
ISET Journal of Earthquake Technology, Paper No. 564, Vol. 58, No. 2, June 2021, pp. 61-81 
 

DEFORMATION DUE TO DIP-SLIP AND TENSILE FAULTS IN         
FORCE–LIKE IMPERFECTLY BONDED ELASTIC HALF-SPACES 

Agin Kumari 
Department of Mathematics, Chaudhary Bansi Lal University 

Bhiwani-127021, India, Email: agincblu@gmail.com 

Dinesh Kumar Madan (Corresponding Author) 
Department of Mathematics, Chaudhary Bansi Lal University 
Bhiwani-127021, India, Email: dk_madaan@rediffmail.com 

ABSTRACT 

 Analytic expressions for stresses and displacements caused by two-dimensional seismic sources for 
imperfectly joined semi-infinite elastic half spaces having force-like interface are obtained. In the present 
paper, we have studied the effect of force-like imperfect interface on transmission of stresses across the 
interface of two joined elastic half spaces. The cases of vertical dip-slip and tensile fault are discussed in 
detail. Variations in stresses, for different imperfect bonding conditions of force-like and for perfect 
bonding, are depicted through graphs and mesh grids, using dimensionless approach. A significant 
influence of force-like imperfect interface on dislocation field due to dip-slip and tensile fault is observed. 
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INTRODUCTION 

 Interface modeling has been the focus of several studies related to theory of dislocations. A number of 
researchers studied the effect of different kind of imperfect interfaces on deformation field and introduced 
different interfacial models like smooth-bond, rigid-bond, dislocation-like, force-like etc. to simulate the 
real behavior at interfaces. As the interfaces are rarely perfect and the meticulous theoretical modeling is 
very difficult. The presence of imperfection at the interface influence the continuity of displacements and 
stresses. At a perfect interface displacement and stress are continuous across the interface; in imperfect 
interfaces displacements and stresses are no longer continuous. 
 Dunders and Hete´nyi [1] derived elastic solutions in rapports of the Papkovich-Neuber displacement 
function for a intense force near a smooth interface of two semi- infinite solids. Singh and Garg [2] derived 
solutions for 2-D seismic sources causing plane strain deformation. Singh et al. [3] computed analytic 
expressions for the displacements and stresses for two homogeneous, isotropic, perfectly elastic half-spaces 
having perfect interface produced by several two-dimensional seismic sources. 
 Yu [4] introduced dislocation-like interface modeling and obtained the Green’s function and 
dislocations in a bimaterial. Fan and Wang [5] formulated the problem of imperfect interface modeling of 
a screw dislocation. 
 Displacements and stresses in layered half-space due to a long tensile fault present in the layer are found 
by Singh and Singh [6]. Kumar et al. [7] obtained the Airy stress function for a tensile line source in two 
perfectly joined half-spaces. Singh et al. [8] obtained static deformation for monoclinic elastic medium, 
using the eigenvalue approach. Bala and Rani [9] derived expressions for static deformation due to a very 
long buried dip-slip fault in an isotropic half-space perfectly joined with an orthotropic half-space. 
 Chu et al. [10] studied the displacement and stress fields due to a dislocation loop in a bimaterial system. 
Wu et al. [11] considered dislocation-like and force-like interfaces to obtain dislocation field in a bimaterial 
system. Kumari and Madan [12] has obtained analytic expressions for static deformation generated by 
vertical dip-slip fault in two imperfectly joined mediums having dislocation-like interface. Madan and 
Kumari [13] has drawn results for static deformation generated by vertical tensile fault in two half-spaces 
having dislocation-like bonding between them. 
 In dislocation-like interfaces, Stresses are continuous across the interface but displacements are not. In 
force-like interfaces the state is vice-versa i.e. displacements are continuous across the interface but stresses 
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are not. In fact, dislocation-like interfaces are all possible interfaces between the perfect and rigid interfaces 
and force-like interfaces are all possible interfaces between the perfect and traction-free interfaces. 
 In the present paper, a force-like imperfect interface model is applied to study the behavior of 
displacements and stresses across the interface. we have studied the effect of force–like imperfect interface 
on transmission of stresses across the interface of two imperfectly linked semi-infinite elastic half spaces. 
Following the work of Singh et al. [3], We have obtained analytic expressions for displacements and stresses 
caused by 2-Dimensional seismic sources (Centre of dilatation, Centre of rotation, single couple, double 
couple, dipole, long dip-slip dislocation) by applying force-like imperfect interface bonding conditions. 
Particular cases of vertical dip-slip and tensile faults caused by a line source are discussed in detail. 
Variations in stresses and discontinuity in stresses at the interface for different force-like imperfect bonding 
conditions are depicted through graphs and mesh grids, using dimensionless approach. Due to imperfection 
at interface, a jump discontinuity in stresses at interface is observed, the results were discussed numerically 
with the help of graphs, 3-D mesh grids with contour lines. A significant influence of force-like imperfect 
interface on dislocation field is seen. 

BASIC THEORY 

 Two semi-infinite solids (homogeneous, isotropic, perfectly elastic) force-like imperfectly joined at the 
interface (z = 0) are considered. Cartesian co-ordinates are denoted by (x, y, z) and z-axis is taken vertically 
downward (Figure 1). We have considered a plain-strain problem; displacements u1 = 0, u2 and u3 depends 
on y and z only. Upper half space (z<0) is termed as Medium-I & lower half space (z>0) is termed as 
Medium-II; λ1, µ1 and λ2, µ2 be elastic constants for Medium-I and II respectively. Following the results of 
Singh et al. [3] for a line source embedded in the Medium-II parallel to the x-axis passing through the point 
(0, 0, ξ) and ξ>0. Airy’s stress function for Medium-I &II are, 
 𝑈(ூ) =  [ (𝐿ଵ + 𝑀ଵ𝑘𝑧)ஶ 𝑠𝑖𝑛𝑘𝑦 + (𝑃ଵ + 𝑄ଵ𝑘𝑧)𝑐𝑜𝑠𝑘𝑦 ] 𝑘ିଵexp(𝑘𝑧)𝑑𝑘 (1) 

 𝑈(ூூ) = 𝑈 +  [ (𝐿ଶ + 𝑀ଶ𝑘𝑧)ஶ 𝑠𝑖𝑛𝑘𝑦 + (𝑃ଶ + 𝑄ଶ𝑘𝑧)𝑐𝑜𝑠𝑘𝑦 ] 𝑘ିଵexp(−𝑘𝑧)𝑑𝑘 (2) 
where 
 𝑈 =  [ (𝐿 + 𝑀𝑘|𝑧 − ξ|)ஶ 𝑠𝑖𝑛𝑘𝑦 + (𝑃 + 𝑄𝑘|𝑧 − ξ|)𝑐𝑜𝑠𝑘𝑦 ] 𝑘ିଵexp (−𝑘|𝑧 − ξ|)𝑑𝑘 (3) 
Superscript (I), (II) stands for Medium-I & II; Li, Mi, Pi, Qi, for i = 1, 2 are unknown, values of these are to 
be calculated from the force-like bonding conditions at interface z = 0; the source coefficients L0, M0, P0 
and Q0 are free of variable k, values of these are given by Singh and Garg [2] and are reproduced as Table 
1 in Appendix-I for ready reference. 

