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ABSTRACT 

 An earlier numerical study of a single-degree-of-freedom (SDOF) structure rigidly supporting a tuned 
liquid damper (TLD) and subjected to broad-band ground motions, has showed that a TLD has to be 
properly designed for effectively reducing the response of the structure. In this paper, a comprehensive 
study of the effects of various ground motion parameters on the ability of a TLD to reduce structural 
response for earthquake base motions is presented. It is shown that the frequency content and bandwidth 
of the ground motion do not significantly affect the effectiveness of the TLD. Since TLD is a nonlinear 
system, its effectiveness increases with an increase in the intensity of the ground motion. Furthermore, 
since TLD behaves as a viscous damper, it cannot reduce the response in the first few cycles of vibration. 
Therefore, TLD is more effective for the far-field ground motions, where the strong-motion phase and 
consequently the peak response of the structure occur after the first few cycles of vibration. 

KEYWORDS: Earthquake Response, Structural Control, Tuned Liquid Damper, Energy Dissipation, 
Nonlinear Damping 

INTRODUCTION 

 A variety of passive control devices have been developed to control the vibrations of civil engineering 
structures due to dynamic loads, such as those due to wind, earthquakes, etc. The passive energy 
dissipation systems encompass a range of materials and devices for enhancing damping, stiffness and 
strength and can be used both for natural hazard mitigation in new structures and for the rehabilitation of 
ageing or deficient structures. In recent years, serious efforts have been undertaken to develop the concept 
of energy dissipation or supplemental damping into a workable technology and a number of these devices 
have been used throughout the world. 
 Base isolation is one of the passive ways of controlling vibrations due to ground motions. The basic 
aim of base isolation is to shift the fundamental period of a structure away from the high-energy period of 
the ground motion, such that the structure is subjected to lower earthquake forces. A base isolation system 
causes a large displacement at the level of isolator, which needs to be accommodated or reduced by the 
supplemental means. The effectiveness of base isolation systems for controlling the seismic response of 
structures subjected to far-field ground motions has been well established. 
 In recent years, there has been a considerable interest in studying the response of base-isolated 
buildings under the recorded near-fault earthquake motions (Jangid and Kelly, 2001). These ground 
motions contain one or more displacement pulses with peak velocities of the order of 0.5 m/s and 
durations in the range of 1–3 s. Such pulses have a large impact on the isolation systems with periods in 
this range and lead to large isolator displacements. 
 Jangid and Kelly (2001) have studied the effectiveness of base isolation systems for near-fault 
motions. In their investigation, analytical studies of base-isolated structures were carried out. First, six 
pairs of near-fault motions oriented in directions parallel and normal to the fault were considered, and 
then the average of the response spectra of these earthquake records was obtained. This study has shown 
that, in addition to the pulse-type displacements, these motions contain significant energy at high 
frequencies and that the real and pseudo-velocity spectra are quite different. The second analysis 
modelled the response of a model of an isolated structure with a flexible superstructure to study the effect 
of isolation damping on the performance of different isolation systems under near-fault motions. The 
results have shown that there exists a value of isolation system damping for which the superstructure 
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acceleration for a given structural system attains a minimum value under the near-fault motions. 
Therefore, although increasing the bearing damping beyond a certain value may decrease the bearing 
displacement, it may also transmit higher accelerations into the superstructure. Finally, the behaviour of 
four isolation systems subjected to the normal component of each of the near-fault motions was studied 
and it has been seen that EDF-type isolation systems may be the optimum choice for the design of 
isolated structures in near-fault locations. 
 Ye and Li (2009) have carried out a parametric study on the dynamic response of lead-rubber bearing 
(LRB) base-isolated structures under the near-fault pulse-like ground motions. Due to the limited number 
of real near-fault pulse-like records, for the convenience of the parametric study, artificially generated 
near-fault pulse-like ground motions were simulated by combining the real far-field ground motions with 
simple equivalent pulses that reflect the near-fault features. By using these artificially generated near-fault 
ground motions, different dynamic characteristics of LRB base-isolated structures under the near-fault 
pulse-like and far-field ground motions were studied. Moreover, the effects of different pulse types, near-
fault ground motion parameters and dynamic properties of LRB isolation system on the maximum 
absolute acceleration of superstructure and maximum displacement at the isolation level were 
investigated. It has been concluded from this comprehensive study that the maximum absolute 
acceleration of superstructure and the maximum displacement at the isolation level of the LRB base-
isolated structure subjected to near-fault pulse-like ground motions are much greater than those under the 
far-field ground motions. Further, the effective range of base isolation has been narrowed, and it has been 
seen that pulse type and pulse period have significant influences on the dynamic response of LRB base-
isolated structures. 
 Another class of passive devices that are commonly used consists of tuned mass dampers (TMDs) 
(Den Hartog, 1956; Warburton, 1982; Villaverde, 1994). A TMD consists of a secondary mass with 
properly tuned spring and damping elements such that the dynamic characteristics of the structure are 
changed and a frequency-dependent hysteresis is provided to increase damping in the structure. It has 
been well established that TMD is effective in reducing the wind-excited structural vibrations. Kamrani-
Moghaddam et al. (2006) have investigated the performance of TMDs in the response reduction of 
structures for near-field and far-field earthquakes. The 3-, 9- and 20-story structures designed for the SAC 
phase II project were used in this study. First, time-history analyses were performed to calculate the 
response of each structure to the Chi-Chi, Kocaeili and Landers near-field and far-field earthquake 
records. The same procedure was followed for the models with a TMD duly attached. The results have 
shown that the performance of TMD in the 3-story structure was better for the far-field excitations, while 
in the 20-story structure, the performance was better for the near-field excitations. 
 Pinelli et al. (2003) have studied and compared the feasibility and effectiveness of controlling the 
seismic vibrations of a structure through the installation of different combinations of TMDs. These 
include a single TMD tuned to one mode, multiple single TMDs controlling several modes (i.e., 
MTMDs), a battery of TMDs controlling one mode, also known as distributed tuned mass dampers 
(DTMDs), and several batteries controlling different modes, also known as multiple distributed tuned 
mass dampers (MDTMDs). The optimization criteria for each TMD combination were adopted from the 
literature, and modified as needed. Three public benchmark case studies were retrofitted with different 
combinations of TMDs and subjected to a series of earthquake ground motions with different durations 
and energy contents. The performance of each TMD scheme was evaluated based on the floor 
displacement and acceleration reduction as well as on the reduction of hysteretic energy dissipation in the 
structure. The influence on the performance of the TMDs of the nonlinear behavior of the structural 
members was also investigated. To evaluate the proposed control strategies under the benchmark 
evaluation study, two far-field and two near-field historical records were selected. From this study, the 
authors have concluded that under the far-field long-duration ground motions, both single-TMD and 
MTMD control methods can reduce the building response effectively. On comparing the results of the 
two methods, the MTMD control method has been found to give on average about 10% more acceleration 
reduction than the single-TMD control method. In the case of displacement reduction, both single-TMD 
and MTMD control methods have been found to perform similarly and larger mass ratios have resulted in 
bigger response reductions. However, the performance of both TMD and MTMD methods under the near-
field earthquake motions has not been found to be significantly different. 
 More recently, Matta (2011) has investigated three classical techniques and tested two new variants 
for designing a TMD on an SDOF structure under 338 NF records from the PEER NGA database, 
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including 156 records with the forward-directivity features. Percentile response reduction spectra were 
introduced to statistically assess the TMD performance, and TMD robustness was verified through the 
Monte Carlo simulations. The methodology was extended to a variety of MDOF bending-type and shear-
type frames and a case-study building structure recently constructed in central Italy. It has been concluded 
that, if properly designed and sufficiently massive, TMDs are effective and robust even under the 
excitation of pulse-like ground motions. The two newly proposed design techniques have been shown to 
generally outperform the classical ones. 
 As discussed above, a base isolation system causes a large displacement at the level of isolator, 
especially when the system is subjected to the near-fault ground motions, and therefore this requires 
additional devices to control the isolator displacement. Taniguchi et al. (2008) have studied the 
effectiveness of TMD consisting of a mass-dashpot-spring subsystem that is attached to the isolated 
superstructure, analogous to a pendulum. Both the isolated superstructure and the TMD were modelled as 
linear single-degree-of-freedom oscillators. The optimal TMD parameters were determined by 
considering the response of the base-isolated structure, with and without the TMD, to a white-noise base 
acceleration time-history. Such an excitation is representative of the broad-band ground motions having a 
nearly constant intensity over a duration several times longer than the period of the base-isolated 
structure. It has been found that under such an excitation, a reduction of the order of 15–25% in the 
displacement demand of the base-isolated structure can be achieved by adding a TMD. Next, the 
responses of an example base-isolated structure with and without an optimally designed TMD to the 
selected suites of far- and near-field recorded accelerograms were determined. This study has shown that 
for the far-field ground motions, the effectiveness of TMD is more or less similar to that predicted by the 
white-noise model, whereas for the near-field ground motions, the effectiveness of TMD is of the order of 
10% or less. 
 Tuned liquid dampers (TLDs) have been the subject of significant research over the past two decades. 
A TLD is essentially a tank which is attached to a structure to control its vibrations and whose size and 
water level are decided based on the structural requirements. Its appeal lies in its simplicity, cost-
effectiveness and low maintenance requirements. It has already been implemented for controlling the 
wind-induced vibrations in structures (Tamura et al., 1995; Modi et al., 1995). 
 Studies have been carried out to study the effectiveness of TLDs for suppressing the response of 
structures to base excitations (Chaiseri et al., 1989; Sun et al., 1992; Yu et al., 1999). These studies were 
concentrated essentially on the harmonic base excitations. The authors have carried out a numerical study 
(Banerji et al., 2000) that has shown that TLDs, if properly designed, are effective in controlling the 
response of structures subjected to broad-band earthquake ground motions. The experimental studies by 
Banerji et al. (2010) have illustrated that a properly designed TLD is slightly more effective than the 
numerical predictions. 
 Sakai et al. (1989) have proposed another kind of liquid dampers, known as tuned liquid column 
dampers (TLCDs), which impart indirect damping to the primary structure through the oscillations of the 
liquid column in a U-shaped container. The energy dissipation in the water column results from the 
passage of the liquid through an orifice with inherent head-loss characteristics. The overall damping in a 
TLCD depends on the head-loss coefficient and the velocity of the oscillating liquid, and it is nonlinear 
due to the quadratic damping term. A simple macroscopic model of TLCD was also developed and 
verified through a series of experiments. 
 Yalla and Kareem (2000) have developed a new approach by using the TLCD theory and equivalent 
linearization scheme to compute the optimum head loss coefficient for a given level of wind or seismic 
excitation in a single step and without resorting to any iteration. The optimal damping coefficient and 
tuning ratio of a TLCD have been obtained by using a single-degree-of-freedom system under the white-
noise excitation and a set of filtered white-noise excitations representing the wind and seismic loadings. 
The optimum values of damping have also been investigated for multiple TLCDs. 
 The overall damping in a TLCD depends on the head-loss coefficient and velocity of the oscillating 
liquid. The effectiveness of a TLCD depends on the optimum tuning and optimum damping coefficient. 
TLCDs have been studied significantly in the past and their behaviour is fairly well understood. The 
behaviour of a TLD is highly nonlinear and the energy dissipated by a TLD depends on the amount of 
sloshing rather than tuning. Therefore, the effectiveness of a TLD increases with an increase in the 
intensity of base motion. This behaviour needs to be studied further and hence the focus is on TLDs in 
this paper. 



