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ABSTRACT 

 Free vibration analyses of beams on elastic foundation are very common in civil and mechanical 
engineering. Such types of structures are exposed to dynamic loads is a complex soil-structure interaction 
problem. In the present study for safe and economical design of such structures, a workable approach for 
free vibration analysis of beams on Winkler foundation using first-order continuity (C1) two degree of 
freedom (DOF) per node three nodded beam based on Euler-Bernoulli beam theory (EBBT) is attempted. 
A Matlab code is developed for the present formulation. The results, thus obtained, are compared with 
similar studies done by other researchers as well as with exact solution where applicable, which show 
very good conformity and a maximum difference 0.24% with exact solution for mode eight. It is 
concluded that the present formulation has rapid convergence regardless of boundary conditions, depth to 
length ratio of beam and modulus of sub-grade reaction. It performs extremely well for thin beams in 
terms of ease and consistency and gives a very accurate result with only few elements and within few 
seconds. 

KEYWORDS: Free Vibration, Winkler Foundation, Modulus of Sub-Grade Reaction, Quintic Beams, 
First Order (C1) Continuity 

INTRODUCTION 

 There are many foundation models such as the Winkler model, the two-parameter Pasternak model, 
and Vlasov model, etc. It is very important to choose a more practical foundation models and simpler 
methods for the safe and economical design of such complex soil-structure interaction problem. The 
majority of the problems cannot be solved by the theoretical approach. In solving this type of problem; 
one can use numerical techniques like the finite element method. 
 Euler-Bernoulli proposed a highly basic beam model based on the assumptions that “plane portions 
remain flat” after bending and that the deformed beam slope is modest. The Euler-Bernoulli beam theory 
is a simplified version of the linear theory of elasticity that can be used to estimate beam load carrying 
and deflection characteristics. Exact deflections and slopes at nodes can be obtained using classic beam 
elements approximated by a cubic polynomial with first order (C1) continuity. Engineers are interested in 
the second and third derivatives of the solution, which are the local moment and shear force; traditional 
beam elements produce poor design results until a large number of elements are used. Many accurate 
beam solutions for the most common load and support conditions are polynomials of third, fourth, or fifth 
degree. As a result, it is evident that the accuracy with which the deflection of the foundation structure is 
determined is important to the behavior of the beam on elastic foundation. Thus, a fifth degree polynomial 
will generally give a very accurate or exact solution of beam on elastic foundation with only few 
elements. By increasing the number of nodes and/or the continuity level at each node, the Hermite family 
of interpolation polynomials can be raised in order. It is chosen to use a three-nodded beam element with 
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two degrees of freedom per node. The computational efficiency has substantially enhanced, which makes 
post-processing much faster. 
 To developed exact moment diagram and shear diagrams due to concentrated moments and loads the 
finite element meshing should be set up so that every point source occurs at an interface node between 
elements. Akin [1] discuss in his paper about why a quintic beam was not chosen for a two-node      
second-order (C2) Hermite interpolation. 
 Free vibration analysis of beams resting on the Winkler foundation is important for the structural 
design of beam. The mechanical modeling of beam-subsoil interaction problem is mathematical quite a 
complex phenomenon and the response of sub-grade is depending upon many factors. 
 Hetenyi [2] discuss in detail in his paper the beam solution on Winkler foundations. The key 
advantage of the commonly used Winkler model is its simplicity and the only input needed is the         
sub-grade reaction module K. Kim and Kim [3] regarded the vibration of beams with boundary 
requirements of general restriction. Friswell et al. [4] presented beam vibration, using the finite element 
principle for a nonlocal viscoelastic foundation model. The dynamic reaction of the Euler-Bernoulli beam 
to a focused moving force on linear and nonlinear viscoelastic Winkler foundations was considered by 
Senalpet al. [5]. Hizal, and Çatal [6] developed the functional analysis on modified Vlasov foundations of 
axially loaded beams. Thambiratnam and Zhuge [7] have formulated a basic model to study the dynamic 
behavior of beams on a flexible foundation under moving load conditions. Coskunet al. [8] studies in 
details the free vibration analysis of non-uniform Euler beams on elastic foundation using the approach of 
domain decomposition. Robinson [9] in his paper discusses in details the principles of seismic isolation 
and application of isolation systems to structures in Zealand. 
 Rahbar-Ranji and Shahbaztabar [10] uses Legendre polynomials and the Rayleight-Ritz method to 
analyze the free vibration analysis of beams on the Pasternak foundation. Sapountzakis et al. [11], 
presented nonlinear dynamic analysis of partly supported Timoshenko beam-columns on the tensionless 
Winkler foundation. Kacar et al. [12] studies the free vibration of beams on variable Winkler elastic 
foundation using differential transformation. For Beam on linearly varying sub-grade modulus,           
Chen et al. [13] developed an improved solutions approach using quintic displacement functions.        
Dutta et al. [14] developed finite element formulation for three-nodded beams on Pasternak type 
foundation using quintic displacement functions. Dutta and Mandal [15, 16] developed finite element 
formulation for dynamic analysis of thin beam and deep beam on Vlasov foundation. 
 Practitioners rarely employ the two-parameter and continuum-based models because they involve 
extensive mathematics and do not provide straightforward techniques for free vibration analysis of beams 
on elastic foundation. The finite element method, in its three-dimensional form, has the potential to 
produce realistic results free vibration analysis of beams, if appropriate soil constitutive relationships are 
used and appropriate elements and domains for the soil and beam are chosen. But it is a time-consuming 
and expensive. 
 In the present study, adopting a three nodded beam element having two DOF per node based on 
EBBT for free vibration analysis of beams on elastic foundation is attempted. It overcomes inconsistency 
of two nodded beam elements having two DOF per node. To model the elastic foundation modulus of 
sub-grade reaction is the only input. It has rapid convergence and performs exceptionally well for thin 
beam and saves computer memory, resulting in lower computational cost, time and resources. 
 A Matlab [17] code is written based on the present formulation. Convergence study is carried out and 
results are validated with available literature, which shows very good conformity. Convergence rate, 
accuracy, and applicability of the present formulation for free vibration analysis of beams on Winkler 
foundation are demonstrated through a number of numerical examples. 