 
Fig. 1 Two half-spaces having force-like imperfect interface embedded a line source in the 

medium-II at (0, 0, ξ) 

FORCE-LIKE INTERFACE MODELING AND ITS SOLUTION 

 For two half spaces having force-like imperfect bonding conditions at the interface at z = 0, are given 
by Wu et al. [11]; 
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 𝑢(ூ)|௭షୀ = 𝑢(ூூ)|௭శୀ (4) 

 𝜏ଷ(ூ)|௭షୀ = ൣ𝑘൧𝜏ଷ(ூூ)|௭శୀ  (5) 𝑖 = 2, 3; 
where the constant matrix ൣ𝑘൧, describes imperfect interface bonding conditions at the boundary z = 0 
plane. Matrix ൣ𝑘൧ is supposed to be diagonal and values of the matrix elements lies in the range (0, 1). The 
first element will be associated to interface conditions in the tangential direction, and the second element 
will be related to interface conditions in the normal directions. When all the diagonal entries of the matrix 
assume value 1, then interface conditions becomes perfect i.e. stresses and displacements become 
continuous across interface and if all diagonal entries assume value 0, then interface becomes stress-free 
i.e. the case when upper half-space is sliding over lower half-space. In fact, these conditions actually stand 
for all possible intermediate interface conditions between perfect and traction-free interface bonding 
conditions. Interfacial conditions in the tangential and normal directions are associated with the first and 
second element on the diagonal of the matrix respectively. The source coefficients L0, M0, P0, Q0 have 
different values for z<ξ & z>ξ. Let 𝐿ି, 𝑀ି, 𝑃ି, 𝑄ି be the values of L0, M0, P0, Q0 for z<ξ. 
 Firstly, we have derived integral expressions for displacements and stresses from (1) and (2) and then 
applying bonding conditions (4) and (5) to these expressions; we obtained, 

 𝑨 ൦ 𝐿ଵ𝑀ଵ𝐿ଶ𝑀ଶ൪ = ⎣⎢⎢
⎢⎢⎡ 𝑘ଷଷ(𝐿ି + 𝑀ି𝑘ξ)exp (−𝑘ξ)𝑘ଶଶ(𝐿ି − 𝑀ି + 𝑀ି𝑘ξ)exp (−𝑘ξ)𝛽 ቀ𝐿ି − ெషఈమ + 𝑀ି𝑘ξቁ exp (−𝑘ξ)𝛽 ቀ𝐿ି − 𝑀ି + ெషఈమ + 𝑀ି𝑘ξቁ exp (−𝑘ξ)⎦⎥⎥

⎥⎥⎤ (6) 

 𝑨 ൦𝑃ଵ𝑄ଵ𝑃ଶ𝑄ଶ൪ = ⎣⎢⎢
⎡ 𝑘ଷଷ(𝑃ି + 𝑄ି𝑘ξ)exp (−𝑘ξ)𝑘ଶଶ(𝑃ି − 𝑄ି + 𝑄ି𝑘ξ)exp (−𝑘ξ)𝛽(𝑃ି − 𝑄ି/𝛼ଶ + 𝑄ି𝑘ξ)exp (−𝑘ξ)𝛽(𝑃ି − 𝑄ି + 𝑄ି/𝛼ଶ + 𝑄ି𝑘ξ)exp (−𝑘ξ)⎦⎥⎥

⎤
 (7) 

where 

𝑨 = ൦1                01               1     −𝑘ଷଷ                         0𝑘ଶଶ                      −𝑘ଶଶ1        1/𝛼ଵ1  1 − 1/𝛼ଵ       − 𝛽                     − 𝛽/𝛼ଶ   𝛽             𝛽(1 − 1/𝛼ଶ)൪ 

and 

 𝛼ଵ = భା µభభା ଶµభ , 𝛼ଶ = మା µమమା ଶµమ  , 𝛽 = ఓభఓమ (8) 

On solving equations (6) and (7), we get 

 ൦ 𝐿ଵ𝑀ଵ𝐿ଶ𝑀ଶ൪ = 𝑩  𝐿ି exp(−𝑘ξ)𝑀ି exp(−𝑘ξ)𝑀ି𝑘𝑐 exp(−𝑘ξ)   𝑎𝑛𝑑  ൦𝑃ଵ𝑄ଵ𝑃ଶ𝑄ଶ൪ = 𝑩  𝑃ି exp(−𝑘ξ)𝑄ି exp(−𝑘ξ)𝑄ି𝑘𝑐 exp(−𝑘ξ)   (9) 

where 

 𝑩 = ൦𝐸ଵ𝐹ଵ𝐺ଵ𝐻ଵ      𝐸ଶ𝐹ଶ𝐺ଶ𝐻ଶ    𝐸ଵ𝐹ଷ𝐺ଷ𝐻ଷ൪ (10) 

and values of 𝐸ଵ, 𝐸ଶ, 𝐹ଵ 𝑒𝑡𝑐. are placed in Appendix 2. 

By substituting values of 𝐿ଵ, 𝑀ଵ, 𝑃ଵ, 𝑄ଵ  𝑎𝑛𝑑 𝐿ଶ, 𝑀ଶ, 𝑃ଶ, 𝑄ଶ in the integral expressions for Airy stress 
function, stresses and displacements and on solving these integrals (Appendix 2), we get the results for 
Medium –I and II as follows: 

 𝑈(ூ) = 𝐿ି[𝐸ଵ tanିଵ( ௬ஞି௭ ) + 𝐹ଵ𝑧 𝑅ଵ]  + 𝑀ି[𝐸ଶ tanିଵ( ௬ஞି௭ ) + 𝐹ଶ𝑧𝑅ଵ+𝐸ଵξ𝑅ଵ + 2𝐹ଷξ𝑧𝑅ଵ𝑅ଶ] +                     𝑃ି[ −𝐸ଵ  𝑙𝑛𝑅 +   𝐹ଵ𝑧𝑅ଶ] + 𝑄ି[−𝐸ଶ𝑙𝑛𝑅 + (𝐹ଶ𝑧+𝐸ଵξ) 𝑅ଶ +   𝐹ଷξ𝑧 ଵோమ {2𝑅ଷ − 1}]    (11) 
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 𝜏ଶଶ(ூ) = 𝐿ି[2(𝐸ଵ + 2𝐹ଵ)𝑅ଵ𝑅ଶ + 𝐹ଵ𝑧 ଶோభோమ {4𝑅ଷ − 1}] + 𝑀ି[ 2(𝐸ଶ + 2𝐹ଶ)𝑅ଵ𝑅ଶ + (𝐸ଵξ + 2𝐹ଷξ +                     𝐹ଶ𝑧) ଶோభோమ {4𝑅ଷ − 1} + 24𝐹ଷξ𝑧𝑅ଵ𝑅ସ{2𝑅ଷ − 1}] + 𝑃ି[(𝐸ଵ + 2𝐹ଵ) ଵோమ {2𝑅ଷ − 1} +                     2𝐹ଵ𝑧 𝑅ସ{4𝑅ଷ − 3}] +   𝑄ି[(𝐸ଶ + 2𝐹ଶ) ଵோమ {2𝑅ଷ − 1} + 2(𝐸ଵξ + 2𝐹ଷξ +                       𝐹ଶ𝑧)𝑅ସ{4𝑅ଷ − 3} + 𝐹ଷξ𝑧 ோర {8𝑅ଷଶ − 8𝑅ଷ + 1}]  (12) 

 𝜏ଶଷ(ூ) = 𝐿ି[−(𝐸ଵ + 𝐹ଵ) ଵோమ {2𝑅ଷ − 1} − 2𝐹ଵ𝑧𝑅ସ{4𝑅ଷ − 3}] + 𝑀ି[−(𝐸ଶ + 𝐹ଶ) ଵோమ {2𝑅ଷ − 1} −                      2(𝐸ଵξ + 𝐹ଷξ + 𝐹ଶ𝑧)𝑅ସ{4𝑅ଷ − 3} − 𝐹ଷξ𝑧 ோర {8𝑅ଷଶ − 8𝑅ଷ + 1}] + 𝑃ି[2(𝐸ଵ + 𝐹ଵ)𝑅ଵ𝑅ଶ +                     𝐹ଵ𝑧 ଶோభோమ {4𝑅ଷ − 1}] + 𝑄ି[2(𝐸ଶ+𝐹ଶ)𝑅ଵ𝑅ଶ + (𝐸ଵξ + 𝐹ଷξ + 𝐹ଶ𝑧) ଶோభோమ {4𝑅ଷ − 1} +                     24𝐹ଷξ𝑧𝑅ଵ𝑅ସ{2𝑅ଷ − 1}]  (13) 