56 Effective Control of Earthquake Response Using Tuned Liquid Dampers 
 

 

 In this paper, a comprehensive study of the effectiveness of a TLD in controlling the earthquake 
response of a structure is presented. Both near-field and far-field ground motions are considered in this 
study. A near-field motion is considered to be a pulse-type motion. On the other hand, a far-field ground 
motion is considered to represent a long-duration motion with a specific, mostly broad-banded, frequency 
content and bandwidth, where the strong-motion phase is initiated after a few cycles of motion. The effect 
of far-field ground motion parameters, such as the frequency content and bandwidth, intensity, time to 
initiation, and duration of ground motion, on the ability of a TLD to control the earthquake response of a 
structure is studied. This essentially provides an insight into the manner in which a TLD controls the 
structural response. 

PROBLEM FORMULATION 

1. Structure Idealization 

 A single-degree-of-freedom (SDOF) structure with a TLD attached to it and subjected to a ground 
motion is shown in Figure 1. The equation of motion for this SDOF structure is 
 s x s x s x s gm u c u k u m u F+ + =− +  (1) 

where sm , sk  and sc  represent the mass, stiffness and damping of the structure, respectively. Moreover, 

xu  is the displacement of the structure relative to the ground, gu  is the ground acceleration, and F  
denotes the shear force developed at the base of the TLD due to water sloshing. Equation (1), when 
normalized with respect to the structural mass, is expressed as 

 22x s s x s x g
s

Fu u u u
m

ξ ω ω+ + =− +  (2) 

where sω  (= 2 sTπ ) and sξ  are the natural frequency and damping ratio respectively of the structure, 
and sT  is the natural period. The base shear force ,F  acting on the TLD and shown on the right hand side 
of Equation (2), is determined by solving the equations of motion of water in the TLD. The primary 
structure considered is a shear-beam structure with stiffness ,sk  mass sm  and damping ratio ,sξ  as 
shown in Figure 1. There is no secondary structure as such and the TLD is rigidly connected at the top of 
the (shear-beam) structure. The design of the TLD is done as per the procedure discussed by Banerji et  
al. (2000). The mass of the TLD is taken as 1%, 2% and 4% of the mass of the structure, and accordingly 
the number of TLDs is calculated. The mass of the structure is taken as 10,000 kg and two different 
damping ratios are considered as sξ = 2% and 5%. 

 
Fig. 1  Shear-beam structure with TLD 
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2. Formulation of TLD Equations 

 As shown in Figure 2. the rigid, rectangular TLD tank has a length 2a, width b  (not shown in the 
figure), and an undisturbed water depth .h  It is subjected to the lateral base displacement ,sx  which is 
identical to the displacement at the top of the structure. The equations of motion of water inside the tank 
can be defined in terms of the free-surface motion, as the water is assumed to be shallow in depth (Sun et 
al., 1989). Since a strong earthquake ground motion generally results in a large-amplitude excitation to 
the TLD, the equations of motion should include the effects of wave breaking. Considering the 
formulation of Sun et al. (1992), the governing equations of motion of the water become 

 
( ) 0

u
h

t x
φη σ

∂∂
+ =

∂ ∂
 (3) 

 ( )
2

2 2
21 H fr da s

u uT u C g gh C u x
t x x x x

η η ησφ λ∂ ∂ ∂ ∂ ∂
+ − + + = − −
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 (4) 

where ( ),x tη  and ( ), ,u x tη  are dependent variables. Those denote the free-surface elevation above the 
undisturbed water level and the horizontal free-surface water particle velocity, respectively. However, in 
the solution of TLD equations, ( )txu ,  is considered, because the variation of u  with the height of wave 
is neglected. Both of these variables are a function of the horizontal distance x  from o  (see Figure 2) 
and time .t  The horizontal acceleration of the base of TLD, which is identical to the total acceleration of 
the top of the structure, is sx  (as the TLD is rigidly connected to the top of structure), and the 
acceleration due to gravity is .g  Equation (3) represents the integrated form of the continuity equation for 
water, and Equation (4) is derived from the two-dimensional Navier-Stokes equation. The parameters, ,σ  
φ  and ,HT  in Equations (3) and (4) are given by the expressions (Chaiseri et al., 1989), 

 ( )
( )
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tanh tanh
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η
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where k  is the wave number. In Equation (4) λ  is a damping parameter that accounts for the effects of 
the boundary layer along the tank bottom and side walls and the free-surface contamination of the water. 
This can be expressed semi-analytically as (Chaiseri et al., 1989) 

 
( )

1 1 21
2 l

h s
h b

λ ων
η

 = + + +  
 (6) 

in which iω  is the fundamental linear sloshing frequency of water in the tank, v  denotes the kinematic 
viscosity of water, and s  denotes a surface contamination factor which can be taken as unity (Fujino et 
al., 1992). The fundamental linear sloshing frequency of the TLD is given by (Chaiseri et al., 1989) 

 tanh
2l

g
a

πω π= ∆  (7) 

where ∆  is the ratio of undisturbed water depth h  to the tank length a2 , called as the water-depth ratio 
in this paper. 
 The coefficients frC  and daC  in Equation (4) are incorporated to modify the wave phase velocity and 

damping of water, respectively, when the waves are unstable (i.e., hη > ) and they break (Sun et al., 
1992). These coefficients assume the unit value when the waves do not break. Conversely, when the 
waves break, frC  is found empirically (Sun et al., 1992) to essentially have a constant value of 1.05, 

whereas daC  has a value which is dependent on the amplitude ( )maxsx  of the motion of the top of the 

structure when it does not have a TLD attached to it. The value of daC  is obtained as (Sun et al., 1992) 
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where, as before, h  and a  are the water depth and half tank length, respectively, and lω  is the sloshing 
frequency given by Equation (7). 
 By solving Equations (3) and (4) simultaneously for the free surface elevation η  and neglecting 
higher-order terms and shear stresses along the bottom of the tank, a reasonable estimate of the shear 
force F  at the base of the TLD is obtained as (Chaiseri et al., 1989; Sun et al., 1992) 

 ( ) ( )2 2
02 n

gbF h hρ η η = + − +   (9) 

where ρ  is the mass density of water, b  is the tank width, and nη  and 0η  are the free-surface elevations 
at the right and left walls, respectively, of the tank. 

 
Fig. 2  Schematic sketch of TLD for horizontal motion 

3. Solution of Equations of Motion 

 Equations (2)–(4) have to be solved simultaneously to find the response of a SDOF structure with a 
TLD attached. Although the behavior of the structure is linear, the motion of water is nonlinear. 
Therefore, an iterative numerical procedure is needed to compute the response of the structure.   
Equations (3) and (4) are discretized, with respect to ,x  into difference equations and then those are 
solved by using the standard Runge-Kutta-Gill procedure. Equation (2) is solved by using a central 
difference scheme, in which the time step depends on defining the sloshing phenomenon properly but is 
also small enough to ensure numerical stability. 

DEFINITION OF GROUND MOTIONS 

 For carrying out a comprehensive study of the effect of a TLD on structural response when subjected 
to a ground motion, it is necessary to consider all the possible types of earthquake motions. A ground 
motion is typically characterized by its intensity, frequency content and strong-motion duration. To this 
end, two different types of ground motions are considered in this study: pulse motions and long-duration 
random motions. The first type of motion considered is a pulse motion of extremely short duration. This 
type of motion mostly characterizes the earthquake motions recorded near a causative fault, i.e., in near 
field. The second type of motion considered is the standard random motion of intermediate-to-long 
duration, which characterizes earthquake motions recorded far from the causative fault, i.e., in far field. 

1. Pulse-Type Motions 

 In order to assess the effectiveness of TLDs in controlling the seismic response of structures that are 
situated close to an epicentre, the pulse type of motions are considered in the present study. As stated 
earlier, this type of motions represents actual near-field motions. In this study, both recorded and 
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artificially simulated pulse-type motions are considered. A near-field ground motion recorded at the 
Sylmar station during the 1994 Northridge earthquake is considered in the present study. The velocity 
time histories of the fault-parallel and fault-normal motions are presented in Figure 3. It is clear that the 
fault-normal component is a pulse-type motion. To understand the nature of TLD-structure interaction for 
the pulse-type motions, artificially generated pulse motions as described by Makris (1997) are also 
considered in this study. Three different types of pulse motions are taken, denoted as Type-A, Type-B and 
Type–C2 motions and approximated by simple trigonometric functions. 

 
Fig. 3  Velocity time histories of the fault-normal and fault-parallel components of Sylmar 

record of 1994 Northridge earthquake 

 The analytical expression of ground acceleration of a Type-A pulse motion is given by  

 ( ) sin ; 0
2

p
g p p p

v
u t t t Tω ω= ≤ ≤  (10) 

where pv  is the amplitude of velocity pulse, and pT  (= 2 pπ ω ) is the predominant period and duration 

of the pulse. In the present study, pv = 1 m/s and pT = 1 s are considered. 

