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INTRODUCTION

To find the dynamic response of a building it is essential to know its dynamic charact-
eristics like natural frequency, mode shape and the modal damping coefficient. Various
theoretical methods are available for finding natural frequencies and mode shapes. The
accuracy of these theoretical methods together with the validity of assumptions can only
be assessed by comparing the theoretical predictions with experimental results. It is found
on areview of available literature that very few experimental data on dynamic testing is
available. This paper deals mainly with the experimentation of natural frequencies of a
perspex model of a six-storey building consisting of frames combined with shear walls.

The straight forward approach of finding natural frequencies and mode shapes of
multi-storey buildings based on the concept of ‘shear structure’ yiclds a shape of elastic line
with  vertical tangents at floor levels, which is equivalent to the assumption that
the frotations at the ends of the vertical member are zero. However, *such
simplification is not always admissible because the actual shape of an elastic curve of the
structure at any instant will not be vertical at the floor levels but will be more like a cantil-
ever’s deflected curve, that is, the end sections of the elastic joints in each storey are not
restrained to fixity of the floors. A more accurate dynamic analysis of the multistorey build-

- ing as against the *‘shear structure’ hypothesis can be made by assuming that the masses of
the multi-storey are lumped at the floor level and are vertically connected by weightless
elastic joints having two degrees of freedom (rotation and translation) at each joint.

Clough, Wilson and King® gave a computer solution of analysing large multi-storey
buildings which also included shear walls. The programme, which was based on stiffness
method took into account flexural, shear, and axial deformations of the member. In addi-
tion to reducing the solution time significantly, this approach has a major advantage in that
the lateral stiffness matrix which is obtained may be used tor finding the vibrational charac-
teristics of buildings or in doing a direct dynamic analysis.

METHOD OF ANALYSIS

The method suggested in this paper for finding the complete dynamic response of a
structure is similar to that of Clough, Wilson and King. Direct stiffaess method is used
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to formulate ‘the stiffness matrix of the
structure. If the structure is laid out ina
rectangular grid pattern in plan as shown in
Fig. 1. then for finding the stiffness of the
structure in the considered direction, the
structure is separated into two distinct sys—
tems®, shear wall and frame system as shown
in Fig. 2. linked together by link beams.
This idealised combination of wall and frame
system connected by link beams as shown
above can be used to find the dynamic charac-
terstics of the complete structure. The various
assumptions made in the analysis are:-

(i)  The material of the structure is perfec-
tly elastic and only small deformations
are considered.

(ii)  For beam and column elements only
flexural deformations are allowed, but
for the shear wall, both flexural and
shear deformations are taken into
account, ’ ‘

(iii)  The floor diaphragms are rigid in their
own plane, but have no stiffnesses
normal to this plane - Thus, each floor
level is constrained to translate without
rotation and each vertical member is
subjected to same displacement in the
considered direction at apy storey.level,

(iv) Each shear wall is treated as a vertical
flexural element in which plane hori-
zontal sections remain plane as the wall
deflects.

(v)  Shear walls and columns continuously
extend from base to top and beams
from side to side. Minor variation in
regularity from omission of members

~at any storey level can be allowed for

by assuming zero stiffness for the omi~

tted members.

(vi) The direction of the ground motion
coincides with one of the main geo-
metrical direction of the building
ground plan.

(vii) For dynamic anlysis, the masses. of the
multi-storey are lumped at the floor
levels thus yielding a diagonal mass
matrix.

(viii) Damping effects are neglected for find—-
ing the natural frequencies and mode
shapes of the structure.
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BASIC MEMBER EQUATIONS
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The load displacement relationship for a member having two degrees of freedom
at each node point as shown in Fig. 3 (a) is given by the matrix,

4
symmetrical
Bl |_6. 12
(K, = T L L2
2 —6L 4
6 _ 12 6 D
T I L T

when shear deformations are neglected. If the
effect of both flexural and shear deformations
is included then the modified stiffness matrix [K;]
is given by ‘

e

.