 𝜏ଷଷ(ூ) = 𝐿ି[−2𝐸ଵ𝑅ଵ𝑅ଶ − 𝐹ଵ𝑧 ଶோభோమ {4𝑅ଷ − 1}] + 𝑀ି[−2𝐸ଶ𝑅ଵ𝑅ଶ − (𝐸ଵξ + 𝐹ଶ𝑧) ଶோభோమ {4𝑅ଷ − 1} −                     24𝐹ଷξ𝑧𝑅ଵ𝑅ସ {2𝑅ଷ − 1}] + 𝑃ି[− 𝐸ଵ ଵோమ {2𝑅ଷ − 1} − 2𝐹ଵ𝑧𝑅ସ{4𝑅ଷ − 3}] + 𝑄ି[−𝐸ଶ ଵோమ {2𝑅ଷ −                     1} − 2(𝐸ଵξ +    𝐹ଶ𝑧)𝑅ସ{4𝑅ଷ − 3} − 𝐹ଷξ𝑧 ோర {8𝑅ଷଶ − 8𝑅ଷ + 1}] (14) 

 2𝜇ଵ𝑢ଶ(ூ) = 𝐿ି[−(𝐸ଵ + ிభఈభ)𝑅ଶ − 𝐹ଵ𝑧 ଵோమ {2𝑅ଷ − 1}] + 𝑀ି[−(𝐸ଶ + ிమఈభ)𝑅ଶ − (𝐸ଵξ + ஞிయఈభ + 𝐹ଶ𝑧) ଵோమ {2𝑅ଷ −                    1} − 2 𝐹ଷξ𝑧𝑅ସ{4𝑅ଷ − 3}] + 𝑃ି[(𝐸ଵ + ிభఈభ)𝑅ଵ + 2𝐹ଵ𝑧𝑅ଵ𝑅ଶ] + 𝑄ି[(𝐸ଶ + ிమఈభ)𝑅ଵ + 2(𝐸ଵξ +                      ஞிయఈభ +  𝐹ଶ𝑧)𝑅ଵ𝑅ଶ + 𝐹ଷξ𝑧 ଶோభோమ {4𝑅ଷ − 1}]   (15) 

 2𝜇ଵ𝑢ଷ(ூ) = 𝐿ି[−(𝐸ଵ + 𝐹ଵ − ிభఈభ)𝑅ଵ − 2𝐹ଵ𝑧𝑅ଵ𝑅ଶ] + 𝑀ି[−(𝐸ଶ + 𝐹ଶ − ிమఈభ)𝑅ଵ − 2(𝐸ଵξ + 𝐹ଷξ − ஞிయఈభ +                        𝐹ଶ𝑧)𝑅ଵ𝑅ଶ −  𝐹ଷξ𝑧 ଶோభோమ {4𝑅ଷ − 1}] + 𝑃ି[−(𝐸ଵ + 𝐹ଵ − ிభఈభ)𝑅ଶ − 𝐹ଵ𝑧 ଵோమ {2𝑅ଷ − 1}] +                       𝑄ି[−(𝐸ଶ + 𝐹ଶ − ிమఈభ)𝑅ଶ − (𝐸ଵξ + 𝐹ଷξ − ஞிయఈభ + 𝐹ଶ𝑧) ଵோమ {2𝑅ଷ − 1} − 2𝐹ଷξ𝑧𝑅ସ{4𝑅ଷ − 3} ] (16) 

 𝑈(ூூ) = 𝐿 tanିଵ( ௬|௭ିஞ| ) + 𝑀|𝑧 − ξ|𝑅ଵ − 𝑃 ln 𝑅 + 𝑄𝑅ଶ + 𝐿ି[𝐺ଵ tanିଵ( ௬௭ାஞ ) + 𝐻ଵ𝑧𝑆ଵ] +                         𝑀ି[𝐺ଶ tanିଵ( ௬௭ାஞ ) + (𝐻ଶ𝑧+𝐺ଷξ)𝑆ଵ + 2𝐻ଷξ𝑧𝑆ଵ𝑆ଶ] + 𝑃ି[−𝐺ଵ𝑙𝑛𝑆 + 𝐻ଵ𝑆ଶ] +                        𝑄ି[−𝐺ଶ𝑙𝑛𝑆 + (𝐻ଶ𝑧+𝐺ଷξ)𝑆ଶ + 𝐻ଷξ𝑧 ଵௌమ {2𝑆ଷ − 1}] (17) 𝜏ଶଶ(ூூ) = 2𝐿|𝑧 − ξ| ோభோమ + 𝑀 ቂ−4|𝑧 − ξ| ோభோమ + |𝑧 − ξ| ଶோభோమ {4𝑅ଷ − 1}ቃ + 𝑃 ଵோమ {2𝑅ଷ − 1} + 𝑄[−2 ଵோమ {2𝑅ଷ −             1} + 2𝑅ଶଶ{4𝑅ଷ − 3}] + 𝐿ି[2(𝐺ଵ − 2𝐻ଵ)𝑆ଵ𝑆ଶ + 𝐻ଵ𝑧 ଶௌభௌమ {4𝑆ଷ − 1}] + 𝑀ି[2(𝐺ଶ − 2𝐻ଶ)𝑆ଵ𝑆ଶ +             (𝐺ଷξ − 2𝐻ଷξ + 𝐻ଶ𝑧) ଶௌభௌమ {4𝑆ଷ − 1} + 24𝐻ଷξ𝑧𝑆ଵ𝑆ସ{2𝑆ଷ − 1}] + 𝑃ି[(𝐺ଵ − 2𝐻ଵ) ଵௌమ {2𝑆ଷ − 1} +             2𝐻ଵ𝑧𝑆ସ{4𝑆ଷ − 3}] +  𝑄ି[(𝐺ଶ − 2𝐻ଶ) ଵௌమ {2𝑆ଷ − 1} + 2(𝐺ଷξ − 2𝐻ଷξ +                        𝐻ଶ𝑧)𝑆ସ{4𝑆ଷ − 3} + 𝐻ଷξ𝑧 ௌర {8𝑆ଷଶ − 8𝑆ଷ + 1}]  (18) 

 𝜏ଶଷ(ூூ) = ±[𝐿 ଵோమ {2𝑅ଷ − 1} − 𝑀 ଵோమ {2𝑅ଷ − 1} + 2𝑀𝑅ଶଶ{4𝑅ଷ − 3} − 𝑃2|𝑧 − ξ| ௬ோర + 𝑄2|𝑧 − ξ| ௬ோర −                𝑄|𝑧 − ξ| ଶ௬ோర {4𝑅ଷ − 1}]  + 𝐿ି[(𝐺ଵ − 𝐻ଵ) ଵௌమ {2𝑆ଷ − 1} + 2𝐻ଵ𝑧𝑆ସ{4𝑆ଷ − 3}] + 𝑀ି[(𝐺ଶ −                𝐻ଶ) ଵௌమ {2𝑆ଷ − 1} + 2(𝐺ଷξ − 𝐻ଷξ + 𝐻ଶ𝑧) 𝑆ସ{4𝑆ଷ − 3} +    𝐻ଷξ𝑧 ௌర {8𝑆ଷଶ − 8𝑆ଷ + 1}] +                𝑃ି[− 2(𝐺ଵ − 𝐻ଵ)𝑆ଵ𝑆ଶ − 𝐻ଵ𝑧 ଶ௬ௌర {4𝑆ଷ − 1}] + 𝑄ି[−2(𝐺ଶ − 𝐻ଶ)𝑆ଵ𝑆ଶ − (𝐺ଷξ − 𝐻ଷξ +               𝐻ଶ𝑧) ଶ௬ௌర {4𝑆ଷ − 1} − 24𝐻ଷξ𝑧𝑆ଵ𝑆ସ{2𝑆ଷ − 1}] (19) 