 For the Type-B pulse motion, the analytical expression for ground acceleration is given by  

 ( ) sin ; 0
2g p p p pu t v t t Tπω ω = + ≤ ≤ 

 
 (11) 

where the values of pv  and pT  are considered as 1 m/s and 1 s, respectively, for the present study. 

 The near-fault ground motions, where the displacement history exhibits one or more long-duration 
cycles, are approximated by a Type-C pulse. An n-cycle ground acceleration time history is approximated 
by a Type-Cn pulse defined as  
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where pv  and pT  are same as defined earlier, and ϕ  is the phase angle, the value of which is determined 
by the requirement that ground displacement at the end of the pulse be zero. For a Type-C2 pulse, the 
value of ϕ  is found to be 0.041 7.π  In the present study, the values of pv  and pT  are taken as 1 m/s and 
1 s, respectively. The acceleration time histories for all of these pulse-type motions are shown in Figure 4. 

 
Fig. 4  Ground acceleration time histories for three idealized pulse-type ground motions 

2. Long-Duration Random Earthquake Motions 

 The long-duration random earthquake motions are considered to study the behaviour of a structure 
with a TLD attached when subjected to the far-field earthquake ground motions, and to investigate the 
effectiveness of a TLD in controlling the seismic response of a structure. There is, however, a difficulty 
with studying the effectiveness of a TLD for individual ground motions, which typically have uneven 
response spectra (Banerji et al., 2000). This can be overcome by evening out the response spectra over a 
frequency spectrum. One approach is to take many recorded accelerograms, each normalized to an 
identical value of peak ground acceleration, and to consider the mean structural response. Another 
approach is to take a significant number of spectrum-compatible, artificially generated accelerograms and 
to consider the mean structural response. The advantage of the second approach is that the frequency 
content and bandwidth of the earthquake ground motion can be varied to represent an ensemble of ground 
motions for different types of soil conditions (Ruiz and Penzien, 1969; Der Kiureghian, 1996). 
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 In the present study, both the approaches have been followed to assess the effectiveness of TLDs for 
controlling the seismic response of a structure. In the first approach, 30 different recorded accelerograms 
are selected and each one of those is normalized to a peak ground acceleration of 0.35g, which is 
approximately the same intensity as that of the El Centro ground motion. The list of these ground motions 
along with their individual peak ground accelerations is given in Table 1. In the second approach, 
different sets of 20 accelerograms are generated and the mean response of the structure for each set is 
obtained. A numerical procedure is used to generate the digital records of artificial earthquakes (Ruiz and 
Penzien, 1969) from the time-modulated Kanai-Tajimi spectrum by defining particular values for its 
frequency parameter gω  and damping parameter .gξ  Eight sets of artificial accelerograms are generated 
in order to study the effect of ground motion parameters on the ability of a TLD to control the earthquake 
response of a structure. The filter parameters and shaping function time parameters for these sets of 
ground motions are given in Table 2. It may be noted that the datum ground motion is a Set-I motion, 
corresponding to gω = 2π  rad/s, gξ = 0.4, it = 2 s, sdt = 11 s and dt = 30 s, and that all the other sets are 
the variations of this set as described in Table 2. 

Table 1: List of Far-Field Recorded Earthquake Ground Motions 

Earthquake Station Name Component PGA (g) 
Foster City Redwood Shores 0o 0.258 

Gilroy # 2—HWY 101/Bolsa Rd Motel 0o 0.351 
Hayward—Bart Station 220o 0.156 

Hollister—Sago South Cienega Rd 261o 0.072 
Hollister—South Street and Pine Drive 0o 0.369 

Richmond—City Hall Parking Lot 190o 0.125 
San Francisco Bay—Dumbarton Bridge 267o 0.129 

Woodside—Fire Station 0o 0.099 
Capitola—Fire Station 0o 0.472 

San Franscisco International Airport 0o 0.235 
Yerba Buena Island 0o 0.029 

Coyote Lake Dam—Downstream 195o 0.158 
Gilroy # 6—San Ysidro 90o 0.170 

Olema—Point Reyes Ranger Station 90o 0.102 
Agnew—Agnews State Hospital 0o 0.166 

1989 Loma Prieta 

San Francisco—Diamond Heights 0o 0.098 
New Hall LA Country Fire Station 360o 0.308 

Camarillo 180o 0.125 
Alhambra—Fremont School 360o 0.080 
Los Angeles—Baldwin Hills 90o 0.239 

Los Angeles—Hollywood Storage Grounds 90o 0.231 
Los Angeles—Obergon Park 90o 0.355 

Mt Wilson—Caltech Seismic Station 90o 0.133 
Pacoima—Kagel Canyon 90o 0.300 

Point Mugu—Naval Air Station 90o 0.143 
Rolling Hills Estates—Rancho Vista Sch 90o 0.116 

Sanpedro—Palos Verdes 90o 0.095 
Vasquez Rocks Park 360o 0.151 

1994 Northridge 

Lake Hughes # 9 90o 0.225 
1987 Whitter Inglewood—Union Oil Yard 220o 0.156 

  A comparison of the mean pseudo-acceleration spectra for the recorded ground motions (on hard 
soil) and artificially generated ground motions for hard soil is presented in Figure 5. The relatively close 
match between the two mean spectra illustrates the validity of the subsequent study based on only the 
artificial accelerograms. 
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Table 2: Filter Parameters and Shaping Function Time Parameters for Various Sets of Artificially 
Generated Ground Motions 

Set No. gω  (rad/s) gξ  it  (s) sdt  (s) dt  (s) PGA (g) 
I 2.0π 0.4 2 11 30 0.35 
II 1.5π 0.4 2 11 30 0.35 
III 3.0π 0.4 2 11 30 0.35 
IV 2.0π 0.2 2 11 30 0.35 
V 2.0π 0.6 2 11 30 0.35 
VI 2.0π 0.4 2 4 30 0.35 
VII 2.0π 0.4 2 11 30 0.5 
VIII 2.0π 0.4 2 11 30 1.0 

 

 
Fig. 5  Comparison of mean pseudo-acceleration response spectra for artificially generated 

ground motions for hard soil and 30 recorded accelerograms 

RESPONSE OF STRUCTURES TO GROUND MOTIONS 

1. Response to Pulse-Type Motions 

 Figure 6 compares the time histories of the total acceleration response of a typical structure with and 
without TLD for both the components of the Sylmar ground motion of the 1994 Northridge earthquake. 
The fault-normal component is a short-duration pulse-type motion with the peak ground acceleration 
occuring in the first pulse (see Figure 3), and it may be observed that the TLD is not effective as it does 
not get a chance to dissipate energy. The fault-parallel component is relatively a longer-duration ground 
motion with the peak ground acceleration occuring after a few seconds of strong motion and therefore the 
TLD is clearly more effective in this case. 
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Fig. 6  Total acceleration response time histories of a typical structure, with and without TLD, 

when subjected to the two components of Sylmar motion of 1994 Northridge earthquake 

 A more detailed study of TLD-structure interaction for the pulse-type motions is done by considering 
the three idealized pulse motions shown in Figure 4. Peak responses at the top of a typical structure due to 
the Type-A, Type-B and Type-C2 motions and percentage reductions in those due to the TLD of varying 
mass ratios are presented in Table 3. From this table, it is seen that the TLD is not significantly effective 
for the Type-A pulse motion, as compared to the Type-B and Type-C2 pulse motions. The reason behind 
this can be traced from the comparisons of the typical time-history plots for total acceleration at the top of 
a representative structure with and without TLD as shown in Figure 7 for the three pulse motions. It is 
seen that since the Type-A pulse is of extremely short duration, the peak response occurs in the very first 
cycle itself. Therefore, for this pulse motion, the TLD, in which the sloshing has just started, does not get 
a chance to dissipate energy and thus proves to be ineffective. For the Type-B pulse, the peak occurs in 
the second cycle and is of higher intensity than that for the Type-A pulse, and therefore the TLD is 
obviously more effective. The Type-C2 pulse is of relatively longer duration and the peak occurs after a 
few cycles. Therefore, in this case, the TLD gets more time to dissipate energy and is consequently most 
effective. Thus, it can be concluded that a TLD is effective for the pulse-type motions only if the peak 
response of the structure occurs more than two cycles of vibration after the start of the strong motion. 

Table 3: Peak Responses at the Top of a Typical Structure, Due to Pulse Ground Motions, and 
Percentage Reductions in Those Due to a TLD of Varying Mass Ratios 

Percentage Reduction in amax  
Type of Ground Motion ( )amax 0

 

(m/s2) µ = 1% µ = 2% µ = 4% 
Type-A 9.29 3.34 5.59 8.83 
Type-B 18.37 4.08 7.89 15.19 
Type-C 39.76 10.49 16.0 24.0 
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Fig. 7  Total acceleration response time histories of a typical structure, with and without TLD, 

when subjected to the three idealized pulse ground motions 

2. Response to Long-Duration Ground Motions 

 The mean peak total acceleration responses at the top of certain representative structures, due to the 
30 recorded accelerograms listed in Table 1 and scaled to the peak ground acceleration of 0.35g, and 
percentage reductions in those due to a TLD of mass ratio of 4% are presented in Table 4. The same 
results for the artificially generated ground motions for hard soil are also presented in this table. From this 
comparison, it is seen that the TLD is effective across the spectrum of structural frequencies considered 
for both actual and artificial ground motions and that the level of effectiveness is approximately the same 
for both types of ground motions. For the recorded motions, it is seen that on average the TLD reduces 
25% of the response for 2% structural damping, while it reduces 15% response for 5% structural 
damping. For a specific structure of 0.75-s period, the response reduction is as much as 32% for 2% 
structural damping and about 20% for 5% structural damping. This shows that a TLD is indeed effective 
in controlling the earthquake response of structures. Furthermore, this illustrates the fact that a TLD 
becomes progressively less effective as the structural damping increases, since the overall effect of the 
added viscous damping due to sloshing in the TLD gets reduced. 
 A TLD absorbs and dissipates energy based on the level of sloshing and wave breaking and, 
irrespective of the amount of structural damping; this energy dissipation remains the same for a particular 
excitation level of the TLD. The base motion of the TLD is sx  which is same as the total acceleration of 
the top of the structure. As the base motion decreases, sloshing action in the TLD is reduced and hence its 
effectiveness reduces. As the structural damping is increased, total acceleration at the top of the structure 
is reduced and hence the base motion of the TLD also reduces. This results in less sloshing and therefore 
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the effectiveness of TLD reduces. For a particular amount of sloshing, the added damping is constant. For 
2% structural damping, the damping added by the TLD is thus higher than that for 5% structural damping, 
though the structure is subjected to same excitation in both cases. For a structure having larger structural 
damping, the damping added by energy dissipation in the TLD is smaller as a fraction of the overall 
damping. Thus, the effectiveness of TLD is reduced. The effectiveness of TLD increases with mass ratio 
due to the increased sloshing action. For 5% damping, a TLD with the mass ratio of 2% will not be 
effective. Therefore in this study, for 2% damping, the mass ratio of TLD is considered as 2%, while for 
5% damping, the mass ratio is considered as 4%. 

