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DYNAMIC BEHAVIOUR OF CANTILEVER BEAMS

A. R. Chandrasekaran*

Synopsis

A number of structures, like chimneys and stacks act as cantilever beams. This paper
deals with the dynamic behaviour of such beams taking into account bending, shear and
rotatory inertia deformations. Equations of motion have been given. Theoretical and
numerical solutions are discussed. Natural frequencies of vibration have been determined
for linearly tapering beams. First four modes of vibration have been determined. Slender-
ness ratio and taper have been varied. The variation of frequencies as a function of the
various parameters have been presented in the form of graphs

1—Introduction

Cantilevered structures like chimneys are generally tapered and have different slender-
ness ratios depending upon their height and material of construction. The behaviour of
tapered cantilever beams subjected to either pure bending!f or pure shear? deformations
have already been worked out. However, a beam under vibration has bending, shear and
rotatory inertia deformations acting SImultancous]y S,

In this study, natural frequencies of V1bratlon corresponding to first four modes

of vibration, have been determined for tapered cantilever beams. ' The slenderness tatio:” **'

and taper have been varied. Also, solid and hollow sections have been considered. The
results have been expressed in the form of - graphs. = A comparison has been made with
pure shear and pure bending cases. . The natural frequency of vibration of . beams has.a .
value closer to pure bending case correspondmg to lower modes of vibration and larger
slenderness ratio and tends to those of pure shear case for hlgher modes of vibration and
- smaller slenderness ratio.

2—Bas1c Equations of the Problem

The following assumptions are made in solving the problem The materlal of Which”™
the beam is made is homogeneous, isotropic and behaves elastically. The cross sections
remain plane in bending. The cross section in shearare free.to warpf*‘sbut ‘the resultmg
axial inertial forces are neglected. Only small oscillations are to be’ ‘¢onsidered.. A beam
model satisfying the above assumption is generally known as Timoshenko Beam.

Considering the rotational and translational equilibrium of elastxc and inertial
forces?, we have r

V = —oAG ‘g: | ’ o 2.1%
__pr Vo ‘ . ”‘
M =Bl | 22

* Professor of Structural Dynamics, S.R.T.E.E., University of Roorkee, Roorkee,
T Refers to serial number of references listed at the end.

1The letter symbols adopted for use in this paper are listed a]phabatically in appendik.
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ox M 5tz +w () -

y = Yp + ¥s , v 2.5

where. o fepres,ents, the ratio of average shear stress on a section to the product of the
shear modulus and the angle of shear at the neutral axis. o

Combining 2.1, 2.2 and 2.3, we get

3%b \ _ s *yb
(EI ; )-———O'AG AT = 2.6

Combining 2.1 and 2.4, we get

(AG ay8)~ pA +w(xt) : 27

Equations 2.6 and 2.7 form a pair of coupled equatlons in yb and ys and these are
the basxc equations of the problem.

The above equations can also be derived from considerations of energy utilising
Hamilton’s principle. This will incidentally generate the boundary condltlons"

3—TFree Vibration Problem ,

For the sake of simplicity, we would consider the case of a uniform beam in
obtaining a solution to the problem. However, all the general conclusmns arrlved at are
also apphcable to the case of non-uniform beams : :

- For the free v1brat10ns of a uniform beam consndermg a harmonlc solutxon in time,
-equations 2.6 and 2.7 reduces to . i S .

131‘1—3(’1—"—3—(’El + o AG %%»plp?%)—« =o - - g

o AG g—y‘j@— + P AP (¥s () + ¥b (x)) = O 32

Lef Yo (x) = Bp ePX ( 3.3
and vy (x) = BgeP¥ o 34
Substituting 3.3 and 3.4 in equations 2.1 and 2.3 we get o . |
EI 8 By + 0AGE By + p Ip?8 By = 0 3.5

and
o AG? Bs + 0 Ap? (By -+ Bg) = 0 | | 3.6
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Rearranging 3.5 and 3.6 we get

@+ em B+ () B=o0 | 37

@E py By + (@B pt+ 5 P )B=0 3.8

-~

In order that a solution of the form 3.3 and 3.4 may exist the determmant of the
coefficients of equations 3.7 and 3.8 must vanish.