METHODOLOGY 

1 Winkler Model 
 Winkler [18] introduced a very condensed model, which in the literature is now called the Winkler 
foundation. Thanks to its simplicity, the Winkler model was used by practicing engineers for everyday 
construction. This model is created on the premise that the reaction forces per unit area are proportional to 
the deflection of the foundation itself at each point of the foundation. The characteristics of vertical 
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deformation of the foundation are characterized by equal, independent, closely spaced, discrete and 
linearly elastic springs known as the sub-grade reaction modulus, K. 

 

Fig. 1 Winkler foundation 

 The relationship between the exterior pressure and the deflection of the foundation surface under the 
pressure in the Winkler model is expressed as q = Kw where w, the vertical displacement of the soil, at 
that point, is proportional to the contact pressure, q. The constant of proportionality, K is considered the 
“sub-grade reaction modulus” of the soil (Figure 1). 
 The foundation parameter modulus of sub-grade reaction can be evaluated from typical plate load 
tests. The modulus of sub-grade reaction (Ks) thus obtained is valid for 0.3 m wide footing. Corrections 
need to be applied for larger size footings used for structures. A simple correction for a  (B m × B m) 
square footing in a homogeneous cohesive soil with uniform elastic modulus, the modulus of sub-grade 
reaction can be estimated Terzaghi [19] as K = Ks (0.3/B) and in cohesionless soils, K = Ks [(B + 
0.3)/2B]2 and for rectangular foundation of B × L , K = KB×B(1+B/L)/1.5 where KB×B is the modulus of 
sub-grade reaction for square footing with dimensions B × B. According to Bowles [20], if q is the 
bearing capacity causing a settlement of 25 mm then, K = 40 qF where q is the allowable bearing pressure 
and F is the factor of safety. 