 𝜏ଷଷ(ூூ) = −𝐿2|𝑧 − ξ| ௬ோర − 𝑀|𝑧 − ξ| ଶ௬ோర {4𝑅ଷ − 1} − 𝑃 ଵோమ {2𝑅ଷ − 1} − 2𝑄𝑅ଶଶ{4𝑅ଷ − 3} +                     𝐿ି ቂ−2𝐺ଵ𝑆ଵ𝑆ଶ − 𝐻ଵ𝑧 ଶ௬ௌర {4𝑆ଷ − 1}] + 𝑀ି[−2𝐺ଶ𝑆ଵ𝑆ଶ − (𝐺ଷξ + 𝐻ଶ𝑧ቁ ଶ௬ௌర {4𝑆ଷ − 1} −                     24𝐻ଷξ𝑧𝑆ଵ𝑆ସ{2𝑆ଷ − 1}] + 𝑃ି[−𝐺ଵ ଵௌమ {2𝑆ଷ − 1} − 2𝐻ଵ𝑧𝑆ସ{4𝑆ଷ − 3}] +                    𝑄ି[−𝐺ଶ ଵௌమ {2𝑆ଷ − 1} − 2(𝐺ଷξ + 𝐻ଶ𝑧)𝑆ସ{4𝑆ଷ − 3} − 𝐻ଷξ𝑧 ௌర {8𝑆ଷଶ − 8𝑆ଷ + 1} ] (20) 
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 2𝜇ଶ𝑢ଶ(ூூ) = −𝐿 |௭ିஞ|ோమ + ெబఈమ |௭ିஞ|ோమ − 𝑀|𝑧 − ξ| ଵோమ {2𝑅ଷ − 1} + 𝑃𝑅ଵ − ொబఈమ 𝑅ଵ + 2𝑄(𝑧 − ξ)ଶ ோభோమ +                                 𝐿ି[ (−𝐺ଵ + 𝐻ଵ/𝛼ଶ)𝑆ଶ − 𝐻ଵ𝑧 ଵௌమ {2𝑆ଷ − 1}] +  𝑀ି[(−𝐺ଶ + 𝐻ଶ/𝛼ଶ)𝑆ଶ + (−𝐺ଷξ +                                ஞுయఈమ − 𝐻ଶ𝑧) ଵௌమ {2𝑆ଷ − 1} − 2𝐻ଷξ𝑧𝑆ସ{4𝑆ଷ − 3}] + 𝑃ି[(𝐺ଵ − 𝐻ଵ/𝛼ଶ)𝑆ଵ + 2𝐻ଵ𝑧𝑆ଵ𝑆ଶ] +                                𝑄ି[(𝐺ଶ − 𝐻ଶ/𝛼ଶ)𝑆ଵ + 2(𝐺ଷξ − ξ𝐻ଷ/𝛼ଶ + 𝐻ଶ𝑧)𝑆ଵ𝑆ଶ + 𝐻ଷξ𝑧 ଶ௬ௌర {4𝑆ଷ − 1}] (21) 

 2𝜇ଶ𝑢ଷ(ூூ) = ± ቂ(𝐿 − 𝑀 + ெబఈమ )𝑅ଵ + 2𝑀(𝑧 − ξ)ଶ ௬ோర + (𝑃 − 𝑄 + ொబఈమ) |௭ିஞ|ோమ + 𝑄|𝑧 −                                       ξ| ଵோమ {2𝑅ଷ − 1}ቃ + 𝐿ି[(𝐺ଵ − 𝐻ଵ + 𝐻ଵ/𝛼ଶ)𝑆ଵ + 2𝐻ଵ𝑧𝑆ଵ𝑆ଶ] + 𝑀ି[(𝐺ଶ − 𝐻ଶ +                                       𝐻ଶ/𝛼ଶ)𝑆ଵ + 2(𝐺ଷξ − ξ𝐻ଷ + ஞுయఈమ + 𝐻ଶ𝑧)𝑆ଵ𝑆ଶ + 𝐻ଷξ𝑧 ଶ௬ௌర {4𝑆ଷ − 1} ] + 𝑃ି[(𝐺ଵ −                                      𝐻ଵ + 𝐻ଵ/𝛼ଶ)𝑆ଶ + 𝐻ଵ𝑧 ଵௌమ {2𝑆ଷ − 1}] +  𝑄ି[(𝐺ଶ − 𝐻ଶ + 𝐻ଶ/𝛼ଶ) 𝑆ଶ +                                     (𝐺ଷξ − ξ𝐻ଷ + ஞுయఈమ + 𝐻ଶ𝑧) ଵௌమ {2𝑆ଷ − 1} + 2𝐻ଷξ𝑧𝑆ସ{4𝑆ଷ − 3}] (22) 

where   𝑅ଶ = 𝑦ଶ + (𝑧 − ξ)ଶ,   𝑆ଶ = 𝑦ଶ + (𝑧 + ξ)ଶ, 

 𝑅ଵ = ௬ோమ ; 𝑅ଶ = ஞି௭ோమ ; 𝑅ଷ = (ஞି௭)మோమ ; 𝑅ସ = ஞି௭ோర ; 𝑆ଵ = ௬ௌమ ; 𝑆ଶ = ஞା௭ௌమ ; 𝑆ଷ = (ஞା௭)మௌమ ; 𝑆ସ = ஞା௭ௌర . 
1 Perfect Interface Case 
 If we substitute k22=k33=1 in equations (11) to (22), we get the analytic form for displacements and 
stresses for two perfectly joined half-spaces, which coincides with the results of Singh et al. [3]. 

2 Traction-Free Interface Case 
 If we substitute k22=k33=0 in equations (11) to (22), we get the analytic form for displacements and 
stresses for two joined half-spaces having traction-free interface or sliding interface. 

DISPLACEMENTS AND STRESSES FOR VERTICAL DIP-SLIP AND TENSILE FAULTS 

 In this section, we have obtained displacements and stresses due to vertical dip-slip and tensile faults. 

1 Vertical Dip-Slip Fault 
 Fault is defined as a plane fracture between two blocks and dip is defined as angle of the fault with 
respect to the surface. Vertical dip-slip fault occurred due to double couple (23) + (32) mechanism of 
seismic sources which allow relative movement of blocks vertically [Figure 2], and moment of double 
couple D23 is given by Singh et al. [3] as follows, 𝐷ଶଷ = 𝜇ଶ𝑏𝑑𝑠     
where 𝜇ଶ is the rigidity of medium II. 

 
Fig. 2  Geometry of double couple mechanism of source resulting vertical dip-slip fault 
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By substituting the values of source coefficients from Table 1 in (11) to (22), we get displacements and 
stresses generated by vertical dip-slip fault, 

 𝑈(ூ) = − ఈమఓమௗ௦    గ [𝐸ଶ tanିଵ( ௬ஞି௭ ) + 𝐹ଶ𝑧𝑅ଵ+𝐸ଵξ𝑅ଵ + 2𝐹ଷξ𝑧𝑅ଵ𝑅ଶ] (23) 

 𝜏ଶଶ(ூ) = − ఈమఓమௗ௦    గ [ 2(𝐸ଶ + 2𝐹ଶ)𝑅ଵ𝑅ଶ + (𝐸ଵξ + 2𝐹ଷξ + 𝐹ଶ𝑧) ଶ௬ோర {4𝑅ଷ − 1} +                                        24𝐹ଷξ𝑧𝑅ଵ𝑅ସ{2𝑅ଷ − 1}]  (24) 

 𝜏ଶଷ(ூ) = − ఈమఓమௗ௦    గ [−(𝐸ଶ + 𝐹ଶ) ଵோమ {2𝑅ଷ − 1} − 2(𝐸ଵξ + 𝐹ଷξ + 𝐹ଶ𝑧)𝑅ସ{4𝑅ଷ − 3} −                               𝐹ଷξ𝑧 ோర {8𝑅ଷଶ − 8𝑅ଷ + 1}]  (25) 

 𝜏ଷଷ(ூ) = − ఈమఓమௗ௦    గ [−2𝐸ଶ𝑅ଵ𝑅ଶ − (𝐸ଵξ + 𝐹ଶ𝑧) ଶ௬ோర {4𝑅ଷ − 1} − 24𝐹ଷξ𝑧 𝑅ଵ𝑅ସ{2𝑅ଷ − 1}]  (26) 

 2𝜇ଵ𝑢ଶ(ூ) = − ఈమఓమௗ௦    గ [−(𝐸ଶ + ிమఈభ)𝑅ଶ − (𝐸ଵξ + ஞிయఈభ + 𝐹ଶ𝑧) ଵோమ {2𝑅ଷ − 1} − 2 𝐹ଷξ𝑧𝑅ସ{4𝑅ଷ − 3}   (27) 2𝜇ଵ𝑢ଷ(ூ) = − ఈమఓమௗ௦    గ [−(𝐸ଶ + 𝐹ଶ − ிమఈభ)𝑅ଵ − 2(𝐸ଵξ + 𝐹ଷξ − ஞிయఈభ + 𝐹ଶ𝑧)𝑅ଵ𝑅ଶ −  𝐹ଷξ𝑧 ଶ௬ோర {4𝑅ଷ − 1}]    (28) 

