr,j X lr,j == Kr X et
j=1 .
v&:lhtge e, = eccentricity, i.e. distance between centre of mass and centre of rigidity at
‘2 floor.
Similarly, we define
m
Rr =4 E Kr,j X l?r,j
j=1 ,
Substituting this and also eq. (12) in eqs. (13) and (13 a) we gei
M: %= Ky Xro1 — (Kr+Krp)xr + Kri1 Xrpy

m m
—+ 6T~1. % Keylryy — 6 { Krer + . 21 Krinj ll‘sj} + Kry €14 Orp (14)
j= j=

and
I 8 + [Krer + Kroy rp] Xr—Kr er X3 — Ky €1y Xrpy — Rp 8 — Rogy Orgy

m : m

- EI Krg leys (Ireqs Ora1) + El Krpig brgpy (15 65) = 0 (15)

J= ]=

- These ars the most general equations in the case of a ‘shear’ building. Now, if centres of
masses of all floors lie on the same vertical line, then,

&
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llaj = 1}’1 sen wee lt,j = lr+1,j cee ese = ln,j
Then, equations (14) and (15) get simplified to
Mr'xr = K¢ xr-1 — (K 4 Kpig) %r + Kty Xppa

4 4+ Krer0r—; — (Krer + Krgt €rt1) Or +Kipgg €14 01 (16)
an

Ir Hr — Krerxrq + (Krer 4+ Krg €r49)xr — Krgy €r4g Xr4q — Ry 01y
+ (Rr + Re41)0e—Rrgg brp1 = 0 - (17

Similar equations can be written for all other floors and all these equations can’
then be combined into a single matrix equation similar to eq. (lc).

(M1{q'} + [K]{q} =0 - (18)

where [M], [K] and {q} are as shown in Table 1. It may be noted that the top left partition
matrix of [K] in Table 1 is same as the stiffness matrix [K] of eq. (1) for the shear building
without floor rotations. Matrices [M] and [K] can be readily obtained when the dimensions
etc. of a shear building are known. For a flexible building in which joint rotations are
to be considered eqs. (13) and (13 a) will contain on their right hand side x, 8 and K, ;
of all floors (r=1.. .. n). However, the final form of the equations will be same as
eq. (18). The stiffness matrix [K] in this case will be different from that given in Table 1.
The details of this are at present being worked out by the authors. If the building is
now subjected to a ground motion Xg (t) in the x direction, the e

quation of motion (18)

becomes ‘
IM] (q") + [K] {q} — Xs {io} =0 | (19)
where {io} is now a vector which contains unity for first n terms corresponding to displace-
ments x; and zeros for next n terms. If u; ... ... up represent the displacements of the floors

relative to ground i.c. if
Uy = s —Xg .. T =1, ...n
and Up =‘ fr e.T=mn-4+1,... ... 2n
Then, we can write
fu} = {q} — X {i.}
substituting in eq. (19) we get
| [M] (&'} + [K]{u} = — % [M]{i} (20)

Eq. (29) represents the equations of motion of a building subjected to ground motion
when floor rotations are also considered. They have exactly the same form as eq. (2)

except that all the matrices have now 2n rows and the vector {i} is now replaced by
vector {i_}.

Proceeding in exactly the same manner as before we can uncouple egs. (20) and
obtain an equation similar to eq. (11) :

{83+ A {8 = — Xs{c} (21)

Here now the participation factors {c} are coefficients in the series expansion of the vector
{io} in terms of the new eigenvectors :
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o — X" (M] {io}
(X M (X

Thus, for a known ground motion Xs(t) we can once again obtain the response of the
building in individual modes by using a known response spectra and the newly defined parti-
cipation factors. The response as obtained by this method will give us the displacements
of the centre of mass and rotations of each floor. For design purposes we require the
forces exerted at floor levels of individual frames. These can be obtained as follows.

Knowing the response X; (of centre of mass) and 4 for the rtt floor in a particular
mode we can obtain the displacements at rth floor for the jit frame by using eq. (12). The
forces at floor level for individual frames in that particular mode can then be obtained by
multiplying these displacements by the stiffness matrix of the frame. Such forces are
obtained for all the modes, and the most probable forces can then be obtained by model
superposition. In this way the most probable forces are obtained for all the frames.