Table 4: Mean Peak Responses at the Top of Representative Structures, Due to 30 Recorded Far-
Field Motions and Artificial Motions for Hard Soil, and Percentage Reductions in Those 
Due to a TLD with 4% Mass Ratio 

Response Due to 30 Recorded 
Far-Field Motions 

Response Due to Artificial Motions 
for Hard Soil Structural Properties 

sT  (s) sξ  (%) 
( )amax 0

 

(m/s2) 

Percentage 
Reduction in amax  

( )amax 0
 

(m/s2) 

Percentage 
Reduction in amax  

2.0 9.68 21.8 12.21 36.5 0.5 
5.0 7.75 15.35 8.57 22.5 
2.0 8.47 17.71 9.33 28.0 0.67 5.0 6.83 12.74 6.98 21.6 
2.0 8.77 32.38 8.53 29.8 0.75 5.0 6.53 19.90 6.19 18.9 
2.0 6.34 22.08 6.26 28.0 1.0 5.0 4.94 14.98 4.68 18.8 
2.0 3.24 20.68 4.19 22.7 1.5 5.0 2.55 12.16 3.30 14.6 
2.0 2.03 20.20 3.52 26.1 2.0 5.0 1.64 13.41 2.70 17.8 

EFFECT OF GROUND MOTION PARAMETERS 

 Ground motions are characterized by various parameters. The following are those important 
parameters which affect the behaviour of structures when they are subjected to earthquake ground 
motions: 
a) frequency content and bandwidth of ground motion, 
b) duration of stationary intensity of ground motion, and 
c) intensity of ground motion. 

1. Effect of Frequency Content and Bandwidth 

 In order to study the effect of frequency content of ground motion, three sets of ground motions are 
generated with different central frequencies, keeping other parameters constant. The central frequencies 
considered are gω = 1.5 ,π  2π  and 3π  rad/s (i.e., corresponding to the Set-II, Set-I and Set-III motions 
in Table 3). 
 To study the effect of frequency bandwidth of ground motion, three sets of ground motions with 
different bandwidth parameters are again generated, while keeping the other parameters constant. The 
bandwidth parameters considered are gξ  = 0.2 (narrow), 0.4 (medium) and 0.6 (broad) (i.e., 
corresponding to the Set-IV, Set-I and Set-V motions in Table 2). 
 The percentage reductions by a TLD in the mean peak acceleration responses at the top of various 
structures for the above sets of ground motions are shown in Table 5. From this table, it can be seen that 
the TLD is more effective for those structures whose natural frequencies are close to the central frequency 
of ground motion and thus the structural response is very large anyway. Around the central frequency of 
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ground motion, the effectiveness of TLD increases as the central frequency of ground motion increases. 
For gω = 1.5π  rad/s (or gT = 1.33 s) and sT = 1.33 s, the reduction in response is 22%; for gω =        

2.0π  rad/s (or gT = 1.0 s) and sT = 1.0 s, the reduction in response is 24.94%; and for gω = 3.0π  rad/s 

(or gT = 0.67 s) and sT = 0.67 s, the reduction in response is 27.94% (with the structural damping 
remaining unchanged at 2%). The reasoning for this kind of behavior of TLD is that as the central 
frequency of ground motion increases, the base acceleration of TLD is higher, thus leading to a greater 
sloshing action as stated above. A TLD can thus become more effective even when the tuning is not 
perfect. 

Table 5: Percentage Reductions in Mean Peak Acceleration Responses at Top of Various 
Structures Due to a TLD (with µ = 2% for sξ = 2% and µ = 4% for sξ = 5%) for 
Different Sets of Ground Motions with Varying Central Frequencies and Varying 
Bandwidths 

Percentage Reductions in Mean Peak Accelerations for Structural 
Properties Ground Motions with Different Central 

Frequencies 
Ground Motions with Different 

Bandwidth Parameters 

sT  (s) sξ  (%) gω = 1.5π 
( gT = 1.33 s) 

gω = 2.0π 
( gT = 1.0 s)

gω = 3.0π 
( gT = 0.67 s) gξ = 0.2 gξ = 0.4 gξ = 0.6 

2.0 13.71 16.44 28.54 9.45 16.44 20.99 0.5 
5.0 8.58 8.59 13.01 1.37 8.59 8.67 
2.0 9.30 15.98 27.94 8.79 15.98 18.5 0.67 5.0 3.69 7.82 17.22 1.17 7.82 10.93 
2.0 11.99 16.23 24.03 10.67 16.23 17.78 0.75 5.0 4.15 8.58 19.27 −0.85 8.58 11.94 
2.0 19.64 24.94 23.33 29.95 24.94 23.44 1.0 5.0 8.54 18.94 22.21 21.49 18.94 19.59 
2.0 22.0 22.29 18.66 24.13 22.29 20.23 1.33 5.0 13.86 16.19 14.26 17.67 16.19 15.25 
2.0 21.86 20.74 17.60 20.99 20.74 19.89 1.5 5.0 20.20 20.63 16.55 19.52 20.63 18.93 
2.0 14.03 12.03 11.97 12.12 12.03 12.31 2.0 5.0 15.58 12.37 13.02 11.10 12.37 12.83 

 It may be noted here that the TLD is significantly effective even for a higher damping ratio of 5%, 
when the structure frequency is close to the central frequency of ground motion. Thus, it can be 
concluded that a TLD is more effective, when the structure frequency is close to the central frequency of 
ground motion and the response of the structure without TLD is large. Furthermore, a TLD is most 
effective for the high-frequency ground motions. This is so because TLDs basically work on two 
principles: (i) tuning, and (ii) sloshing. At a higher frequency, when the structure frequency is close to 
(but not exactly equal to) the frequency of ground motion, a TLD is subjected to more sloshing, and hence 
more energy dissipation takes place. Unlike a TLD, a TMD is effective only when the frequency ratio is 
unity. It can be seen from Table 5 that at gω = 3.0π  rad/s (or gT = 0.67 s), the effectiveness of a TLD is 
maximum for the structures having periods from 0.5 to 1.0 s, as compared to the effectiveness of a TLD 
for the same structures but with gω = 2.0π  and 1.5π  rad/s (i.e., with gT = 1.0 and 1.33 s). 

 As stated earlier, the effectiveness of a TLD is primarily due to the sloshing action rather than tuning. 
The sloshing action is more whenever the base motion of the TLD is higher and is more effective even 
though tuning is not perfect. For instance in Table 5, for the 0.5-s structure, the base motion is higher than 
that for the 0.67-s structure. Hence, the TLD is more effective for the 0.5-s structure compared to the 
0.67-s structure, even though the TLD is tuned to the 0.67-s structure as in Banerji et al. (2000). 
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 The parameter gξ  represents the bandwidth of ground motion. Table 5 shows the reductions in 

structure response for the ground motions with different bandwidth parameters, gξ  = 0.2, 0.4 and 0.6, but 

for a constant central frequency, gω = 2.0π  rad/s (i.e., for the Set-IV, Set-V and Set-VI motions). It is 
clear from these results that a TLD is more effective for the 1-s structure for all bandwidths and that this 
effectiveness is maximum for gξ  = 0.2. As mentioned earlier, the effectiveness of a TLD broadly 
depends on the sloshing action. At these parameters, the TLD is subjected to the maximum base motion 
and hence is found to be more effective. 
 It may also be seen from Table 5 that for the broad-banded motions, the TLD is effective over a broad 
spectrum of structural frequencies, whereas for the narrow-banded ground motions, the TLD is effective 
only if the structural frequency is in the vicinity of the central frequency of ground motion. However, it 
should be noted that for the structures with natural frequencies in the vicinity of the central frequency of 
ground motion, the effectiveness of TLD increases as the bandwidth of ground motion decreases. For 
example, the response reduction is fairly constant at around 20% across the spectrum of structural 
frequencies for the broad-banded ground motions, whereas for the narrow-banded ground motions, the 
response reduction varies from around 30% for the 1-s structure to around 9% for the 0.5-s structure. The 
reason for the above behaviour can be traced to the fact that the narrow-banded ground motions tend to 
become harmonic ground motions, for which a TLD is effective only if the frequencies of the structure, 
TLD and excitation are very close to each other. 
 According to Der Kiureghian (1996), as the soil becomes softer, the central frequency gω  and 

bandwidth gξ  are reduced. Hence, for softer soils, a TLD will be increasingly more effective for a 
structure whose natural frequency is close to the central frequency of ground motion, but will be 
significantly less effective for those structures whose frequencies are away from the central frequency of 
ground motion. It has already been stated in this paper that the effectiveness of a TLD reduces with an 
increase in the structural damping but is not significantly affected by the structure frequency for the 
broad-banded ground motions. It is, of course, assumed here that the TLD for each structure is designed 
as per the procedure given in Banerji et al. (2000). Thus, the TLD properties, except for the mass ratio, 
vary with the natural frequency of structure. 