T

Fig. 3 (a) Beam element subjected to

moment and shear at each
node point,

C symmetrical
_ —(C+D) 2 (C+D)
Ky = L iz
—(C+D)
D T C |
(C+D)  —=2(C+D) (C+D) 2 (C+D)
i L L3 L
where
c— 2Bl _2+)
L (Q+2n)
_ 2BIf 1—)
D= ”I_f( 12
6 EI .
and N = TG

L2

[

where A is called the shear flexibility factor and A is the effective shear area.

If the shear wall is replaced by uniform
line elements having the same stiffness and,
placed along its centroidal axis then the effects
of finite width of shear wall on the link beam,
connecting frame and wall systems, . will be

2

N

equivalent to that produced by an end gusset
fixed on the link beam as shown in fig. 3 (b).
The length of gusset is equal to the distance
from the end of the link beam to the centroidal
axis of the wall to which it is attached. The
gusset end behaves as a rigid member.
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Consider a typical link beam with rigid end gusset as shown in-Fig. 3 (b) subjected
to two degrees of freedom at each node point.

The stiffness matrix, [K,] defining the load deflection relationship of the above
modified beam element is given below,

12
—6/L =
El '
= 6 6 12, ., 12,d 27d2
=1 TEM2 = T 4+ (5) ) +i(F)
6 12 6 12 12
L s L+ g

SYNTHESIS OF THE STIFFNESS MATRIX FOR THE IDEALISED FRAME SYSTEM

Consider an idealised frame having m o
storeys and n~1 bays, subjected at each storey - 21 P*N
level i, to a lateral point load F;. These loads
will produce lateral displacement A i and rota-
tion 8 of each joint as shown Fig. 3 (c).

s

- . in P (b)) 'f LB
From compatibility of ' deformations we . | T " d
obtain , {d)
(ay 4
(0)a = @0 = (61)0 = (0)a = (fp)
() = bp-n = (B)p = Opy -1 - " pen
(0)e = Opin . (B)a = Opp Fig. 3 ¢
(W)a = () = Ai
(4)a = An s (Wde = At (1)
The moment equilibrium applied at the joint, p, yields |
(M2)a '+‘ (Mz)b + (Mx)c —l‘ (M1)d'= 0 ' ' (2)
Also for horizontal equilibrium
3((S)a—(Sp)e ) = Fy | | (3)

Substituting the values of the moments and shears in equations (2) and (3) for
moments and shear equilibrium at each joint, we will get a set of equations which may be
expressed in matrix form as (® :

_KEJ_K&] { ,,6_}_.: { o - @
Kal K A F J. |
where K,, is equal to K,,T

The above equation can be written as

[K] {A} = (P}
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or

{A} = [K] {P} = [F] {P}

(=} - ®

The submatrices of
[K] matrix in equation (4)
Equation (5) yields

{A} = [F‘m] {F}
or {F} = [Ful {A)

The equation (6) relates the lateral loads a
displacements. Thus [F,,"1] =["K] defin
is the number of storeys.

It can be shown that (K)=(Kg,)—(K,,) (Ku™) (K,9).

A computer programme was written which finally gave the value of (K) matrix for
direct use in the dynamic analysis. For the six-storey problem discussed in this paper,
the inverse matrix. [K,,] . was determined directly. Since in tall buildings this matrix [K,,]
is generally banded and is of high order, it is more efficient to find the product

[K;]! [K o] = [X] by the solution of equations [Ki] [X] = [K;,] using some elimination
procedure :

or

(E) being of the same order as the corresponding submatrices of

(6)
pplied at each storey level with the storey level
es the stiffness matrix *of the size n x n : where n

DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES OF
VIBRATION.