 𝑈(ூூ) = ఈమఓమௗ௦    గ ቂ(𝑧 − ξ)𝑅ଵ−𝐺ଶ tanିଵ( ௬௭ାஞ ቁ − (𝐻ଶ𝑧+𝐺ଷξ)𝑆ଵ − 2𝐻ଷξ𝑧𝑆ଵ𝑆ଶ]   (29) 

 𝜏ଶଶ(ூூ) = ఈమఓమௗ௦    గ [4𝑅ଵ𝑅ଶ − 2𝑅ଵ𝑅ଶ{4𝑅ଷ − 1} − 2(𝐺ଶ − 2𝐻ଶ)𝑆ଵ𝑆ଶ − (𝐺ଷξ − 2𝐻ଷξ +                               𝐻ଶ𝑧) ଶ௬ௌర {4𝑆ଷ − 1} − 24𝐻ଷξ𝑧𝑆ଵ𝑆ସ{2𝑆ଷ − 1}] (30) 

 𝜏ଶଷ(ூூ) = ఈమఓమௗ௦    గ [− ଵோమ {2𝑅ଷ − 1} + 2𝑅ଶଶ{4𝑅ଷ − 3}−(𝐺ଶ − 𝐻ଶ) ଵௌమ {2𝑆ଷ − 1} − 2(𝐺ଷξ − 𝐻ଷξ +                      𝐻ଶ𝑧)𝑆ସ{4𝑆ଷ − 3} − 𝐻ଷξ𝑧 ௌర {8𝑆ଷଶ − 8𝑆ଷ + 1}] (31) 

 𝜏ଷଷ(ூூ) = − ఈమఓమௗ௦    గ ቂ(𝑧 − ξ) ଶ௬ோర {4𝑅ଷ − 1}+2𝐺ଶ𝑆ଵ𝑆ଶ + (𝐺ଷξ + 𝐻ଶ𝑧ቁ ଶ௬ௌర {4𝑆ଷ − 1} +                                 24𝐻ଷξ𝑧𝑆ଵ𝑆ସ{2𝑆ଷ − 1}]  (32) 

 2𝜇ଶ𝑢ଶ(ூூ) = ఈమఓమௗ௦    గ ቂ− ோమఈమ + 𝑅ଶ{2𝑅ଷ − 1}] − (−𝐺ଶ + ுమఈమቁ 𝑆ଶ − (−𝐺ଷξ + ஞுయఈమ − 𝐻ଶ𝑧) ଵௌమ {2𝑆ଷ − 1} +                         2𝐻ଷ𝑐𝑧𝑆ସ{4𝑆ଷ − 3}]  (33) 

 2𝜇ଶ𝑢ଷ(ூூ) = ఈమఓమௗ௦    గ [−𝑅ଵ + ଵఈమ 𝑅ଵ + 2𝑅ଵ𝑅ଷ − (𝐺ଶ − 𝐻ଶ + 𝐻ଶ/𝛼ଶ)𝑆ଵ − 2(𝐺ଷξ − ξ𝐻ଷ +                                   ஞுయఈమ +  𝐻ଶ𝑧)𝑆ଵ𝑆ଶ − 𝐻ଷξ𝑧 ଶ௬ௌర {4𝑆ଷ − 1} ] (34) 

2 Tensile fault 
 We have considered two tensile faults vertical and horizontal, defined as a vertical tensile fault occurred 
due to dipole (22) mechanism of seismic source with dislocation in the y-direction. 
 A horizontal tensile fault occurred due to dipole (33) mechanism of seismic source with dislocation in 
the z-direction. 
 Analytic expressions for displacements and stresses due to tensile fault by substituting corresponding 
values of seismic source coefficients from Table 1 and 𝑇 = 𝜇ଶ𝑏𝑑𝑠 (S.J. Singh & Singh [6]), are obtained 
as follows; 

 𝑈(ூ) = ఈమఓమௗ௦   గ [ −𝐸ଵ 𝑙𝑛𝑅 +   𝐹ଵ𝑧𝑅ଶ ± 𝐸ଶ𝑙𝑛𝑅 ∓ (𝐹ଶ𝑧+𝐸ଵξ)𝑅ଶ ∓ 𝐹ଷξ𝑧 ଵோమ {2𝑅ଷ − 1}] (35) 

 𝜏ଶଶ(ூ) = ఈమఓమௗ௦   గ [(𝐸ଵ + 2𝐹ଵ) ଵோమ {2𝑅ଷ − 1} + 2 𝐹ଵ𝑧𝑅ସ {4𝑅ଷ − 3}∓(𝐸ଶ + 2𝐹ଶ) ଵோమ {2𝑅ଷ − 1} ∓                       2(𝐸ଵξ + 2𝐹ଷξ + 𝐹ଶ𝑧)𝑅ସ{4𝑅ଷ − 3} ∓ 𝐹ଷξ𝑧 ோర {8𝑅ଷଶ − 8𝑅ଷ + 1}] (36) 

 𝜏ଶଷ(ூ) = ఈమఓమௗ௦   గ [2(𝐸ଵ + 𝐹ଵ)𝑅ଵ𝑅ଶ + 𝐹ଵ𝑧 ଶ௬ோర {4𝑅ଷ − 1} ∓ 2(𝐸ଶ+𝐹ଶ)𝑅ଵ𝑅ଶ ∓ (𝐸ଵξ + 𝐹ଷξ +                          𝐹ଶ𝑧) ଶ௬ோర {4𝑅ଷ − 1} ∓ 24𝐹ଷξ𝑧𝑅ଵ𝑅ସ{2𝑅ଷ − 1}] (37) 
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 𝜏ଷଷ(ூ) = ఈమఓమௗ௦   గ ቂ− 𝐸ଵ ଵோమ {2𝑅ଷ − 1} − 2𝐹ଵ𝑧𝑅ସ{4𝑅ଷ − 3} ± 𝐸ଶ ଵோమ {2𝑅ଷ − 1} ± 2(𝐸ଵξ +                            𝐹ଶ𝑧ቁ 𝑅ସ{4𝑅ଷ − 3} ± 𝐹ଷξ𝑧 ோర {8𝑅ଷଶ − 8𝑅ଷ + 1}] (38) 

 2𝜇ଵ𝑢ଶ(ூ) = ఈమఓమௗ௦   గ [(𝐸ଵ + ிభఈభ)𝑅ଵ + 2𝐹ଵ𝑧𝑅ଵ𝑅ଶ ∓ (𝐸ଶ + ிమఈభ)𝑅ଵ ∓ 2(𝐸ଵξ + ஞிయఈభ +                                          𝐹ଶ𝑧)𝑅ଵ𝑅ଶ ∓ 𝐹ଷξ𝑧 ଶ௬ோర {4𝑅ଷ − 1}] (39) 

 2𝜇ଵ𝑢ଷ(ூ) = ఈమఓమௗ௦   గ [−(𝐸ଵ + 𝐹ଵ − ிభఈభ)𝑅ଶ − 𝐹ଵ𝑧 ଵோమ {2𝑅ଷ − 1} ± (𝐸ଶ + 𝐹ଶ − ிమఈభ)𝑅ଶ ±                                      (𝐸ଵξ + 𝐹ଷξ − ஞிయఈభ + 𝐹ଶ𝑧) ଵோమ {2𝑅ଷ − 1} ± 2𝐹ଷξ𝑧𝑅ସ{4𝑅ଷ − 3}] (40) 

 𝑈(ூூ) = ఈమఓమௗ௦   గ [− ln 𝑅 ∓ 𝑅ଷ − 𝐺ଵ𝑙𝑛𝑆 + 𝐻ଵ𝑧𝑆ଶ ± 𝐺ଶ𝑙𝑛𝑆∓(𝐻ଶ𝑧+𝐺ଷξ)𝑆ଶ∓𝐻ଷξ𝑧 ଵௌమ {2𝑆ଷ − 1}] (41) 