This yields a frequency equation of the form

pt _pz oG —?——(E/P—l— ‘7:}) 32>+_13_- oG_ﬁ‘l_—_-O | 39 .

A (20) ,
Nk ("GA (B %) ymio 7 oet 310

Another equation in p and B can be had when the boundary conditions are applied
to the problem and thus we can solve for p and 8. In general, two values of p? correspond
to every value of p2. As equations 3.1 and 3.2 are fourth order in time, there will be
two sets of real frequencies, one corresponding to the positive sign and the other to the
negative sign of equation 3.10.

that is
p? =

==

In general, the free vibration problem has a solution of the form

oc
Yo (%, 1) = 3 ¢n, (x) Bu sin (Past + Oum1)
n1 =1
oc
+ 2 bng (x) Buog sin (pog t + enn) 3.1
n2 = .
oc
ys (x, 1) = E Ynr (x) Bu, sin (pm t 4+ 60 ny)
, nl =1
m .
+ 2‘/’112 (X) Bng sin (png t + 6ng) - 3.12
n2 =1
where ‘
¢t (X) + ¢np (X) = Y () 3.13
is the mode shape corresponding to first set of frequencies and
$ny (X) + s (X) = Yu, (x) 3.14

is the mode shape corresponding to second set of frequencies.
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4—TForced Vibration Problem

Once again, for the sake of simplicity, we will consider the case of a uniform beam.

Equanons 2.6 and 2.7 represent the equations of motion for the forced vibration
problem and in the case of the uniform beam they reduce to

el e ,p W _ 4.1
BLER FoAG B — o1 2ok =0 ,
2 |
oAGays —oa TN — _wxy 42

We assume a solution of the _form

Yo (%, 1) .:2 Em ém (X) + 2 Eng Pug (X) ‘ 4.3

nlt =1 n2 =1 . .

Vs (X, t) =E En Pn1 (X) + 2 Enp Yns (X) | l | 4.4
nt =1 n2 =1 : :

where &5, and Zn, are harmonic functions of time.

Substitut%i_n_g 4.3 and 4.4 in“ 4.1 We ge‘f

Eam(EId"s‘“) Zim(aAGd'/’“‘) 2( Id¢"‘)

n =1 nl =1 nl =1
+ Z na (EI @ éng ) + 2 g (oAG diny ) Z'( I d¢ ny )g.,z_.o 45
n3 =1 : n2 =1

Rearranging 4.5,

- E (BI040 AGd%l) Egm (% )

nt =1 nl =1

S (Eld b1 oAG d¢“") 25“2 (PI déns) _ o 4.6

n2 =1 n2 =1
Since 1, ¢ny, ¥n, and i, are solutlons to the free vibration problem;, substltutlng

these in equations 3.1 we get

E d ¢n1 + AG d¢ n1 p— pI p2 dm_. ‘ ) 4'7 '
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and :
d® ¢n, dipny _ dé ng _
El e + o AG 4 = PI piy, il 4.8
Making use of relation 4.7 and 4.8, equation 4.6 reduces to
oC
3 Gor + Do) P10 S, e 0T S = 0 49
nl =1 . n2 =1
Similarity substituting 4.3 and 4.4 in 4.2 and making use of‘ equation 3.2, we get
o oC
2(5111 + p%ni o) PA (¢n1 + ) + E(Enz 4 D%ng Eng) PA (fng + ¥ng) = W (%, 1) 4.10
nl =1 nz =1

For proceeding with the solution of equat1ons 4.9 and 4.10, we require an ortho-
gonality relationship. The form of this relation is not the usual classical orthogonality
condition. This condition is of the following form?