The equation of motion of a freely vibrating, undamped system can be written in
matrix form as :

[m] g} + [K]{q} =0 (7)
If the system is vibrating in one of its normal modes then we can write
{'a} = —p*{q} . (8)

where p is the angular natural frequency of vibration of the structural system vibrating
in one of its normal modes. [m] is the diagonal mass matrix because masses are assumed
to be lumped at each storey level. Substituting from equation (8) into (7), one gets

[K] {q} = p* [m] {q} ©)
If we premultiply each side of equation (9) by [m™], we obtain
[m]™ [K] {9} = p* {q}
or - [L]{q} = p*{q}
where [L] = [m~] [K] _ (10)
Equation (10) represents the eigenvalue problem in which the quantities p® are the
eigenvalues and the vector {q} defines the eigen vectors or the mode shapes.

The eigenvalue problem has been solved by using Matrix Iteration procedure. As
stiffness matrix is used in formulating the eigenvalue problem, the iteration converzes to
the highest value of p? or to the highest mode first. The matrix iteration procedurs was
programmed in Fortran 1900 using an accuracy of 0.000001 for convergence.
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_ For the six-storey perspex model (see fig. 5), the various cross-sectional properties
are given below.

Moment of inertia of all girders = 0.00455 in* -
Moment of inertia of all columns = 0.00455 in*
Moment of inertia of shear wall = 0.96 in?

E for perspex ‘ = 4.33%x 10 psi.

_ The (K) matrix, relating lateral forces at each storey level with the storey level
displacement, A i, for the model as obtained from computer analysis is given below.

8.65718
-6.65222 9.28221 symmetrical
(K) = 10 276680 —6.92088  9.37485

—0.721082  2.82513 —6 90120 9.20256
0177104 —0.692433  2.65284 —6.21934 6.60023

0.0292698 0.114349 —0.437438  1.67468 —2.48354 1.15533

“1bs.[in.

The diagonal mass matrix is given by

T 11.22 symmetrical |

9.35
(m)=10-* 9.35
9.35
9.35
S 6.26_ | ‘ 1bs./sec?,

) The theoretical natural frequencies and mode shapes as obtained from Matrix itera-
tion procedure from the computer are given below.

No. 1 2 3 4 5 6
p* 0.4744x10°  2.563x13¢  15.17x10°  52.66x10°  134.7%105  259.0x108
m 1.000 1.000 1.000 1.000 1.000 1.000
o]
d 2.644 2 049 1.121 0.00898 — 1.077 —1.901
[

4.445 2.231 00507  —1.001 0.0776 2.212
s _ '
h 6.061 1.193 —1.080 0.1366  0.994 —1.967
a
P 7377 —0.7931  —0.576 0.894  —1.080 1182
[

$.480 ~3.15 1208 —07393  0.5715 —0.494

The mode shapes are piotted in Fig. 8.
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EXPERIMENTAL TESTS

. The validity of assumptions can only be assessed by comparing the theoretical
predr.cti(ms with the experimental results. Very little experimental data in published litera-
ture is available on resonance testing of multi-storey frames. The authors have carried
out resonance tests on a perspex model of a six-storey building consisting of frames com-
bined with a shear wall as shown in fig. 4 in order to determine — '

(i) the natural frequency and

(i) the mode shape.

In this method, the system is excited harmonically and the amplitude and the phase
angle of various points on the structure are measured. Depsnding upon the physical
quantities which are measured, and the way in which the experimental data is plotted,
there are various techniques available by means of which the plots may be analysed. The
peak amplitude ‘method is one of the most widely used techniques for lightly damped
systems but has a serious drawback in that no accouat is taken of changes in the phase
lag of the displacement behind the exciting force and this is most predominant when the

system is passing through resonance. It is also worthwhile to point out that the peak
amplitude can be affected by the

presence of. vibrations of the suppor-
ting structures components. This does
not always give the true natural
frequency as discussed in our earlier
paper®.  The natural frequency can
also be obtained from the analysis of a
phase angle plot. The phase angle plot
yields as much information regarding
the natural frequency and damping as
the peak amplitude but is not influe-
nced by the presence of vibrations of
the supporting structure’s components,
Kennedy and Pancu® proposed a
method in- which they simultaneously
account for the variation of the ampli-
tude and phase angle with the freque-
ncy. lInstead of plotting two separate
graphs, one for the peak amplitude and
the other for the phase angle, the
amplitude and the phase angle are
plotted simultaneously in an Argand
plane. The principal author of this
paper has discussed the merits and
demerits of different techniques avail-
able for the determination of natural
frequencies in his earlier paper ¢,