2 Development of Governing Equation 
 The total potential energy of the soil-Beam system subjected to an uniformly distributed load (UDL) 
of q is given by Π = UBeam+Usoil–qw 
 The strain energy in a linear spring is ଵଶ 𝐾𝑤ଶ. 𝑈௦௢௜௟ = 12 න 𝐾𝑤ଶ 𝑑𝐴 = 𝐾𝑏2 න 𝑤ଶ 𝑑𝑥 = 𝑘2 න 𝑤ଶ𝑑𝑥௅

଴  ; 
k = Kb; K – is the modulus of sub-grade reaction and b – is the beam width. 
 Consider an element of a thin beam, as shown in Figure 2, while bending. If w denotes the deflection 
of the beam along its length at any point x, ∂w/∂x denotes the slope of the deflected center-line. Due to the 
transverse displacement w, the axial displacement of a fiber centered at a distance z from the neutral axis 
u may be expressed as (point A moves to A') Rao [21], according to EBBT, a plane section of the beam 
remains plane after deformation. 
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Fig. 2 Beam in bending 

𝑢 = −𝑧 𝜕𝑤𝜕𝑥 ; 𝜀௫ = 𝜕𝑢𝜕𝑥 = −𝑧 𝜕ଶ𝑤𝜕𝑥ଶ ∴ 𝜎௫ = 𝐸𝜀௫ = −𝐸𝑧 𝜕ଶ𝑤𝜕𝑥ଶ  𝜋଴ = ଵଶ 𝜎௫𝜀௫; Beam element energy density due to strain. 𝜋଴ = 12 ቆ−𝐸𝑧 𝜕ଶ𝑤𝜕𝑥ଶ ቇ ቆ−𝑧 𝜕ଶ𝑤𝜕𝑥ଶ ቇ = 12 𝐸𝑧ଶ ቆ𝜕ଶ𝑤𝜕𝑥ଶ ቇଶ
 

Beam’s total strain energy is given by, 𝜋௕ = ම 𝜋଴𝑑𝑉௏ = න 𝐸2௅
଴ ඵሾ𝑧ଶ𝑑𝐴ሿ஺ ቆ𝜕ଶ𝑤𝜕𝑥ଶ ቇଶ 𝑑𝑥 = 12 න 𝐸𝐼(𝑥) ቆ𝜕ଶ𝑤𝜕𝑥ଶ ቇଶ 𝑑𝑥௅

଴  

where E - is the Young’s modulus of beam material, I - is the moment of inertia of the beam. 𝑊 = ׬ 𝑞𝑤𝑑𝑥௅଴ ; is the virtual work due to applied UDL, q, on the beam. ∴ 𝛱 = 12 න 𝐸𝐼 ቆ𝜕ଶ𝑤𝜕𝑥ଶ ቇଶ௅
଴ 𝑑𝑥 + 12 න 𝑘௅

଴ 𝑤ଶ𝑑𝑥 

2.1 Hamilton’s Principle 
 Lagrangian , L =  T –  U =  Kinetic energy –  Potential energy; 𝐿 = 𝐿 ൬𝑞ଵ, 𝑞ଶ, 𝑞ଷ … . 𝑑𝑞ଵ𝑑𝑡 , 𝑑𝑞ଶ𝑑𝑡 , 𝑑𝑞ଷ𝑑𝑡 ൰  𝑎𝑛𝑑 𝜕𝐿𝜕𝑞௜ − 𝑑𝑑𝑡 ቌ 𝜕𝐿ௗ௤೔ௗ௧ ቍ = 0; 
is known as Euler-Lagrange equation and the governing differential equations of Lagrangian of motion. Beam kinetic energy can be expressed as, 𝑇 = 12 න 𝑚(𝑥) ൬𝜕𝑤𝜕𝑡 ൰ଶ 𝑑𝑥௅

଴  

In case of Euler beam on Winkler foundation  𝐿 = 𝑚2 ൬𝜕𝑤𝜕𝑡 ൰ଶ − 𝐸𝐼2 ቆ𝜕ଶ𝑤𝜕𝑥ଶ ቇଶ − 𝑘𝑤ଶ2  

 In calculus of variations the order of integration with respect to t and x can be interchanged and the 
operator’s δ and d/dx or δ and d/dt are commutative. 