2. Effect of Duration of Stationary Intensity 

 In this study two different sets of ground motions with different values of sdt  are considered. One set 
is having sdt = 11 s (corresponding to the Set-I motion in Table 2), while the other set is having sdt = 4 s 
(corresponding to the Set-VI motion in Table 2). The percentage reductions in the mean peak responses at 
the top of various structures due to a TLD for these sets of ground motions are shown in Table 6. From 
these results, it can be seen that for the relatively short-period structures, the duration of the stationary 
intensity of ground motion does not have significant effect on the performance of TLD. However, for the 
relatively long-period structures, the TLD is more effective for the ground motions having a longer 
duration of strong motion. This is because in the case of the ground motions with a short duration of 
strong motion, the short-period structures get a chance to vibrate for at least a few cycles within the 
strong-motion duration, while for the long-period structures, the 4-s strong-motion duration motion 
becomes like a pulse-type motion. 

3. Effect of Ground-Motion Intensity 

 In order to study the effect of the intensity of ground motion, three different sets of ground motions 
with varying intensities are generated, while keeping the other parameters unchanged. The peak ground 
accelerations (PGAs) considered for these motions are 0.35g, 0.5g and 1.0g (corresponding to the Set-I, 
Set-VII and Set-VIII motions in Table 2). The mean peak total acceleration responses at the top of various 
structures due to these sets of ground motions and percentage reductions in those due to a TLD are 
presented in Table 7. From this table, it is clear that the TLD is more effective as the intensity of ground 
excitation increases. This is a highly desirable property of the TLD, which essentially behaves as a 
nonlinear viscous damper. The reason for this can be traced to the basic energy dissipation mode for a 
TLD. At a higher ground-excitation intensity, the TLD is subjected to a larger base motion; this results in 
a greater amount of sloshing with wave breaking taking place, which increases energy dissipation in the 
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TLD. However, it is to be noted here that at a further higher level of excitation (say, of 1.0g peak ground 
acceleration), the sloshing-slamming phenomenon takes place. An experimental study on TLDs at high 
levels of excitation by Banerji et al. (2010) has shown that this phenomenon results in greater energy 
dissipation. Hence, at the higher levels of excitation, a TLD becomes in reality much more effective than 
that predicted by the present numerical model. 

Table 6: Percentage Reductions in Mean Peak Acceleration Responses at Top of Various 
Structures Due to a TLD (with µ = 2% for sξ = 2% and µ = 4% for sξ = 5%) for 
Artificial Ground Motions with Varying Durations of Stationary Intensity sdt   

Structural Properties Percentage Reduction in Mean Peak Acceleration 

sT  (s) sξ  (%) sdt = 11 s sdt = 4 s 

2.0 16.44 16.23 0.5 
5.0 8.59 11.01 
2.0 15.98 15.24 0.67 5.0 7.82 7.95 
2.0 16.23 13.89 0.75 5.0 8.58 11.02 
2.0 24.94 20.84 1.0 5.0 18.94 20.89 
2.0 22.29 11.94 1.33 5.0 16.19 13.01 
2.0 20.74 15.64 1.5 5.0 20.63 15.30 
2.0 12.03 8.39 2.0 5.0 12.37 10.38 

Table 7:  Mean Peak Total Acceleration Responses at Top of Various Structures, Due to Different 
Sets of Ground Motions of Varying Intensities (i.e., PGAs), and Percentage Reductions in 
Those Due to a TLD (with µ = 2% for sξ = 2% and µ = 4% for sξ = 5%) 

Structural 
Properties 

Mean Peak Total Acceleration at Top 
of Structures without TLD, ( )amax 0

  

(m/s2) 

Percentage Reduction in 
Mean Peak Total 

Acceleration Due to TLD 

sT  (s) sξ  (%) 0.35g 0.5g 1.0g 0.35g 0.5g 1.0g 
2.0 9.77 13.96 27.92 16.44 16.36 20.63 0.5 
5.0 7.75 11.07 22.14 8.59 8.05 8.28 
2.0 12.54 17.91 35.82 15.98 20.50 28.33 0.67 5.0 9.43 13.48 26.95 7.82 9.07 16.30 
2.0 12.34 17.62 35.24 16.23 19.68 28.23 0.75 5.0 9.59 13.70 27.39 8.58 9.01 17.90 
2.0 13.84 19.78 39.55 24.94 28.40 34.89 1.0 5.0 10.30 14.71 29.43 18.94 18.97 25.52 
2.0 10.38 14.83 29.65 22.29 25.32 31.25 1.33 5.0 7.75 11.07 22.14 16.19 17.16 24.56 
2.0 9.36 13.37 26.74 20.74 22.86 29.02 1.5 5.0 7.14 10.20 20.41 20.63 21.11 26.75 
2.0 6.43 9.19 18.37 12.03 14.16 18.29 2.0 5.0 5.23 7.47 14.94 12.37 14.38 16.79 
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SUMMARY AND CONCLUSIONS 

 A comprehensive study on the effectiveness of a TLD in controlling the earthquake response of 
structures has been carried out by considering various types of ground motions. It has been found that 
though the TLD adds damping to the structure, it is not effective in reducing the response of structures for 
the extremely short-duration pulse-type motions. However, if the pulse duration is long enough for the 
peak response to occur after at least two cycles of structural vibration, the TLD becomes progressively 
more effective. For the longer-duration ground motions, the TLD has been found to be quite effective. It 
has also been shown that the artificially generated ground motions considered in this study accurately 
reflect the characteristics of recorded ground motions. Finally, by varying the parameters of the 
artificially generated ground motions, the effect of ground motion parameters on the effectiveness of a 
TLD in reducing the structural response has been investigated. An interesting point that needs 
recapitulation here is that a TLD becomes increasingly more effective as the ground-motion intensity 
increases. Therefore, a TLD is one passive vibration control device that is more effective for the more 
intense ground motions. 

NOTATIONS 

a    = half the tank length of TLD 

0max )(a   = mean peak total acceleration at the top of shear-beam structure 

b    = width of TLD tank 

sc    = damping coefficient of shear-beam structure 

daC  and frC  = coefficients to account for wave breaking in TLD 

c    = wave speed/constant used in ground motion intensity function 
F    = resultant base shear in TLD in global X-direction  
g    = acceleration due to gravity 

h    = water depth in TLD tank 

sk    = stiffness of shear-beam structure 

sm    = mass of shear-beam structure 

s    = surface contamination factor 

pT    = predominant period 

t    = time (in s) 

it    = duration of the parabolic build-up of ground motion 

sdt    = duration of the stationary intensity of ground motion 

dt    = total duration of ground motion 

0max )(u   = mean peak displacement at the top of shear-beam structure 

gu    = ground acceleration 

su    = velocity component at the free surface in X-direction 

xu    = translation at the top of structure (for shear-beam/cantilever structure) 

xu    = velocity at the top of structure (for shear-beam/cantilever structure) 

xu    = total acceleration at the top of structure (for shear-beam/cantilever structure) 

pv    = amplitude of the velocity of pulse-type motions 

x    = horizontal distance from the centre of TLD 
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sx    = base displacement of TLD 

max)( sx   = amplitude of the motion of structure’s top without TLD 

sx    = base acceleration of TLD 

∆     = depth ratio of TLD tank  
λ    = damping parameter due to liquid sloshing 
η    = free-surface elevation of water in TLD tank  

gω    = frequency parameter for artificially generated ground motions 

sω    = natural frequency of structure 

lω    = fundamental sloshing frequency of TLD 

pω    = predominant frequency of pulse-type motions 

µ    = mass ratio 

ν    = kinematic viscosity of liquid in TLD 

gξ    = bandwidth parameter for artificially generated ground motions 

sξ    = damping ratio for shear-beam structure 

ρ    = mass density of liquid in TLD tank 

ϕ    = phase angle 
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ABSTRACT 

 Several sliding isolation systems have been proposed to control earthquake effects. However, most of 
these isolation devices have limited effectiveness under the near-fault ground motions due to the pulse-
type characteristics of such excitations. Recently proposed, VFPI has unique characteristics to overcome 
the limitations of a traditional isolation system for the near-fault ground motions. VFPI incorporates 
isolation, energy dissipation and restoring force mechanisms and has additional advantages due to the 
response-dependent variable frequency of oscillation and bounded restoring force. The device has wide 
choice of parameters to choose from, as per the design requirements. In this paper, the behaviour of 
single-storey structures isolated by using VFPI and subjected to the near-fault ground motions is 
numerically examined. It is shown that it is possible to increase the effectiveness of VFPI by using a 
discretely-varying coefficient of friction along the sliding surface. Parametric studies are carried out to 
critically examine the behaviour of single-storey structures isolated with the VFPI and FPS systems. 