 𝜏ଶଶ(ூூ) = ఈమఓమௗ௦   గ ቂ ଵோమ {2𝑅ଷ − 1} ± 2 ଵோమ {2𝑅ଷ − 1} ∓ 2𝑅ଶଶ{4𝑅ଷ − 3} + (𝐺ଵ − 2𝐻ଵቁ ଵௌమ {2𝑆ଷ − 1} +                    2𝐻ଵ𝑧𝑆ସ{4𝑆ଷ − 3} ∓ (𝐺ଶ − 2𝐻ଶ) ଵௌమ {2𝑆ଷ − 1} ∓ 2(𝐺ଷξ − 2𝐻ଷξ + 𝐻ଶ𝑧)𝑆ସ{4𝑆ଷ − 3} ∓                   𝐻ଷξ𝑧 ௌర {8𝑆ଷଶ − 8𝑆ଷ + 1}]  (42) 

 𝜏ଶଷ(ூூ) = ఈమఓమௗ௦   గ [2𝑅ଵ𝑅ଶ ± 2𝑅ଵ𝑅ଶ ∓ 2𝑅ଵ𝑅ଶ{4𝑅ଷ − 1} − 2(𝐺ଵ − 𝐻ଵ)𝑆ଵ𝑆ଶ − 𝐻ଵ𝑧 ଶ௬ௌర {4𝑆ଷ − 1} ±                     2(𝐺ଶ − 𝐻ଶ)𝑆ଵ𝑆ଶ ± (𝐺ଷξ − 𝐻ଷξ + 𝐻ଶ𝑧) ଶ௬ௌర {4𝑆ଷ − 1} ± 24𝐻ଷξ𝑧𝑆ଵ𝑆ସ{2𝑆ଷ − 1}] (43) 

 𝜏ଷଷ(ூூ) = ఈమఓమௗ௦   గ ቂ− ଵோమ {2𝑅ଷ − 1} ± 2𝑅ଶଶ{4𝑅ଷ − 3} − 𝐺ଵ ଵௌమ {2𝑆ଷ − 1} − 2𝐻ଵ𝑧𝑆ସ{4𝑆ଷ − 3} ±                        𝐺ଶ ଵௌమ {2𝑆ଷ − 1} ± 2(𝐺ଷξ + 𝐻ଶ𝑧ቁ 𝑆ସ{4𝑆ଷ − 3} ± 𝐻ଷξ𝑧 ௌర {8𝑆ଷଶ − 8𝑆ଷ + 1} ]  (44) 

 2𝜇ଶ𝑢ଶ(ூூ) = ఈమఓమௗ௦   గ [𝑅ଵ(1 ± ଵఈమ ∓ 2𝑅ଷ) + (𝐺ଵ − 𝐻ଵ/𝛼ଶ)𝑆ଵ + 2𝐻ଵ𝑧𝑆ଵ𝑆ଶ∓(𝐺ଶ − 𝐻ଶ/𝛼ଶ)𝑆ଵ ∓                              2(𝐺ଷξ − ξ𝐻ଷ/𝛼ଶ + 𝐻ଶ𝑧)𝑆ଵ𝑆ଶ ∓ 𝐻ଷξ𝑧 ଶ௬ௌర {4𝑆ଷ − 1}] (45) 

 2𝜇ଶ𝑢ଷ(ூூ) = ఈమఓమௗ௦   గ [−𝑅ଶ{1 ± 1 ∓ ଵఈమ} ± 𝑅ଶ ቄଶ(௭ିஞ)మோమ − 1ቅ + (𝐺ଵ − 𝐻ଵ + 𝐻ଵ/𝛼ଶ)𝑆ଶ +                                     𝐻ଵ𝑧 ଵௌమ {2𝑆ଷ − 1} ∓ (𝐺ଶ − 𝐻ଶ + 𝐻ଶ/𝛼ଶ) 𝑆ଶ ∓ (𝐺ଷξ − ξ𝐻ଷ + ஞுయఈమ +                                    𝐻ଶ𝑧) ଵௌమ {2𝑆ଷ − 1} ∓ 2𝐻ଷξ𝑧𝑆ସ{4𝑆ଷ − 3}] (46) 

where upper sign stands for vertical tensile fault and lower sign for horizontal tensile fault. 

NUMERICAL DISCUSSIONS WITH GRAPHS AND MESH GRIDS 

 In this section, we have numerically discussed the results with the help of graphs and mesh grids. we 
have applied dimensionless approach to study the effects of force like imperfect interface on transmission 
of stresses across the interface, For numerical calculations, we have taken continental crust 
model,  𝑖. 𝑒. 𝛼ଵ = 𝛼ଶ = 0.685 & 𝛽 = 0.451 . For plotting graphs, consider dimensionless quantities          𝑌 = 𝒚ஞ  (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡) 𝑎𝑛𝑑 𝑍 = 𝐳ஞ (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒), where ξ is the distance 
of the line source from the interface. The displacements and stresses are measured in units of     ௗ௦  గஞ  𝑎𝑛𝑑    ఓమௗ௦  గஞమ  respectively. Let the dimensionless displacements and stresses be denoted by 𝑈(ூ), 𝑈(ூூ), σ(ூ)&σ(ூூ); then 

𝑈(ூ) =  𝜋ξ 𝑢(ூ)   𝑏𝑑𝑠  𝑎𝑛𝑑 𝑈(ூூ) =  𝜋ξ 𝑢(ூூ)   𝑏𝑑𝑠 ; σ(ூ) =  𝜋ξଶ 𝜏(ூ)  𝜇ଶ 𝑏𝑑𝑠  𝑎𝑛𝑑 σ(ூூ) =  𝜋ξଶ 𝜏(ூூ)  𝜇ଶ 𝑏𝑑𝑠  

 Figures 3 to 8 are depicting variations in Dimensionless normal and shear stresses for different bonding 
conditions caused by vertical dip-slip fault in Medium-I & II with distance from the fault. It is observed 
that stresses are greater in magnitude for perfect bonding conditions as compare to imperfect bonding 
conditions in Medium-I; however, in medium-II stresses behaved in opposite i.e. stresses are less in 
magnitude for perfect bonding conditions as compare to imperfect bonding conditions in Medium-II. Also 
there is significant variations in magnitude of stresses for corresponding different bonding conditions in 
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Medium-I as compare to medium-II. Normal stresses are antipodal symmetric and shear stresses are 
symmetric about Z-axis. 

 
Fig. 3 Variations in Dimensionless normal stress 𝜎ଶଶ for different bonding conditions due to 

vertical dip-slip fault in Medium-I 

 

 

Fig. 4 Variations in Dimensionless shear stress 𝜎ଶଷ for different bonding conditions due to vertical 
dip-slip fault in Medium-I 
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Fig. 5 Variations in Dimensionless normal stress 𝜎ଷଷ for different bonding conditions due to 

vertical dip-slip fault in Medium-I 

 

 
Fig. 6 Variations in Dimensionless normal stress 𝜎ଶଶ for different bonding conditions due to 

vertical dip-slip fault in Medium-II 
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Fig. 7 Variations in Dimensionless shear stress 𝜎ଶଷ for different bonding conditions due to vertical 

dip-slip fault in Medium-II 

 

 
Fig. 8 Variations in Dimensionless normal stress 𝜎ଷଷ for different bonding conditions due to 

vertical dip-slip fault in Medium-II 

 Figures 9 to 11 mesh grid maps are showing discontinuity in dimensionless normal and shear stresses 
at interface caused by vertical dip-slip fault. 
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Fig. 9 Mesh grid Map showing discontinuity in dimensionless normal stress  𝜎ଶଶ at interface 

generated by vertical dip-slip fault 

 

 

Fig. 10 Mesh grid Map showing discontinuity in dimensionless shear stress  𝜎ଶଷ at interface 
generated by vertical dip-slip fault 
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Fig. 11 Mesh grid Map showing discontinuity in dimensionless normal stress  𝜎ଷଷ at interface 

generated by vertical dip-slip fault 

 Figures 12 to 16 mesh grid map showing the significant range of dimensionless stresses and 
displacements near the source caused by vertical dip-slip fault. 
 