 ∴ 𝛿𝜋 = 𝛿 ׬ ׬ ൤ாூଶ ቀడమ௪డ௫మ ቁଶ + ௞௪మଶ ൨ 𝑑𝑥௅଴௧మ௧భ 𝑑𝑡 = డడ௫ ׬ ׬ ൤ாூଶ ቀడమ௪డ௫మ ቁଶ + ௞௪మଶ ൨ 𝑑𝑥௅଴௧మ௧భ 𝑑𝑡  

 ∴ 𝛿𝜋 = ׬ ׬ ൤ாூଶ డడ௫ ቀడమ௪డ௫మ ቁଶ + 𝑘𝑤 డ௪డ௫ ൨ 𝑑𝑥௅଴௧మ௧భ 𝑑𝑡 = ׬ ׬ ாூଶ ቂ2 డమ௪డ௫మ డడ௫ ቀడమ௪డ௫మ ቁ + 𝑘𝑤 డ௪డ௫ ቃ 𝑑𝑥௅଴௧మ௧భ 𝑑𝑡  
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 ∴ 𝛿𝜋 = ׬ ׬ ቂቀ𝐸𝐼 డమ௪డ௫మ ቁ డడ௫ ቀడమ௪డ௫మ ቁ + 𝑘𝑤 డ௪డ௫ ቃ 𝑑𝑥௅଴௧మ௧భ 𝑑𝑡  

׬  ׬ ቀ𝐸𝐼 డమ௪డ௫మ ቁ డడ௫ ቀడమ௪డ௫మ ቁ 𝑑𝑥௅଴௧మ௧భ 𝑑𝑡 = ׬ ቂቀ𝐸𝐼 డమ௪డ௫మ ቁ ׬ డడ௫ ቀడమ௪డ௫మ ቁ 𝑑𝑥௅଴ −௧మ௧భ                                   ׬ ቄ డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ ׬ డడ௫ ቀడమ௪డ௫మ ቁ 𝑑𝑥௅଴ ቅ 𝑑𝑥௅଴ ቃ 𝑑𝑡  

 ∴ 𝛿𝜋 = ׬ 𝐸𝐼 ቀడమ௪డ௫మ ቁଶฬ଴
௅ 𝑑𝑡 − ׬ ׬ డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ డమ௪డ௫మ 𝑑𝑥𝑑𝑡௅଴௧మ௧భ௧మ௧భ + ׬ ׬ 𝑘𝑤 డ௪డ௫ 𝑑𝑥௅଴௧మ௧భ 𝑑𝑡;  

 𝑁𝑜𝑤 ׬ ׬ డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ డమ௪డ௫మ 𝑑𝑥𝑑𝑡௅଴௧మ௧భ = ׬ ቂ డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ ׬ డమ௪డ௫మ 𝑑𝑥 − ׬ ቄ డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ ׬ డమ௪డ௫మ 𝑑𝑥ቅ 𝑑𝑥௅଴௅଴ ቃ 𝑑𝑡௧మ௧భ   

 = ׬ డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ డ௪డ௫ ቚ଴௅ 𝑑𝑡 − ׬ ׬ డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ డ௪డ௫ 𝑑𝑥𝑑𝑡௅଴௧మ௧భ௧మ௧భ   

 ∴ 𝛿𝜋 = ׬ 𝐸𝐼 ቀడమ௪డ௫మ ቁଶฬ଴
௅ 𝑑𝑡 − ׬ డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ డ௪డ௫ ቚ଴௅ 𝑑𝑡 + ׬ ׬ డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ డ௪డ௫ 𝑑𝑥𝑑𝑡௅଴௧మ௧భ௧మ௧భ௧మ௧భ ׬                             + ׬ 𝑘𝑤 డ௪డ௫ 𝑑𝑥௅଴௧మ௧భ 𝑑𝑡  