EXPERIMENTAL SET-UP

A rig..was designed  to hold the Fig 4. Forced Vibration Set-up )
frame which was fixed at the base. 1. Model of the multistorey building. 2. Muir-

The supporting structure consisted of a head decade oscillator 3. Power supply unit
heavv concrete block with-an I section to oscillator 4. Phasemeter 5. Oscillator
embeded in it as shown in fig 4. The 6. Oscilloscope (double beam) 7. Voltmeter.

mcdel was sand witched between to 8. Heavy concrete block.
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4"X4"x3/8" angles fixed to the flat surface of the I section through high tensile bolts.

The multi-storey frame as excited harmonically by a Goodman electrodynamic
vibrator model No. V50 driven through a Power amplifier by a Muir head decade oscillator
K-126-A. It was assumed that the force exerted bv the vibrator was proportional to the

input voltage, the value of this was maintained constant throughout the single observation
for a mode,

The response signal at the top point was picked up by an accelerometer. The output
signal from the oscillator was also fed to oscilloscope. The estimate of natural frequen-
cies was first obtained by feeding the response and, the reference signal from the exciter on
to the oscilloscope until a 90° phase difference was obtained. The frequencies corresponding
to 90° phase angle were defined as the natural frequencies of the frame. After the natural
frequencies of the frame had been estimated, the test was repeated, but this time by
directly feeding the response and the reference signal to the phasemeter (Airmec type 206)

through voltmeter. The amplitude and the phase angle were measured for a range of
frequencies of excitation.

RESULTS AND CONCLUSIONS

Initially the readings were taker at an interval ranging from 10 to 5 cps. but
this interval was reduced to 1 ¢/s in the vicinity of the natural frequency. Because in the
-vicinity of the natural frequency the phase angle and the amplitude variation become very
sensitive to frequency. Fig. 5 shows the vector plot around the 2nd, 3rd, 4th and 6th
natural frequencies of the mode. The exciting force was applied at A and the response
was measured at Bas shown in fig. 5. The natural frequency is located by finding the
point having maximum frequency spacing around the curve. As mentioned earlier ® the
vector plot method, provides a simple technique of finding the true peak amplitude with
good accuracy, free from off resonant contributions, in the resonant mode at a natural
frequency. This is done quite easily by fitting a best circle to the are. placing
-particular emphasis on the part of it in the immediate vicinity of the nataral frequeny as
shown in fig. 5. The point, 0, denotes the new origin for the mode. Strictly speaking,
the maximum spacing can only be determined by measuring the lengths corresponding
to small frequency interval around natural frequency. For the present case a frequency
interval of Ic/s was chosen and arc length corresponding to this interval measured.

Figs. 6 and 7 represent the Peak Amplitude and phase angle plot around the second
natural frequency of the model. Table 1 shows the comparison of theoretically computed
natural frequencies with the experimental results for the six-storey model. The results
agree closely. It can be seen from the vector plot (fig. 5) that there was a resonant
frequency of around 665 cps also. Later this was found to be that of the supporting
block. If only the peak amplitude method of finding the natural frequency had been
used, it would not have been an easy task to separate the model and support frequencies.

The fifth. frequency was missed during the experiment. The experiments had been
conducted before the theoretical results were computed,
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Fig. 5. Vector Plot for Second, Third, Fourth & Sixth Natural Frequencies.

Table 1

Comparison of Theoretical and Eiperimcntal Values of Natural Frequencies of a Shear
Wall-Frame Combination ‘

vote | Fepemen:
1 110 107
2 255 | 252
3 630 | 620
4 1160 | 1192
5 1840 missed
6 2560 | 2460
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