-~

NUMERICAL EXAMPLE

To illustrate the method

. IRECT ]
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has three resisting frames for i L '
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placed, the centres of masses do Figure 3. Plan

not coincide with the centres of

rigidity on both floors. The centres of masses, however, lie on the same vertical line.
The earthquake response of the building was calculated by using the average acceleration
spectrum given in Indian Standards Code for Earthquake Resistant Design of Structures?.
The value of N was assumed to be unity. '

For comparison, the building was analysed both by neglecting the eccentricity of the
centre of mass and by considering it i.e. by considering floor rotations. Knowing the loads
on floors and the dimensions of the members, matrices [M] and [K] were obtained in each
case. In first case when no floor rotations were considered the stiffness matrix was obtained
from left portion matrix of Table 1 and in the second case it was formulated as per Table 1.
The periods of vibrations, mode shapes, floor forces etc. were then calculated in each case.
In the first case, the total floor force obtained was divided equally to the three frames, since
these three frame have equal stiffness. While, in'second case, the forces on each frame were
obtained in each mode by the procedure discussed earlier, and then the most probable forces
for each frame were obtained. Results are summarised in Tables 2 to 6. It can be seen that
the periods .of vibration increase, as excepted, when floor rotations are considered. The most
probable total floor forces at the first and second floors in the first case are 4150 and 10,000 lbs
respectively. While in the second case, when floor rotations are considered these values are
3950 and 9850 respectively. It can be seen that the total floor forces aimost remain the
same, whether floor rotations are considered or not. The small differences are due to' the
fact that when floor rotations are considered, the periods of vibrations change and this gives
rise to slightly different value of responses from the response spectrum.
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TABLE 2
Mode Shapes and Floor Forces without Floor Rotations
Floor First mode ~ Second mode First mode Second mode Probable Probable
levels shape shape forces forces forces forces on
coefficient coefficient in 1bs in lbs in 1bs frame
First 0.4037 1.000 4001 4210 4150 1383
floor
Second  1.0000 —0.4037 9910 —1700 10000 3333
floor
First mode period = 0.1738 Seconds
Second mode period = 0.07197 Seconds
TABLE 3
Periods of Free Vibration
(when floor rotations are considered)
Mode No. Period in seconds
1 0.1756
2 0.1241
3 0.0727
4 0.0514
TABLE 4
Normalised Mode Shape Coefficients
(When fioor rotations are considered)
Floor First Second Third Fourth
level mode mode mode mode
1 0.4037 0.4037 1.00 1.00
2 1.00 1.00 —0.4037 —0.4037
3 0.00493 --0.2329 0.0122 —0.5769
4 0.0122 —0.5769 —0.00493 0.2329
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When no floor rotations are considered the forces on the three frames are the same
viz. 1383, and 3333 Ibs at the first and second floor respectively. However, when floor ro-
tations are considered. Table 6 shows that the forces on the frames vary. At the first floor
level they are 1050, 1270 and 1720 Ibs and at second floor level they are 2560, 3150 and 4170
Ibs for frame nambers 1, 2 and 3 respectively. Thus, when floor rotations are considered,
as expected, frame 3 carries much greater forces than the other two frames and also than
that what were obtained by neglecting floor rotations. Hence, we can summarise that in
the dynamic earthquake analysis of an unsymmetric. building, floor retations should be taken
into consideration.  Although this will give rise to a total design floor force of almost
the same magnitude as that obtained when floor rotations are neglected its distribution
to the individual frames is quite different. In such cases the frames on the side of
the centre of mass should be designed for greater loads than would be obtained by neglecting
floor rotations.

CONCLUSIONS

A method of finding the earthquake response of multistoreyed buildings, considering
rotations of the floors has been developed. An example was considered to compare the
design forces obtained by this' method with those obtained when floor rotations are neglecte
as is done often in practice. The following conclusions can be drawn : ‘

1. The equations of motions for vibrations of multistoreyed buildings when floor
rotations are considered (i.e. when each floor has two degrees of freedom) are similar
in nature to those when rotations are neglected* The dynamic analysis in this case can.
be carried out with equal simplicity as when floor rotations are neglecteld. Only the
definitions of mass matrix [M] and stiffaess matrix [K] are to be modified.

2. The response of multistoreyed buildings to ground motions can be found by a procedure
similar to the one used when rotations are neglected. Only the definition of participa-
tions factors has to be modified.

3. The total floor forces through the centres of masses when floor rotations are cpnsidcrcd
are practically equal to the floor forces when such floor rotations are not coasidered.

4. In the case when floor rotations are considered the distribution of total floor forces
amongst the individual frames is unequal. The frames which are farthest from the
centre of mass will carry maximum or minimum floor forces depending on the location
of centre of rigidity. This distribution is quite different from that obtained when floor
rotalions are neglected. Frames on the side of the centre of mass should be designed
for greater forces when floor rotations are considered.