L - _
d d
I(pA (o + ¥s)m (Yo + ¥Ya)n + pI( Yb ) ( Yb ) )dx=0 4.11
The subscrlpts m and n refer to two separate solutions.
o o .
, d : -
Let, S rlam ¢“‘ + 2 ol ap, ‘fj';: S , 4.12
nl =1 n2 =1
and
oC S
, E P A Yp an + 2 PAYn; ang = W (X, t) ; ‘ | 4.13
nl =1 ‘ ‘ n2 =1 ' o

Using equations 4.9 and 4.10 and equating terms on either sides, we get

Eny + PPm £ = am o . 414
and 4 ‘ ' ‘ ,
gnz + P%na $np = any ‘ 4.15
Now
L ‘ L
dcﬁm
wx, t)) Yo dx + (0) dx
0 0
o L oc L
2 am, Ip AYm Ynidx 4 2 am, J. pl dg’;ll dd¢)?l
ml=1 o © ml=1
- eC L oC L .d d ’ '
+ 2 Ams IpA Ymg Ym dx + 2 ams I pI ¢;” —¢"~' , 4.16
m2=1 " m2=1 o
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Using'orthogonality relationship 4.11, we get
: L
[ W (x, t) Yn dx

°
anl = =

IL (pA Y2 +p I(d‘é-“’) ) dx |

 Similarly
W (X, t) Yyo dx

(p A Yo+l (d-‘f’“") ) dx

Now solving 4.14 we get

Il

© ey - © ey

w (X, t) Yy, dx

" 2
(p A Yo +p1 (d;;‘) ) dx

sin pny (t—7) dv

1
%‘ﬁf

)
eq.‘___”_'ec—.”_

and from 4.15

w (X, t) Yy, dx

t

1
ng = I T sin ppg (t—7) dv
Pny d(ﬁ g .
° j (pAY,.f—{—p I (E;“—z) > dx
The final solution making use of 4.3, 4.4, 4.19 and 4.20 is
Y& =yb (x, 1) + Ys (X, t)

© e, -

(W (%, t) . Yn; . dx) sin pp, (t—7) d=

(PA Ya2 oI (d"b“) ) dx

x

Y (x)
5 "

nl=}

L TR S——

t L

o ]' J.(w (X, t) . Yoy . dx) sin pay (t—7) dx

Yn2 (X) e o

+ 2 T : 2
f PAYnz’—}—pI(%"l))dx‘

4.17 -

4.18

4.19

4.20

4.21
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5—Earthquake Excitation

Consider the case of a cantilever beam subjected to a
transverse base motion described by the base acceleration

a (t) as shown in Fig, 1.
If Z(x,t) =Zp(x,t) + Zs(x, 1)

is the relative motion between the beam element and the base
then the equatlon of motion becomes

0 19 *Z» aZs °Zy , |
3 (B ) = — a0 2+ a TG o
0Zs _ f 022
and ( AG — ) - pA( ol (t)) 52

Comparing 3. 1 and 5.2 with 2 6 and 2 7, we see that y corresponds Z and w (x t)
to — pA a(t) and therefore correspondmg to 4 21 we have a solutlon for Z (x, t) of the form

oC Yo (x) I A Yn; (x) dx
Z(x,t) = 2 °

Lo

L

m=1I@Amer+ICmﬂ)d

L
o Yng(X) . j P A Yna (X) dx

+
n2 =1 I (pA (Yns (x))*+-F1 (dqsnz) ) dx

Let, the mode factor be denoted by C, where

PA_ .Y (%) . dx

GAW@HHM(¢)

and the psuedo spectral response velocity by Sy, where

C=

1
E

€ e, | g ey -

Sy = (f a(t) sin p (t—7) d*)maximum

The maximum value of Z is then given by

Zm(x)—~ 2 Y1 (x). Cnl Sv + 2 Ynz (x) . Cu, Sv v

ni=1 " np2=l

! a (t) s$in'pny (t—71)dr
pm
1 L
» I a (t) sin pny (t—7) d7
n2
5.3
5.4
5.5
5.6
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/