 ∴ 𝛿𝜋 = ׬ ൤𝐸𝐼 డమ௪డ௫మ డడ௫ ቀడ௪డ௫ ቁቚ଴௅ − డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤ቚ଴௅ + ׬ డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤𝑑𝑥௅଴ + ׬ 𝑘𝑤𝛿𝑤𝑑𝑥௅଴ ൨ 𝑑𝑡௧మ௧భ   

 ∴ 𝛿𝑇 = 𝛿 ׬ ׬ ௠(௫)ଶ ቀడ௪డ௧ ቁଶ 𝑑𝑥𝑑𝑡௅଴௧మ௧భ = ׬ ׬ ௠ଶ 2 డ௪డ௧ డడ௧ ቀడ௪డ௧ ቁ 𝑑𝑥𝑑𝑡௅଴௧మ௧భ   

 ∴ 𝛿𝑇 = ׬ ቂ𝑚 డ௪డ௧ ׬ డడ௧ ቀడ௪డ௧ ቁ 𝑑𝑡 − ׬ ቄ𝑚 డడ௧ ቀడ௪డ௧ ቁ ׬ డడ௧ ቀడ௪డ௧ ቁ 𝑑𝑡ቅ 𝑑𝑡௧మ௧భ௧మ௧భ ቃ௅଴ 𝑑𝑥;  

 ∴ 𝛿𝑇 = ׬ ൤𝑚 డ௪డ௧ 𝛿𝑤ቚ௧భ
௧మ − ׬ 𝑚 డమ௪డ௧మ 𝛿𝑤𝑑𝑡௧మ௧భ ൨௅଴ 𝑑𝑥 = − ׬ ׬ 𝑚 డమ௪డ௧మ 𝛿𝑤𝑑𝑡𝑑𝑥௧మ௧భ௅଴ 𝑎𝑠 𝛿𝑤𝑖𝑠 𝑧𝑒𝑟𝑜 𝑎𝑡 𝑡 =                       𝑡ଵ 𝑎𝑛𝑑 𝑡 =  𝑡ଶ  

 ∴ 𝛿𝑊 = 𝛿 ׬ ׬ 𝑞𝑤𝑑𝑥𝑑𝑡௅଴௧మ௧భ = ׬ ׬ 𝑞𝛿𝑤𝑑𝑥𝑑𝑡௅଴௧మ௧భ   

Using the Hamilton’s principle, one gets, 𝛿𝐿 = ׬ (𝛿𝑇 − 𝛿𝜋 + 𝛿𝑊)𝑑𝑡௧మ௧భ  

 ∴ 𝛿𝐿 = ׬ ൤− ׬ 𝑚 డమ௪డ௧మ 𝛿𝑤𝑑𝑥 − ൜𝐸𝐼 డమ௪డ௫మ డడ௫ ቀడ௪డ௫ ቁቚ଴௅ − డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤ቚ଴௅ + ׬ డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤𝑑𝑥௅଴ ൠ −௅଴௧మ௧భ                  ׬ 𝑘𝑤𝛿𝑤𝑑𝑥௅଴ + ׬ 𝑞𝛿𝑤𝑑𝑥௅଴ ൨ 𝑑𝑡  

׬  ൤− ׬ 𝑚 డమ௪డ௧మ 𝛿𝑤𝑑𝑥 − ൜𝐸𝐼 డమ௪డ௫మ డడ௫ ቀడ௪డ௫ ቁቚ଴௅ − డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤ቚ଴௅ + ׬ డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤𝑑𝑥௅଴ ൠ −௅଴௧మ௧భ          ׬ 𝑘𝑤𝛿𝑤𝑑𝑥௅଴ + ׬ 𝑞𝛿𝑤𝑑𝑥௅଴ ൨ 𝑑𝑡 = 0  