KEYWORDS: Base Isolation, VFPI, Near-Fault Ground Motions, Passive Control 

INTRODUCTION 

 Base isolation has emerged as an effective technique in minimizing the earthquake forces. In this 
technique, a flexible layer (or isolator) is placed between the super-structure and its foundation such that 
relative deformations are permitted at this level. Due to the flexibility of the isolator layer, the time period 
of the motion of the isolator is relatively long; as a result, the isolator time period controls the 
fundamental period of the isolated structure. For a properly designed isolation system, the isolator time 
period is much longer than the periods containing significant ground-motion energy. As a result, the use 
of isolator shifts the fundamental period of the structure away from the predominant periods of ground 
excitation. An extensive review of the base-isolation systems and their applicability is available in 
literature (Buckle and Mayes, 1990; Kelly, 1993; Naeim and Kelly, 1999). 
 The practical isolation devices typically include an energy dissipating mechanism also, so as to 
reduce the deformations at the isolator level. For example, the friction-type base isolators use a sliding 
surface for both isolation and energy dissipation and have been found to be very effective in reducing the 
structural response (Mostaghel et al., 1983). Due to the characteristics of the excitation transmitted 
through the sliding surface, the performance of friction isolators is relatively insensitive to the severe 
variations in the frequency content and amplitude of the input excitation, thus making the performance of 
sliding isolators very robust. The simplest sliding isolator consists of a horizontal sliding surface (in the 
pure friction or PF system), which may experience large sliding and residual displacements. It is therefore 
often difficult to incorporate such an isolator in structural design. 
 In order to overcome the difficulty with providing restoring force, an effective mechanism to provide 
restoring force by gravity has been utilized in the friction pendulum systems (FPSs) (Zayas et al., 1987). 
In this system, the sliding surface takes a concave spherical shape so that the sliding and re-centering 
mechanisms are integrated into one unit. The FPS isolator has several advantages over the PF system and 
has demonstrated acceptable performance for many different structures and excitation characteristics 
(Mokha et al., 1990; Tsopelas et al., 1996; Tsai, 1997; Wang et al., 1998). However, the main 
disadvantage of a FPS is that it has a constant time period of oscillation due to its spherical surface. As a 
result, the FPS isolators can be effectively designed for a specific level (of amplitude and frequency 
characteristics) of the ground excitation. Under more severe ground motions, sliding displacements 
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greater than the design displacement can occur, which may lead to very large accelerations and thus to the 
failure of FPS isolator. Since in a FPS isolator, the restoring force is linearly proportional to the sliding 
displacement, the large amount of sliding introduces significant additional energy in the structure. As a 
result, the maximum intensity of excitation has a strong influence on the FPS design. In general, a FPS 
isolator designed for a particular level of excitation may not give satisfactory performance during an 
earthquake with much lower or higher intensity (Sinha and Pranesh, 1998). Due to the constant value of 
frequency, a resonant problem may occur when the structure resting on a FPS is subjected to a ground 
motion of dominant frequency close to the isolation frequency (Krishnamoorthy, 2010). 
 Due to the limitations of FPS, many researchers have tried different geometries for the sliding surface 
of the isolator. A recently developed new isolator, called as the variable frequency pendulum isolator 
(VFPI), incorporates the advantages of both FPS and PF isolators and overrules the disadvantages of FPS 
and PF isolators (Pranesh and Sinha, 1998; Pranesh, 2000). This is probably the first attempt to propose 
the concept of variable frequency in the sliding type isolators, although the concept of variable curvature 
is found in literature earlier (Sustov, 1992). Lu et al. (2006) generalized the mathematical formulation of a 
sliding surface with variable curvature by using a polynomial function to define the geometry of the 
sliding surface. In this paper an experimental and analytical study of the performance of three sliding-type 
isolators (including VFPI) is carried out. Krishnamoorthy (2010) also proposed a sliding surface with 
variable frequency and friction coefficient. This study proposed an isolator having the radius of curvature 
varying exponentially with sliding displacement and friction coefficient also varying with the sliding 
displacement. However, VFPI is found to be more effective under a variety of excitations and structures 
because of the following properties of VFPI: (1) its time period of oscillation depends on the sliding 
displacement, and (2) its restoring force has a bounded value and exhibits softening behaviour for the 
large displacements (Malu and Murnal, 2010). The geometry of sliding surface is defined by a second-
order parametric equation. As a result, the isolator properties can be chosen to achieve the progressive 
period shift with a variation in the sliding displacement. These properties can be controlled by a set of 
VFPI parameters, which is otherwise not possible in the single-parameter systems like FPS. 
 The study of structures subjected to near-fault ground motions has a special significance due to the 
nature of such ground motions. The near-fault ground motions are characterized by pulse-type excitations 
having a narrow range of relatively lower frequencies. These motions often contain strong coherent 
dynamic long-period pulses and permanent ground displacements. The dynamic motions are dominated 
by the large long-period pulses of motions that are caused by the rupture directivity effects and occur on 
the horizontal component perpendicular to the strike of fault. This pulse is a narrow-band pulse which 
causes the response spectrum to have a peak, such that the response due to the near-fault ground motions 
of moderate magnitudes may exceed the response due to the near-fault ground motions of large 
magnitudes at intermediate periods. The radiation pattern of the shear dislocation on the fault causes this 
large pulse of motion to be oriented in the direction perpendicular to the fault plane, thus causing the 
strike-normal component of the ground motion to be larger than the strike-parallel component. The strike-
parallel motion causes a permanent ground displacement (i.e., fling step), whereas the strike-normal 
component causes a significantly higher dynamic motion (Somerville, 1997, 2005). 
 The structures isolated by most base isolation devices have long time periods which are fairly 
constant. Since the near-fault ground motions are long-period, pulse-type motions, those induce very large 
displacements at the isolation level. As a result, base-isolated structures do not perform well under the 
near-fault ground motions. However, it has been demonstrated that the newly developed isolator VFPI 
can be effective under both near-fault and far-field ground motions, if proper VFPI parameters are 
adopted in the design (Murnal and Malu, 2007; Malu and Murnal, 2010). However, it is difficult to 
control the large sliding displacements that could occur during the near-fault ground motions. 
 In the present paper, it is proposed to change the coefficient of friction at a predefined location along 
the VFPI isolator surface so that the sliding displacement can be controlled under the near-field ground 
motions. A smaller value of the coefficient of friction for smaller sliding displacements and a larger value 
for larger sliding displacements is likely to control the displacement due to the higher energy dissipation 
due to the increased friction force. The effectiveness of a VFPI with discretely variable coefficient of 
friction is examined through a parametric study on the single-degree-of-freedom (SDOF) models (i.e., 2-
DOF models when isolated) subjected to near-fault ground motions. 
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VFPI DESCRIPTION 

1. Mathematical Preliminaries 

 Consider the motion of a rigid block of mass m  sliding on a smooth curved surface of the defined 
geometry, ( ).y f x=  The restoring force offered by the curved sliding surface can be defined as the 
lateral force required to cause the horizontal displacement .x  Assuming a point contact between the block 
and the sliding surface, various forces acting on the sliding surface, when the block is displaced from its 
original position at the origin of coordinate axes, are as shown in Figure 1. At any instant, the horizontal 
restoring force due to the weight of the structure is given by 

 
d
dR
yf mg
x

=  (1) 

Assuming that the restoring force is mathematically represented by an equivalent nonlinear massless 
horizontal spring, the spring force can be expressed as the product of the equivalent spring stiffness and 
deformation, i.e., 
 f k x xR = ( )  (2) 

where )(xk  is the instantaneous spring stiffness, and x  is the sliding displacement of the mass. 

 
Fig. 1  Free-body diagram of sliding surface 

 If the mass is modelled as a single-degree-of-freedom oscillator, the spring force (or restoring force) 
can be expressed as the product of the total mass of the system and square of oscillation frequency:  

 f m x xR b= ω 2 ( )  (3) 

Here, ω b x( )  is the instantaneous isolator frequency; this depends solely on the geometry of the sliding 
surface. In a friction pendulum system, which has a spherical sliding surface, this frequency is almost 
constant and is approximately equal to g R , where R is the radius of curvature of the sliding surface 
(Zayas et al., 1990). 

2. Variable Frequency Pendulum Isolator Geometry 

 A sliding surface based on the expression of an ellipse has been used as the basis for developing the 
sliding surface of VFPI (Pranesh, 2000). The equation of an ellipse with a  and b  as its semi-major and 
semi-minor axes, respectively, and with the coordinate axes as shown in Figure 1 is given by 

 ( )2 21 1y b x a= − −  (4) 

On differentiating with respect to ,x  the slope at any point on the curve is given by 

 
2 2 2

d
d 1
y b x
x a x a
=

−
 (5) 



76 Variable Coefficient of Friction: An Effective VFPI Parameter to Control Near-Fault Ground 
Motions

 

 

If the equation of sliding surface is represented by Equation (4), the frequency of oscillation can be 
determined by substituting Equation (5) in Equations (1) and (3). As a result, the expression for the 
frequency of elliptical surface is given by 

 2 2 2 2( ) 1b Ix x aω ω= −  (6) 

where 2 2
I gb aω =  is the square of the initial frequency of the isolator (at the zero sliding displacement). 

 It can be seen that the frequency of an elliptical curve is fairly constant for small displacements (i.e., 
x a<< ) and that this value depends on the ratio, 2 .b a  From this expression, it is observed that the 
frequency of the surface is inversely proportional to the square of semi-major axis and that an increase in 
its value results in a sharp decrease in the isolator frequency. Hence, in order to get the desired variation 
in the isolator frequency, the semi-major axis of the ellipse, ,a  is taken as a linear function of the sliding 
displacement x  and is expressed as a variable in getting the geometry of VFPI. The semi-major axis can 
thus be expressed as  
 dxa +=  (7) 
where d  is a constant. On substituting Equation (7) in Equation (4), the expression for the geometry of 
the sliding surface of VFPI becomes 

 
2 2 sgn( )

1
sgn( )

d dx x
y b

d x x

 +
= − 

+  
 (8) 

where sgn( )x  is the signum function introduced for maintaining the symmetry of sliding surface about 
the central vertical axis. This function assumes a value of +1 for the positive sliding displacements and −1 
for the negative sliding displacements. It is observed from Equation (8) that the upper bound of vertical 
displacements is equal to b  and that this occurs only at infinitely large horizontal displacements. The 
slope at any point on this sliding surface is given as 

 
( )2 2

d
d sgn( ) 2 sgn( )
y bd x
x d x x d dx x
=

+ +
 (9) 

To simplify the notations, a non-dimensional parameter sgn( )r x x d=  is used. On substituting r  and 
the initial frequency squared ω I gb d2 2=  in Equation (9) and on combining with Equations (1) and (2), 
the square of the isolator frequency at any sliding displacement can be expressed as 

 ω ω
b

Ix
r r

2
2

21 1 2
( )

( )
=

+ +
 (10) 

 In the above equations, the parameters b  and d  completely define the isolator characteristics. It can 
also be observed that the ratio, 2 ,b d  governs the initial frequency of the isolator. Similarly, the value of 
1 d  determines the rate of variation of the isolator frequency. Let this factor be defined as the frequency 
variation factor (FVF). It is also seen from Equation (10) that the rate of decrease in the isolator frequency 
is directly proportional to FVF for a given initial frequency. The variation in the oscillation frequency of a 
typical VFPI with respect to sliding displacement is shown in Figure 2(a). For the purpose of comparison, 
the oscillation frequency of FPS with the same initial frequency is also shown and is found to be almost 
constant. From this plot, it is seen that the oscillation frequency of VFPI sharply decreases with the 
increasing sliding displacement and asymptotically approaches zero. The force-deformation hysteresis 
curves obtained from Equation (3), for a typical FPS and VFPI, are shown in Figure 2(b). In this plot, the 
isolator force (i.e., restoring force plus frictional force) is normalized with respect to mg and both 
constant and discretely variable coefficients of friction are considered. It can be observed that the isolator 
force in VFPI first increases to reach its maximum value and later decreases slowly so as to 
asymptotically approach the frictional force at large sliding displacements for a constant coefficient of 
friction. This is an important property of VFPI, which limits the force transmitted to the structure. Beyond 
the peak restoring force, the VFPI does not lose the restoring capability since a small amount of restoring 
force is always available. It is also observed that for very small displacements, the variation in restoring 
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force is approximately linear. In the FPS, on the other hand, the restoring force always increases linearly 
with the sliding displacement. From this, it can be concluded that the behaviour of VFPI is similar to that 
of FPS for small displacements and similar to that of PF for large displacements without a significant loss 
of restoring capability. In the case of a variable coefficient of friction, the isolator force suddenly changes 
at a point where the coefficient of friction undergoes a change in its value, while the rest of the variation 
remains unchanged. This will change the energy dissipation characteristics of the isolator which may help 
in controlling the sliding displacements. 