The relative displacement corresponding to any particular mode, say the rth mode, is
given by

Z, (x) = Yr(x). C; + Sy, g ' 5.7
Similarly, the maximum bending moment at any particular point in the beam correspond-
‘ing to rth mode is given by '

M (x) = EI (x) dz

and the maximum shear force is given by

. Crsy, 38

Ve () = — 0AG (x) d‘/gfi’ Cr .Sy, ' 59

6—Theoretical Solution

The present study deals with cantilever beams. As will be indicated later, the
solution gets very much involved even in the case of a uniform beam. It turns out, that
only in the case of simply supported beam, the solution is straight forward as the shape
functions are harmonic?. ’

Consider a uniform beam and assume a solufion to equation 2.1 and 2.2 of the form
Yo = Boe®™ 1+ Bye XL Byye? X1 Bye P X | 6.1

Ys = Bls CBX +ste_ﬂx+Bas eB X—f‘B4s G_B X 6.2

There are apparently eight arbitrary constants but it can be shown that tnese are
related in such a way that only four arbitrary constants exist and they can be evaluated -
from the four boundary conditions in space corresponding to the fourth order differential
equation in space. '

Substituting 6.1 and 6.2 in 3.1 and 3.2 and equating terms, we get
PADp?

Bis = — ai(—} (pIp®-+-R2ET) Bo = — & AP T vAGE) Bip 6.3
Bys = — <TAI“G“ (pIp24-B2El) Byp = — G Apf _’:EZ g Bap | 6.4
By = — — (Ip™+87El) By — — e 7% B 6.5
By — — (ﬁ (PIp*+B7ED) By = — G ApziAfZGg'z) By 6.6

: From 6.3, 6.4, 6.5 and 6.6, we get the following frequency equations relating § and
"top

4 (G A °G E oG, _
Pep (T B+ ) )+ o Ta—o 67
4...2‘19 _é___ ‘_’9 2 529'4_
- (S T~ (B + 7)) )+ =0 63
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Let us apply boundary conditions to the problem to solve for .

-Taking the origin at the built-in end, we have for all t, At the built-in end,

. total deflection ‘ Vs + Yo | x=0=0
bending slope %:’ x—o =
At the free end, moment %}% =] = 0
shear %%9 ] = 0

| i
Let  § = % (eIp* + B2 ED

! l ’
and 8 = cAG (pIp*4+p2 ED)

then, equations 6.3, 6.4, 6.5 and 6.6 may be written as

Bs =—3§ Blb

Bjge = — 8By

Bss = — § By
- Bys = —9§ B

now, making use of boundary conditions 6.9, 6.10, 6.11 and 6.12, we have
(Bib+Bis) + (Byb+Bss) + (Ban+Bss) + (Bap+Bys) = 0
B (Biv—Byv) + B'(Bgb—Byp) = 0

B (Brs e By e L) 4 g Bawe® L — By e FLy= 0

B Bun 4By T 4 82 By F & - By e Py 0
Rearranging 6.14 to 6.17 o
Bib (1—8) -+ Byo (18) + Bgp (1—38") 4 By (1—5') = 0
Bio (B) + Byp (—B) + Bas (8) + By (—B) = 0
gL

Bin (=38¢"") + B (38 P1) + By (38’ )43 53eF Yy = 0

Bun (6 ¢? )+ By (e L) 1By, (87 P By g6 P Ty o

85

6.9
6.10

6.11

6.12

6.13

. 6.14

6.15
6.16

6.17

6.18

6.19
620

621

Hence, for 6.1 and 6.2 to be a solution of equations 3.1 and 3.2, the follo.wing ‘

frequency determinant must be zero

1-3 1—8§ 1= 1%

B _B ﬁ’ | _Brﬂ

I3 ’ = 0
___8@ CBL SB e—'BL : ___SIBICIG L 8/@! e-—.'B L
pt ePL pre PL p'e FL pae P L

6,22
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Solving 6.22, we gef the frequency parameter S.