 
Fig. 12 Mesh grid Map depicting significant range of dimensionless normal stress  𝜎ଶଶ generated 

by vertical dip-slip fault 
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Fig. 13 Mesh grid Map depicting significant range of dimensionless shear stress  𝜎ଶଷ generated 

by vertical dip-slip fault 

 

 
Fig. 14 Mesh grid Map depicting significant range of dimensionless normal stress  𝜎ଷଷ generated 

by vertical dip-slip fault 
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Fig. 15 Mesh grid Map depicting significant range of dimensionless horizontal displacement Uଶ 

generated by vertical dip-slip  fault 

 

 
Fig. 16 Mesh grid Map depicting significant range of dimensionless vertical displacement Uଷ 

generated by vertical dip-slip fault 

 Figures 17 to 19 mesh grid map showing discontinuity in dimensionless normal and shear stresses at 
interface caused by horizontal tensile fault. 
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Fig. 17 Mesh grid Map showing discontinuity in dimensionless normal stress  𝜎ଶଶ at interface 

generated by horizontal tensile fault 

 

 
Fig. 18 Mesh grid Map showing discontinuity in dimensionless shear stress  𝜎ଶଷ at interface 

generated by horizontal tensile fault 
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Fig. 19 Mesh grid Map showing discontinuity in dimensionless normal stress  𝜎ଷଷ at interface 

generated by horizontal tensile fault 

 Figures 20 to 22 mesh grid map showing discontinuity in dimensionless normal and shear stresses at 
interface caused by vertical tensile fault. 
 

 
Fig. 20 Mesh grid Map showing discontinuity in dimensionless normal stress  𝜎ଶଶ at interface 

generated by vertical  tensile fault 
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Fig. 21 Mesh grid Map showing discontinuity in dimensionless shear stress  𝜎ଶଷ at interface 

generated by vertical  tensile fault 

 

 
Fig. 22 Mesh grid Map showing discontinuity in dimensionless normal stress  𝜎ଷଷ at interface 

generated by vertical tensile fault 

 From Figures 9 to 11 and 17 to 22, numerical results on jump discontinuity at interface are observed 
for different interface conditions for vertical dip-slip fault, horizontal tensile fault and vertical tensile fault. 
Magnitude of jump discontinuity are produced here in tabular form- 
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Magnitude of jump discontinuity at interface at a numerical glance: 

Stress Magnitude 
of jump disc. 

Bonding conditions Observations Fault σଶଶ 0.5044 k22=0.25, k33=0.75 Jump at interface is greater 
in magnitude for k22=0.75, 
k33=0.25 and less in 
magnitude for k22=0.25, 
k33=0.75; Significantly 
difference is observed in σଷଷ for different bonding 
conditions. 

Vertical dip-slip 
0.7782 k22=0.5, k33=0.5 
0.7417 k22=0.75, k33=0.25 σଶଷ 0.7274 k22=0.25, k33=0.75 
0.8061 k22=0.5, k33=0.5 
0.9433 k22=0.75, k33=0.25 σଷଷ 0.6618 k22=0.25, k33=0.75 
1.0634 k22=0.5, k33=0.5 
1.7507 k22=0.75, k33=0.25 σଶଶ 0.0265 k22=0.25, k33=0.75 Significantly difference is 

observed in σଶଷ for 
different bonding 
conditions. Less effect of 
bonding conditions on 
transmission of stress σଶଶ 
across interface. 

Horizontal tensile 
fault 0.0251 k22=0.5, k33=0.5 

0.1248 k22=0.75, k33=0.25 σଶଷ 0.7003 k22=0.25, k33=0.75 
0.189 k22=0.5, k33=0.5 
0.1009 k22=0.75, k33=0.25 σଷଷ 0.3139 k22=0.25, k33=0.75 
0.5985 k22=0.5, k33=0.5 
1.0396 k22=0.75, k33=0.25 σଶଶ 0.0871 k22=0.25, k33=0.75 Jump at interface is greater 

in magnitude for k22=0.75, 
k33=0.25 and less in 
magnitude for k22=0.25, 
k33=0.75; Significantly 
difference is observed in σଶଷ for different bonding 
conditions. 

Vertical tensile fault 
0.1825 k22=0.5, k33=0.5 
0.3594 k22=0.75, k33=0.25 σଶଷ 0.7604 k22=0.25, k33=0.75 
1.1541 k22=0.5, k33=0.5 
1.5306 k22=0.75, k33=0.25 σଷଷ 0.202 k22=0.25, k33=0.75 
0.2661 k22=0.5, k33=0.5 
0.3728 k22=0.75, k33=0.25 

DISCUSSION 

 The two-phase model is considered in this research, which is useful for studying the consequences of 
internal structural discontinuities in the earth while neglecting the free surface. As earth is made up of many 
layers, and these layers are not perfectly joined, there are different kinds of imperfection at interfaces. 
Imperfect interface provides better information of transmission of stresses, displacements and strains from 
one medium to another medium rather than perfect. Outcomes of effects of imperfection at interface of two 
mediums is of great significance in the research of static deformation calculations caused by seismic 
sources. In real situations interfaces are rarely perfect, so for results due to imperfect interface conditions 
are more appropriate. Here, the mathematical representation of the displacements and stresses for two 
imperfectly joined half-spaces having force-like interface bonding generated by a line source is obtained. 
As in force-like interfaces, displacements are continuous across the interface but stresses are not, the work 
given in this research represents an advancement on prior findings on perfect and       traction-free interfaces. 
Stresses through force-like interface transmit less in magnitude. Strain energy will convey less in magnitude 
because strains are directly proportional to stresses. The results obtained here motivate to study, all possible 
interfaces lie between the perfect and traction-free interfaces. These findings can be used to create multiple 
frameworks for characterizing such applications. 

CONCLUSION 

 We have obtained expressions for displacements and stresses generated by a line source for two elastic 
half-spaces having force-like imperfect bonding conditions at interface are obtained. Particular cases of 
vertical dip-slip and tensile faults are discussed numerically and graphically. Variations in normal and shear 
stresses by taking perfect and imperfect bonding conditions are perceived. By considering imperfection at 
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interface, a jump discontinuity in stresses is observed at interface. In medium-I, stresses are considerably 
lesser in magnitude for imperfect bonding conditions as compare to perfect bonding. On the contrary, in 
medium-II, stresses are greater in magnitude for imperfect bonding conditions as compare to perfect 
bonding. Also there is significant variations in magnitude of stresses for corresponding different bonding 
conditions in Medium-I as compare to medium-II. Also it is concluded that strain energy will transmit less 
in magnitude in Medium-I as stored energy density function is a linear function of strains and strains are 
proportionate to stresses. Stresses are transmitted from medium-II to Medium-I are less in magnitude and 
in view of this more energy will be conserved in medium-II due to imperfect bonding at interface. 

APPENDICES 

Appendix 1 
Table 1: Source coefficients for numerous kind of seismic sources 

Source L0 M0 P0 Q0

Single couple (23) [direction of force is 
x2 and arm is parallel to x3] ∓ 𝛼ଵ𝐹ଶଷ2𝜋  ± 𝛼ଵ𝐹ଶଷ2𝜋  0 0 