 
(a) 

 
(b) 

Fig. 2   Comparison of variations of (a) frequency ratio and (b) normalized isolator force with 
sliding displacement for VFPI and FPS (with 0.05,µ =  1 0.05µ =  and 1.02 =µ ) 

 The geometries of the sliding surfaces of VFPI and FPS are shown in Figure 3. From this figure, it 
can be easily observed that a VFPI is flatter than a FPS, which results in smaller vertical displacements 
for similar sliding displacements in the structure and hence may lead to smaller overturning moments. 

MATHEMATICAL FORMULATION 

 Consider a single-storey shear structure isolated by a sliding type isolator (i.e., a two-DOF system 
when isolated) when it is subjected to the horizontal ground excitation gx  (see Figure 4). The forces 
acting on the isolator, when sliding is in the positive x -direction, are same as those shown in Figure 1. 
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Fig. 3  Geometries of sliding surfaces of PF, VFPI and FPS isolators 

 
Fig. 4  Analytical model of single-storey structure isolated by curved sliding surface 

1. Equations of Motion 

 The motion of structure can be in either of the two phases: non-sliding phase and sliding phase. In the 
non-sliding phase, the structure behaves like a conventional fixed-base structure, since there is no relative 
motion at the isolator level. When the frictional force at the sliding surface is overcome, there is a relative 
motion at the sliding surface and the structure enters the sliding phase. The total motion consists of a 
series of alternating non-sliding and sliding phases in succession.  

2. Non-sliding Phase 

 In the non-sliding phase, the structure behaves as a fixed-base structure. There is no relative motion 
between the ground and base mass, since the static frictional resistance is greater than the horizontal force 
acting on the structure. The equations of motion in this phase are 
 groroor xxxx −=++ 22 ωωξ  (11) 

and  

 =bx constant; x xb b= = 0  (12) 

where rx  is the relative displacement of the top mass with respect to the base mass, bx  is the 
displacement of the base mass bm  relative to the ground, and xg  is the ground displacement. Further, an 

overdot indicates a derivative with respect to time, and o ok mω =  and 2o o oc k mξ =  are the 
frequency and damping ratio, respectively, of the fixed-base SDOF structure. Before the application of 
ground motion, the structure is at rest; as a result, the motion of structure always starts in the non-sliding 
phase. The structure is classically damped in this phase and hence the equation of motion can be readily 
solved by the usual modal analysis procedures (Clough and Penzien, 1993). 
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3. Initiation of Sliding Phase 

 When the structure is subjected to a base excitation, it will remain in the non-sliding phase unless the 
frictional resistance at the sliding surface is overcome. This means that the absolute value of the sum of 
the total inertia force and restoring force should be greater than or equal to the absolute value of the 
frictional force acting along the sliding surface. The frictional force depends on the coefficient of friction 
at the location at a given instant. The plan of a typical isolator with two discrete values of the coefficient 
of friction considered in this study is shown in Figure 5. The coefficient of friction, 1,µ  is assumed to be 
less than 2µ  in this study. Therefore, the condition for the beginning of the sliding phase can be written as 

 ( ) ( ) ( )cos sin cosr g b g b bm x x m x m m g m m gθ θ µ θ + + + + ≥ +   (13) 

where θ  is the angle of tangent at the point of contact with horizontal and µ  (= 1µ  or 2µ ) is the 
coefficient of friction at the respective isolator positions. Now, on dividing Equation (13) by cosθ  and 
substituting d d by x  for tanθ , the condition for sliding can be simplified as 

 ( ) ( ) ( )d
dr g b g b b

b

ym x x m x m m g m m g
x

µ + + + + ≥ +  ; 1µµ =  or 2µ  (14) 

Here, ( ) d db bm m g y x+
 
is the restoring force (see Equation (1)). If this is expressed as a product of the 

spring stiffness and sliding displacement, the spring force is given by (see Equation (3)) 
 ( ) ( )2

R b b b bf m m x xω= +  (15) 

where ( )b bxω  is the isolator frequency at the instant for the sliding displacement .bx  On dividing 
Equation (14) by the total mass and on defining the mass ratio as 

 
b

m
m m

α =
+

 (16) 

the condition for the initiation of the sliding phase can be simply expressed as 

 ( )2
r g b b bx x x x gα ω µ+ + ≥ ; 1µµ =  or 2µ  (17) 

 

Fig. 5  Plan of typical isolator with variable coefficient of friction 

4. Sliding Phase 

 Once the inequality (see Equation (14)) is satisfied, the static frictional force is overcome, the 
structure enters the sliding phase, and the degree of freedom (DOF) corresponding to the base mass also 
experiences motion. During this phase, the structure behaves like a two-degree-of-freedom structure. The 
equations of motion for the top and bottom masses are respectively given by 
 22r o o r o r b gx x x x xξ ω ω+ + = − −  (18) 
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and 
 ( ) ( )2 sgnr b b b b g bx x x x x g xα ω µ+ + = − − ; 1µµ =  or 2µ  (19) 

5. End of Sliding Phase 

 The sliding phase ends when the sliding velocity of the base mass becomes equal to zero, i.e., 
 0=bx  (20) 

As soon as this condition is satisfied, Equations (11) and (12) corresponding to the non-sliding phase need 
to be evaluated to further check the validity of the inequality in Equation (17). This decides whether the 
structure continues in the sliding phase after a momentary stop or enters the non-sliding phase. 

6. Direction of Sliding 

 Once the inequality (see Equation (17)) is satisfied, the structure starts sliding in a direction opposite 
to the direction of the sum of the total inertia force and restoring force at the isolator level. Thus, the 
direction of sliding can be decided based on the signum function as defined below: 

 ( ) ( )
( )

2

2
sgn r g b b

b
r g b b

x x x
x

x x x
α ω
α ω

+ +
= −

+ +
 (21) 

The signum function remains unchanged in a particular sliding phase until the sliding velocity of the base 
mass becomes equal to zero. Once the sliding velocity is zero, the structure may enter the non-sliding 
phase, reverse its direction of sliding, or have a momentary stop and then continue in the same direction. 
To determine the correct state, the solution process needs to continue while using the equations of non-
sliding phase wherein the sliding acceleration is forced to be zero and the validity of the inequality (see 
Equation (17)) is checked. If this inequality is satisfied at the same instant of time when the sliding 
velocity is zero, Equation (21) decides the further direction of sliding. 

RESPONSE OF AN EXAMPLE SYSTEM 

 The effectiveness of VFPI with a variable coefficient of friction to reduce the response of an example 
single-storey structure subjected to the near-fault earthquake excitations is presented in this section. The 
example structure, under the fixed-base condition, is represented as an SDOF system, with the values of 
spring stiffness and lumped mass taken such that the period of the structure is 0.5 s. The masses of the 
structure and base are taken equal, such that the mass ratio α  becomes 0.5. 
 Narasimhan and Nagarajaiah (2006) proposed a variable-friction system to adjust the level of friction 
in the base-isolated structures. Panchal and Jangid (2008) proposed a sliding surface by varying the 
friction coefficient along the sliding surface in the form of the curve of FPS and called the isolator as 
VFPS. In this case, the value of the coefficient of friction changes from a minimum of 0.025 to a 
maximum of 0.15 and then again reduces and approaches ∼0.015. Krishnamoorthy (2010) proposed a 
variable frequency and variable friction pendulum isolator (VFFPI). Here, the value of the coefficient of 
friction changes from a minimum of 0.08 to a maximum of 0.1 in between the distance of 0.0 to 0.18 m 
from the centre of the sliding surface. These studies show that a sliding isolator with either a varying 
radius of curvature or a varying friction coefficient may be used as an effective isolator for isolating the 
structure. Most of these studies have focussed on the effectiveness of the isolator in reducing 
accelerations under different excitations. However, all of these isolators are likely to be of limited 
effectiveness under the near-fault ground motions due to very high sliding displacements. Further, it may 
be practically difficult to achieve a sliding surface with a continuously variable coefficient of friction of 
desired variation. Hence, in the present study, the performance of VFPI with two discrete values of the 
coefficient of friction, i.e., the initial coefficient of friction, 1,µ  and the final coefficient of friction, 2 ,µ  
under the near-fault ground motions is evaluated. 
 The behaviour of VFPI is studied through a time-history analysis for ten near-fault ground motion 
records. The details of the ground-motion records used in the study are presented in Table 1. These 
ground-motion records are derived from the actually recorded motions. The ground motions chosen cover 
a wide variety of near-fault ground motions having different peak ground acceleration (PGA) values, 
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frequency compositions and durations. For a given coefficient of friction, the main parameters of VFPI 
affecting the response are (i) initial time period and (ii) frequency variation factor (FVF). For the present 
analysis, FVF is varied from 1.0 per m to 10.0 per m for a VFPI with two values of initial time period, 1 
and 2 s. In order to investigate the effectiveness of VFPI, the responses are compared with those of the 
structure isolated by using a FPS with the isolator period equal to 2.0 s, which is a practical value for such 
a system. 