It will be seen that the determinant is rather involved and even in the case of a
uniform beam, the theoretical solution is quite complex.

7—Numerical Solution

~While discussing theoretical solution of equations 2.1 and 2.2, it was observed that
even in the case of a uniform beam the solution is very much involved for boundary
conditions other than simply supported.

Further if the non-uniformity of the beam is not defined by a regular function,
theoretical solution is almost impossible to obtain even in the case of beam subjected to
pure bending or pure shear deformations. Numerical techniques are, therefore, resorted
to in solving such problems.

The method consists in replacing a continuous system with a discrete system by
concentrating the mass distribution into an equivalent set of discrete point masses 'embedded
in an ideal massless substance possessing the same elastic properties as the body simulated.

\.

Error Analysis of the Numerical Approach

Errors are due to approximating an infinite degrees of freedom system to a finite
degrees of freedom system and not due to numerical techplque involved. One type of
error involves the number of masses used. The other type involves the determination of

equivalent masses and stiffnesses.

To make an error analysis one should know the exact values of quantities under
investigation. The errors in period are evaluated here. :

The present investigation is mainly concerned
with cantilever beams. We have exact solution of
periods in the case of cantilever beams subject to
pure bending or pure shear deformations. =

Error in finding equivalent masses
There are‘gen‘erally two procedures adopted in ‘ E
—ﬂ

finding out equivalent masses. In one case, the

mass of a segment in divided equally and concent- —t— = —
rated at the ends (Figure 2a). In the other case the . )
mass is concentrated at the centre of a segment ‘h)
(Figure 2b). \ - Fio. o
ig.

It has been observed, by comparison with exact -

solution in the case of uniform bending beam, that errors are smaller if the mass is
concentrated at the centre of segment.

Further, it has been shown that for a uniform shear beam, if the mass points are
located at midpoints of equal segments, the error in frequency varies inversely as the
~square of number of segments, whereas, if the masses are placed at the ends the error varies

as inverse first power of number of segments®. :

L
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Error due to number of segments

87

In the case of a shear beam in addition to having an exact salution for the continuous
system we also have an exact solution for the discrete system?.

For the continuous system,
frequency parameter y, =

(v is proportional to p?)

For the discrete case with mass points concentrated at the middle of segments

@r—1) =2

4

von — 212 < L Cos (2r—1) n)

2n

(Qr—12=?  (2r—1)ixt

4 192 n?

—_ —1)2 22
The error Gro = Ye—%rn — 2r—1)7

-4 small terms

v, qgnz T higher inverse powers of n

This shows that error in ¥ for any given mode ultimately varies inversely as the
square of number of segments and that proportional error for a given n increases rapidly.

In the case of a bending beam,
we do not have an exact solution for
the discrete system. Therefore, a
numerical method, was adopted in’
calculating the frequency parameter.
A uniform gantilever beam was divided
into n equal segments where n ranged
from five to hundred. The masses
were assumed as concentrated at the
centre of segments. In each case, the
frequency parameter was obtained for
the first four modes of vibration and
the results compared with the exact
solution for the infinite degrees of
freedom system.

Figure 3 shows a plot of Gm

versus number of segments for the bending beam. |

Modified Holzer Technique

o H 42
% Error in p

UNIFORM CANTILEVER BEAN

FREE TYRANSVERSE VIBRATIONS
. (PURE. BENOING CASE)

Myklestad and Prohl were the first to adopt this numerical technique to the beam
problem!®. A small modification of their method is made here

characteristics of Timoshenko beam.

to take into_ account the

Consider equations 2.1 to 2.5 and assume that a harmonic solution in time with
frequency p is applicable. Then, for the free vibration problem, we have '

V=-—0AGC—1E
. dx

71
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— gy 9
M = EI i 7.2
dM 2
dv 2
dx = mpY , 7.4
Y=Yp + Vs 7.5
Let the beam be divided into a
a number of segments and one

typzcal section of beam be as shown
in figure 4.