Single couple(32) [direction of force is 
x3 and arm is parallel to x2] ± 𝛼ଵ𝐹ଷଶ2𝜋  ± 𝛼ଵ𝐹ଷଶ2𝜋  0 0 

double couple (23)+(32), moment of 
double couple is F32=F23=D23 

0 ± 𝛼ଵ𝐷ଷଶ𝜋  0 0 

Center of rotation (32)-(23), 
F32=F23=R23 ± 𝑅ଷଶ𝜋  0 0 0 

Dipole (22) 0 0 (1 − 𝛼ଵ)𝐹ଶଶ   2𝜋  
−𝛼ଵ𝐹ଶଶ2𝜋  

Dipole (33) 0 0 (1 − 𝛼ଵ)𝐹ଷଷ   2𝜋  
𝛼ଵ𝐹ଷଷ2𝜋  

Center of dilatation (22)+(33), 
F22=F33=C0 

0 0 (1 − 𝛼ଵ)𝐶   𝜋  
0 

Double couple (33)-(22), F22=F33=D/
23 0 0 0 𝛼ଵ𝐷ᇱଶଷ𝜋  

Tensile dislocation in x2-direction 0 0 𝛼ଵ𝑇   𝜋  
−𝛼ଵ𝑇𝜋  

Tensile dislocation in x3-direction 0 0 𝛼ଵ𝑇   𝜋  
𝛼ଵ𝑇𝜋  

The upper and lower sign are for z>ξ and z<ξ resp., 𝛼ଵ = 𝛌𝟏ା µ𝟏𝛌𝟏ା 𝟐µ𝟏 

Appendix 2 𝐸ଵ = 2𝑘ଷଷ(2𝛼ଶ𝛽𝑘ଶଶ + 𝛼ଵ𝛼ଶ𝛽ଶ − 𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ )/𝐷                                                  𝐸ଶ = 2𝑘ଷଷ(𝛼ଵ𝛽ଶ − 𝛼ଶ𝛽𝑘ଶଶ − 𝛼ଵ𝛼ଶ𝛽ଶ + 𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ )/𝐷 𝐹ଵ = −2(𝛼ଵ𝛼ଶ𝛽ଶ𝑘ଶଶ + 𝛼ଵ𝛼ଶ𝛽ଶ𝑘ଷଷ )/𝐷 𝐹ଶ = −2(𝛼ଵ𝛽ଶ𝑘ଶଶ + 𝛼ଵ𝛽ଶ𝑘ଷଷ − 𝛼ଵ𝛼ଶ𝛽ଶ𝑘ଷଷ + 𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ 𝑘ଷଷ )/𝐷 𝐹ଷ = −2(−𝛼ଵ𝛼ଶ𝛽ଶ𝑘ଶଶ + 𝛼ଵ𝛼ଶ𝛽ଶ𝑘ଷଷ )/𝐷 𝐺ଵ = (2𝛼ଶ𝛽𝑘ଶଶ − 2𝛼ଶ𝛽𝑘ଷଷ + 𝛼ଶଶ𝛽𝑘ଶଶ + 𝛼ଶଶ𝛽𝑘ଷଷ − 2𝛼ଶଶ𝑘ଶଶ 𝑘ଷଷ + 𝛼ଵ𝛼ଶଶ𝛽ଶ +  𝛼ଵ𝛼ଶଶ𝑘ଶଶ 𝑘ଷଷ − 𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ + 𝛼ଵ𝛼ଶ𝛽𝑘ଷଷ − 𝛼ଵ𝛼ଶଶ𝛽𝑘ଶଶ − 𝛼ଵ𝛼ଶଶ𝛽𝑘ଷଷ )/𝐷 𝐺ଶ = (2𝛼ଵ𝛽ଶ + 2𝛼ଶ𝛽𝑘ଶଶ − 2𝛼ଵ𝛼ଶ𝛽ଶ + 2𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ)/𝐷 𝐺ଷ = (2𝛼ଶ𝛽𝑘ଶଶ − 2𝛼ଶ𝛽𝑘ଷଷ + 𝛼ଶଶ𝛽𝑘ଶଶ + 2𝛼ଶଶ𝛽𝑘ଷଷ − 2𝛼ଶଶ𝑘ଶଶ 𝑘ଷଷ + 𝛼ଵ𝛼ଶଶ𝛽ଶ − 𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ+ 𝛼ଵ𝛼ଶ𝛽𝑘ଷଷ − 𝛼ଵ𝛼ଶଶ𝛽𝑘ଶଶ − 𝛼ଵ𝛼ଶଶ𝛽𝑘ଷଷ + 𝛼ଵ𝛼ଶଶ𝑘ଶଶ 𝑘ଷଷ )/𝐷 𝐻ଵ = 𝛼ଶ(2𝛼ଶ𝛽𝑘ଶଶ + 2𝛼ଶ𝛽𝑘ଷଷ − 4𝛼ଶ𝛽𝑘ଶଶ 𝑘ଷଷ + 2𝛼ଵ𝛼ଶ𝛽ଶ + 2𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ − 2𝛼ଵ𝛼ଶ𝛽𝑘ଷଷ + 2𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ 𝑘ଷଷ )/𝐷 
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 𝐻ଶ = 𝛼ଶ(𝛼ଵ𝛽𝑘ଶଶ − 𝛼ଶ𝛽𝑘ଶଶ − 𝛼ଵ𝛽𝑘ଷଷ − 𝛼ଶ𝛽𝑘ଷଷ + 2𝛼ଶ𝑘ଶଶ 𝑘ଷଷ − 𝛼ଵ𝛼ଶ𝛽ଶ +  𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ + 𝛼ଵ𝛼ଶ𝛽𝑘ଷଷ − 𝛼ଵ𝛼ଶ𝑘ଶଶ 𝑘ଷଷ )/𝐷 𝐻ଷ = 𝛼ଶ(2𝛼ଶ𝛽𝑘ଶଶ + 2𝛼ଶ𝛽𝑘ଷଷ − 4𝛼ଶ𝑘ଶଶ 𝑘ଷଷ + 2𝛼ଵ𝛼ଶ𝛽ଶ − 2𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ − 2𝛼ଵ𝛼ଶ𝛽𝑘ଷଷ + 2𝛼ଵ𝛼ଶ𝑘ଶଶ 𝑘ଷଷ )/𝐷 
and 𝐷 = 𝛼ଶ(2𝛽𝑘ଶଶ + 2𝛽𝑘ଷଷ + 2𝛼ଵ𝛽ଶ − 𝛼ଵ𝛽𝑘ଶଶ − 𝛼ଶ𝛽𝑘ଶଶ − 𝛼ଵ𝛽𝑘ଷଷ − 𝛼ଶ𝛽𝑘ଷଷ +  2𝛼ଶ𝑘ଶଶ 𝑘ଷଷ − 𝛼ଵ𝛼ଶ𝛽ଶ+ 𝛼ଵ𝛼ଶ𝛽𝑘ଶଶ+𝛼ଵ𝛼ଶ𝛽𝑘ଷଷ − 𝛼ଵ𝛼ଶ𝑘ଶଶ 𝑘ଷଷ)                                              
Appendix 3 
For z>0;  exp(−𝑘𝑧) ௦௬ 𝑑𝑘 = 𝑡𝑎𝑛ିଵ ௬௭ஶ    exp(−𝑘𝑧) ௦௬ 𝑑𝑘 = −2 ln(𝑦ଶஶ + 𝑧ଶ)   exp(−𝑘𝑧) 𝑠𝑖𝑛𝑘𝑦 𝑑𝑘 = ௬௬మା௭మஶ    exp(−𝑘𝑧) 𝑐𝑜𝑠𝑘𝑦 𝑑𝑘 = ௭௬మା௭మஶ    exp(−𝑘𝑧) 𝑘 𝑠𝑖𝑛𝑘𝑦 𝑑𝑘 = ଶ௬௭(௬మା௭మ)మஶ    exp(−𝑘𝑧) 𝑘 𝑐𝑜𝑠𝑘𝑦 𝑑𝑘 = ଵ௬మା௭మ [ ଶ௭మ௬మା௭మ − 1]ஶ    exp(−𝑘𝑧) 𝑘ଶ 𝑠𝑖𝑛𝑘𝑦 𝑑𝑘 = ଶ௬(௬మା௭మ)మ [ ସ௭మ௬మା௭మ − 1]ஶ    exp(−𝑘𝑧) 𝑘ଶ 𝑐𝑜𝑠𝑘𝑦 𝑑𝑘 = ଶ௭(௬మା௭మ)మ [ ସ௭మ௬మା௭మ − 3]ஶ    exp(−𝑘𝑧) 𝑘ଷ 𝑠𝑖𝑛𝑘𝑦 𝑑𝑘 = ଶସ௬௭(௬మା௭మ)య [ ଶ௭మ௬మା௭మ − 1]ஶ    exp(−𝑘𝑧) 𝑘ଷ 𝑐𝑜𝑠𝑘𝑦 𝑑𝑘 = (௬మା௭మ)మ [ ଼௭ర(௬మା௭మ)మ − ଼௭మ௬మା௭మ + 1]ஶ   
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