Table 1: Details of Ground-Motion Records Used in This Study 

S. 
No. Name of Earthquake Designation Magnitude Distance of Source  

(km) 
PGA  
(g) 

Duration 
(s) 

1 1978 Tabas NFR-01 7.4 1.2 0.900 50 
2 1989 Loma Prieta NFR-02 7.0 3.5 0.718 25 
3 1989 Loma Prieta NFR-03 7.0 6.3 0.686 40 
4 1992 Cape Mendocino NFR-04 7.1 8.5 0.638 60 
5 1992 Erzincan NFR-05 6.7 2.0 0.432 21 
6 1992 Landers NFR-06 7.3 1.1 0.713 50 
7 1994 Nothridge NFR-07 6.7 7.5 0.890 15 
8 1994 Nothridge NFR-08 6.7 6.4 0.732 60 
9 1995 Kobe NFR-09 6.9 3.4 1.088 60 

10 1995 Kobe NFR-10 6.9 4.3 0.786 40 

 In order to study the effect of variable coefficient of friction on the behaviour of a VFPI-isolated 
structure, two values of the coefficient of friction considered are 1µ = 0.05 and 2µ = 0.1. The VFPIs with 
these two constant coefficients of friction are first analyzed separately and then they are combined in the 
same isolator, the latter case being referred to as the case of variable coefficient of friction. In this case 
the initial coefficient of friction, 1,µ  refers to the coefficient of friction up to a pre-defined distance bd  
from the centre of the isolator, and the coefficient of friction beyond this distance is referred to as the final 
coefficient of friction, 2.µ  The values 1µ = 0.05 and 2µ = 0.1 considered in this study should enable a 
larger energy dissipation for a larger sliding displacement, which may help to control the sliding 
displacements. For the change of coefficient of friction, three positions are considered from the centre of 
the isolator: bd = 0.1, 0.3 and 0.5 m. The structural damping is assumed as 5% of critical. 

1. Time-History Response 

 The response quantities are evaluated by the solution of the equations of motion as discussed in the 
preceding sections. The main response quantities of interest are the absolute acceleration of the top storey 
and the sliding displacement of the isolator. To show the effectiveness of VFPI with respect to FPS, 
typical time-history graphs for NFR-01 (i.e., the normal component of the 1978 Tabas earthquake motion) 
are shown in Figures 6 and 7. Figure 6 shows the acceleration time histories for VFPI and FPS with the 
constant coefficient of friction of 0.05. As expected, it is seen that the accelerations are substantially 
reduced in the case of VFPI as compared to FPS. 
 It is expected that varying the coefficient of friction along the sliding surface will lead to a decrease in 
the sliding displacement. This is usually a matter of concern for the VFPIs, especially under the near-field 
ground motions. To show the effectiveness of the variable coefficient of friction, typical time-history 
graphs of sliding displacement under NFR-01 are shown in Figure 7. This figure shows the time-histories 
of sliding displacement for the cases of constant coefficient of friction and variable coefficient of friction 
under the three different values of bd . It is seen that the sliding displacements are effectively controlled 
in the case of variable coefficient of friction and that this case is more effective for the lesser values of 
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.bd  This implies that it is possible to control the sliding displacements by using a variable coefficient of 
friction under the near-field ground motions without any significant increase in the accelerations. 

 
Fig. 6   Comparison of time-history curves of storey acceleration for VFPI and FPS with 

constant coefficient of friction (for NFR-01, FVF = 2 and µ = 0.05) 

 
Fig. 7   Comparison of time-history curves of sliding displacement for VFPI and FPS with 

constant and variable coefficients of friction (for NFR-01, FVF = 2, 0.05,µ =  1 0.05µ =  
and 1.02 =µ ) 

 To further ascertain the effectiveness of variable coefficient of friction in reducing the sliding 
displacements, a comparison of the force-deformation histories for constant and variable coefficients of 
friction in the VFPI of iT  = 2 s is presented in Figure 8 for the case of NFR-01, FVF = 2 and bd = 0.1 m. 
From this figure, it is clear that sliding displacements are controlled in the case of variable coefficient of 
friction due to higher energy dissipation in this case, since the area under the force-deformation graph 
increases due to the increased coefficient of friction at the predefined point. 

2. Effect of Variable Coefficient of Friction 

 Under the near-fault excitations, a FPS may be able to control the sliding displacements, but it may 
also lead to very high levels of structural accelerations due to the long-period pulse-type components in 
the excitation. On the other hand, a VFPI can control the accelerations but at the cost of high sliding 
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displacements. Hence, a VFPI with variable coefficient of friction is likely to control both accelerations 
and sliding displacements. Varying the coefficient of friction may not help in the case of FPS as the 
displacements are already controlled with a constant coefficient of friction and accelerations are bound to 
be high in any case due to the constant time period of FPS. In order to present the responses with effective 
comparison and comprehension, the maximum response quantities of the structures isolated with a VFPI 
are normalized with respect to the corresponding response quantity, with the FPS having a constant time 
period of 2.0 s and the corresponding value of the coefficient of friction. For example, the maximum 
response values with the VFPI of µ  = 0.05 are normalized with respect to the maximum response value 
with the FPS of µ  = 0.05, and the maximum response values with the VFPI of µ  = 0.1 are normalized 
with respect to the maximum response value with the FPS of µ  = 0.1. In the case of variable coefficient 
of friction, the response quantities are normalized with the FPS having a constant coefficient of friction of 
0.05, since varying the coefficient of friction in the case of FPS will not add to any advantage in the 
performance. This means that the maximum response values with a VFPI of variable coefficient of 
friction are normalized with respect to the maximum response value with the FPS of µ  = 0.05. Thus, the 
isolation is more effective when the normalized accelerations are less than unity (i.e., less than the 
corresponding response with the FPS) and the normalized sliding displacements are marginally greater 
than unity (which is the displacement control equivalent to the FPS). 

 
Fig. 8 Comparison of force-deformation histories of VFPI for constant and variable coefficients 

of friction (for NFR-01, FVF = 2, 0.05,µ =  1 0.05,µ =  1.02 =µ  and bd = 0.1 m) 

 For different cases under consideration, time-history analyses are carried out for all the ten near-fault 
ground motions described in Table 1. Since these ground motions cover a wide variety of near-fault 
ground motions, the average of the maximum responses under the ten ground motions is considered for 
discussion. This is normalized by the average response of the corresponding FPS-isolated structures as 
explained earlier. The averages of maximum storey acceleration and sliding displacement responses with 
the FPS, using which the averages of maximum responses with the VFPI are normalized, are given in 
Table 2 for µ  = 0.05 and 0.1. The normalized storey accelerations with the VFPIs for two constant and 
three variable coefficients of friction cases are compared in Figures 9 and 10 respectively for iT = 1 and   
2 s. Similarly, the normalized average sliding displacements with the VFPIs for two constant and three 
variable coefficients of friction cases are compared in Figures 11 and 12 respectively for iT = 1 and 2 s. 

 From Figures 9 and 10, as expected, it is observed that the accelerations in the VFPI-isolated system 
are substantially reduced when compared to those in the FPS-isolated system, in all the cases. When the 
initial time period of VFPI is 1.0 s, it is observed that the accelerations sharply decrease with FVF 
(because of the sharp decrease in the restoring force), whereas there is no significant decrease in the 
accelerations with FVF in the case of VFPI with the initial time period of 2.0 s. Further, as expected, the 



84 Variable Coefficient of Friction: An Effective VFPI Parameter to Control Near-Fault Ground 
Motions

 

 

accelerations under a lower coefficient of friction of 0.05 are substantially lower than those with a higher 
coefficient of friction of 0.1. The same observation also holds true in the cases of variable coefficient of 
friction, and the accelerations in all such cases (with different values of bd ) fall in between the 
accelerations for the two cases of constant coefficient of friction. However, those are closer to the lower 
bound of accelerations (i.e., for the case of the coefficient of friction of 0.05), which shows the 
effectiveness of a variable coefficient of friction in acceleration reduction. 

Table 2: Average Peak Response Values for FPS-Isolated Structure with T = 2 s 

Peak Response Values for 
Coefficient of Friction S. 

No. 
Description of 

Response Unit 
0.05 0.1 

1 Storey acceleration m/s2 12.915 8.140 
2 Sliding displacement m 0.614 0.490 

 
Fig. 9   Comparison of storey accelerations with different cases of VFPIs (of iT  = 1 s) as 

normalized with respect to peak values with FPS as in Table 2 

 
Fig. 10 Comparison of storey accelerations with different cases of VFPIs (of iT  = 2 s) as 

normalized with respect to peak values with FPS as in Table 2 
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 From Figures 11 and 12, it is observed that the normalized sliding displacements increase with an 
increase in FVF in all the cases, since the increase in FVF leads to a reduction in the restoring force. As 
expected, the displacements for the lower coefficient of friction are higher than those for the higher 
coefficient of friction. It is interesting to note that the sliding displacements in some cases of variable 
coefficient of friction (see, for example, the results for bd  = 0.1 m) are lower than those in both the cases 
of constant coefficient of friction. It is also seen that sliding displacements are significantly lower for a 
FVF of 4–6 for the VFPI with the initial time period of 1.0 s and for a FVF of 1 to 3 for the VFPI with the 
initial time period of 2.0 s. It can be further confirmed that for this range of FVF, the accelerations are 
also significantly lower (around 20% to 30% of those in the case of FPS). Thus, it can be concluded that 
by varying the coefficient of friction at a suitable location on the isolator surface and by selecting suitable 
FVF and initial time period, it is possible to control both accelerations and sliding displacements. 

 
Fig. 11  Comparison of sliding displacements with different cases of VFPIs (of iT  = 1 s) as 

normalized with respect to peak values with FPS as in Table 2 

 
Fig. 12 Comparison of sliding displacements with different cases of VFPIs (of iT  = 2 s) as 

normalized with respect to peak values with FPS as in Table 2 
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CONCLUSIONS 

 The effectiveness of a recently developed isolation system, the variable frequency pendulum isolator 
(VFPI), for the vibration control of a single-storey structure subjected to the near-fault ground motions 
has been investigated in this paper. For the effectiveness of a VFPI in controlling both accelerations and 
sliding displacements under the near-field ground motions, a variable coefficient of friction for the sliding 
surface has been proposed in this paper. Based on the investigations, the following conclusions can be 
drawn: 
1. A VFPI has a wide choice of parameters that can be chosen to suit the design requirements. 
2. A VFPI is very effective for acceleration reduction under the action of near-fault ground motions, 

with a corresponding increase in the sliding displacements. 
3. It is possible to control both accelerations and sliding displacements by using a variable coefficient of 

friction and by carefully choosing the VFPI parameters. 
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