A finite change of shear force
occurs at each mass which is equal to
inertia force of mass

AV = mp2y
t Assume that the following quantities Vo, M,, fbo, Yoo arid ¥so are known at the left
section : )
Then
Vi = Vo + mep?y, 7.6
M, = Mo+ Vi (AX); ~ (PI); (AX)1 P¥ho 7.7
YSI = YS - (m) (AX)l | 7.8
Now, bending moment M at any distance x from the left hand side section o is
' MI_MO
1
Slope O (ED, j Mdx + B 7.10
1 M, M,—M, x
~ @, (Mox + Ry 2) 1 By 7.11
and deflection yp, = [ fdx -+ B’ % 7.12
] 1 _ M,— MO x3 '
“(E[)1< o 2+ o )—l—be—{—yb 7.13
AX N _
Let ("E_I )=t 7.14
then at  x = (AX),
. eb __g (MO Ml)_,_ 0b 7‘15
Mo .
and  ym=t (Yoq M )(AX); + o (AR +Yo 7.16
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e b~ (8% ) ™ -
2 | k | 2 Ay, ! f
msp Y, 2T : !
0% | my p y,” v,
_‘;‘J v ' ! va l \’
Vo ' I 1 ; |
| R f -
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Mg ™ | My ' 2
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|

Fig. 4
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Now, we can generalise the result and write expressions for the nth section in terms
of values at (n— 1)th section. '

Va = Vo, + Mp_y P? Yoy ‘ » . S 717

Mo= Mn; + Va(AX)a—(PDa( AX)n P*0o, T 718
Mn_, n )

6o, = Lo (—2 + h—}) + b, . 7.19
Mn_' Mn ot

Yo, = &n ( P4 —6—) (A% + 0o,y (AX)n + Yo, . 7.20

Yoo = Ve = (554 ). Va | - S

Yn = ¥n, + Vs, , | 7.22

Thus, we see that for any frequency p,"once we know the values V, M, 65, ys and
Yo at a particular section we can find the corresponding values at all other sections.

Prpcea’ure Jor cantilever beam
At the built-in end, 6y, yp, and ys are equal to zero.

Let us choose an arbitrary value for p, say p’. First assume that a shear V' (it can
be 1.0 for convenience) and zero moment exists at built-in end and evaluate the shear and
moment at the free end. Let it be B, and B,. Next assume that a moment M’ (it can be
1.0 for convenience) and zero shear exists at built-in end and than evaluate the shear and
moment at the free end. Let it be B; and B,. Now if Vo and M, are the actual values of -
shear and moment at the built-in end, then at the free end

\ M | |
Ve =B 3 + Bi g, 7.23
o \Z M ) |
and M= B, —V‘f -+ B, M—(,’ 7.24

Now if the value of p’ is such as to coincide with one of the natural frequencies of
the system, then Ve and Me would have been identically zero. That is, the determinant

BB o

v M’ »
A = =0 7.25

B, B,

VoW |

In' general, it would not be possible to
guess the value of p correctly. However, we
can arbitrarily assign various values to p’ and
evaluate A. A plot of p? versus A would have Fig. 5
a general appearance of fig. 5, The correct value N
of p? are those which correspond to intersection of the curve with the p? axis.
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8. Description of Variables

For numerical analysis, in each case, the beam is divided into hundred segments.
From the error analysis of shear and bending beams it is seen that error is negligibly smuall
even upto fourth mode of vibration. As the Timoshenko beam lies between-two extremes
of shear and bending beam it is assumed that the errors would _be negligible. The average
mass of each segment is assumed to be concentrated at the middle of the segment. Average
values over a segment are assumed to represent equivalent area and moment of inertia.

Taper Ratio a
Linearly tapering beims have been considered for analysis. The radiua of gyration
at any level x, where x is measured from free end, is given by, ry =k ( a -+ f) where k,

a and b are constants for abeam and its lengthis L. The ratio of radius of gyration at
the free end to that at the fixed end has been designated as ‘Taper Ratio’, and is given by

a
= atv |
The value of a is varied from 0.2 to 1.0 and this covers a wide range of practical cases.

a

Paramete E
e’

E and G are related by the well known expression
E =2G (14v) _
where v is the poisson’s ratio of the material.

An excellent discussion on the value'to be assumed for ¢ has been given by Mindlin.
The value of ¢ not only depends on the shape of the section but also on the mode of
vibration. Further, if the beam is non-uniform, ¢ will also vary along the length of the
beam For a solid section, a value of ¢ = 5/6 has been suggested. Taking a value of

v = 0.175, for a solid section oE_G works out to 2.82.

Jacobsen has pointed out that ¢ may have a value of 7% for a square box cross-

section and '7;8 for a square cellular section®. It appears that ¢ could vary from 5/6

for a solid section to 1/3 for a thin hollow section. Therefore, the parameter E/¢G can
have very different values and may not be even constant for a particuler beam.

In this study, E/eG is considered constant for a particular beam and has a value of

2.82 corresponding to solid section and a value of 7.50 corresponding to thin hollow
section. ‘

Slenderness Ratio, L|r

The slenderness ratio is varied from 6.928 to 69.28. Corresponding to a solid
section, this would mean a variation in length to depth ratio from 2 to 20. This covers a
wide range of practical values. :

The frequency of vibration has been expressed in the form

_ =T 1 Ty
P—CD-X/E/P-.TJoL—
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9—Discussion of Results and Conclusions

Figures 6 to 9 indicate the influence of slenderness ratio on the frequency corres-
ponding to the first four modes of vibration of uniform beams. Frequency is inversely
proportional to slenderness ratio for a bending beam and is independent of it for a shear
beam. Frequency of a Timoshenko beam is less than either that of bending or of shear beam.
Bending value and shear value form the.two bounds of frequency for a beam. For large
values of slenderness ratio, frequency tends to that of bending and for small values
to that of shear. The influence of shear and rotatory deformations on frequency
progressively increases with higher modes of vibration.
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Figures 10 to 12 show the influence of taper ratio on the frequency. In the first
mode, frequc?ncy decreases with increase in taper ratio whereas in other modes it is vice
versa. In higher modes, frequency increases rapidly with increase in taper ratio.

| : v )

_ Frequc?ncy decreases with increase in the value of parameter E/¢G. That is, a solid
section, havmg. the same slenderness ratio, length and taper and made of same material
as a hollow section would have a larger frequency than the hollow section.

In summary, if higher modes of vibration are to be considered and the beam is

ztmét., shear and rotatory inertia deformations are to be considered in addition to that of
ending. ,
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Notations

- area of cross-section

a constant, ‘ka’ is the radius of gyration at the free end of the cantilever beem

acceleration of base
a constant. ‘k(a--b)’ is the radius of gyration at the fixed end of the cantilever
beam. -
mode factor

modulus of elasticity

modulus of rigidity

moment of inertia of cross-section

a constant. proportional to radius of gyration.

length of beam

bending moment

mass ,

number of masses

natural frequency of vibration

radius of gyration

time

shear force

force

distance along the beam

mode shape

total deflection

deflection due to bending

deflection due to shear

- relative dlsplacement between the beam element and base

Taper ratio = 3 +b

frequency parameter. Has a unit of L-2
frequency parameter Proportianal to p*
error in y

phase angle

poissoin’s ratio

normal coordinate

mass density

ratio of average shear stress on a section to the product of shear modulus and
the angle of shear at the neutral axis

a parameter of time
mode shape corresponding to bending
mode shape corresponding to shear