׬  ൤׬ ቀ−𝑚 డమ௪డ௧మ − డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ − 𝑘𝑤 + 𝑞ቁ 𝛿𝑤𝑑𝑥 − ൜𝐸𝐼 డమ௪డ௫మ డడ௫ ቀడ௪డ௫ ቁቚ଴௅ − డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤ቚ଴௅ൠ௅଴ ൨ 𝑑𝑡௧మ௧భ = 0  

Since the time integration must hold for any arbitrary initial and final times, t1 and t2, respectively, we 
have that 

׬  ቀ−𝑚 డమ௪డ௧మ − డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ − 𝑘𝑤 + 𝑞ቁ 𝛿𝑤𝑑𝑥 − ൜𝐸𝐼 డమ௪డ௫మ డడ௫ ቀడ௪డ௫ ቁቚ଴௅ − డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤ቚ଴௅ൠ௅଴ = 0  

 Then, because the variations at x = 0 and x = L are also arbitrary, the integration term and the 
boundary relations must be independently equal to zero. 

׬  ቀ−𝑚 డమ௪డ௧మ − డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ − 𝑘𝑤 + 𝑞ቁ 𝛿𝑤𝑑𝑥 = 0௅଴   

Hence, we get the following three equations 

 𝑚 డమ௪డ௧మ + డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ + 𝑘𝑤 − 𝑞 = 0  

 𝑚 డమ௪డ௧మ + డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ + 𝑐 డ௪డ௧ + 𝑘𝑤 − 𝑞 = 0  

where ‘c’ is the damping co-efficient. 
For free vibration analysis q = 0 and the equation of motion for beam on elastic foundation is 
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 𝑚 డమ௪డ௧మ + డమడ௫మ ቀ𝐸𝐼 డమ௪డ௫మ ቁ + 𝑐 డ௪డ௧ + 𝑘𝑤 = 0 (1) 

 𝐸𝐼 డమ௪డ௫మ 𝛿 ቀడ௪డ௫ ቁቚ଴௅ = 0 (2) 

 𝑎𝑛𝑑 డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ 𝛿𝑤ቚ଴௅ = 0 (3) 

Equation (1) is the equation of motion for the beam’s transverse vibration, and Equations (2) and (3) 
reflects the conditions of the boundaries. It can be seen that Equation (2) requires that either 𝐸𝐼 డమ௪డ௫మ =0  𝑜𝑟 𝛿 ቀడ௪డ௫ ቁ = 0  𝑎𝑡  𝑥 =  0 𝑎𝑛𝑑 𝑥 =  𝐿 . Equation (3) requires that either డడ௫ ቀ𝐸𝐼 డమ௪డ௫మ ቁ = 0  𝑜𝑟 𝛿𝑤 =0  𝑎𝑡  𝑥 =  0 𝑎𝑛𝑑 𝑥 = 𝐿 
Common boundary conditions can be satisfied by the Equations (2) and (3): 

2.2. Boundary Conditions 

1. Fixed or clamped (C) end w = 0 and డ௪డ௫ =  0. 
2. Pinned or hinged (S) end w = 0 and  డమ௪డ௫మ = 0. 

3. Free (F) end డమ௪డ௫మ  = 0  𝑎𝑛𝑑 డయ௪డ௫య  = 0. 
3 Characteristic Equation 
 Using the Hamilton principle Petyt [22], the equations of motion of a beam-soil system subjected to 
free vibration without damping is express as 
 ሾ𝑀ሿ ሼ𝑤ሷ ሽ +  ሾ𝐾௕௦ሿሼ𝑤ሽ  = ሼ 0ሽ (4) 
where [Kbs] and [M] is the stiffness matrix and mass matrix of the beam-soil system, 𝑤 and w ሷ is the 
displacement and acceleration of beam respectively. Obtain the natural frequencies and the modes of 
vibration by solving the generalized Eigen value problem Hinton [23]. 
 For free vibration analysis assuming a harmonic motion  
 ሼ𝑤ሽ =  ሼ𝑤ഥሽ𝑒௜ఠ௧ 𝑎𝑛𝑑 ሼ𝑤ሷ ሽ = −𝜔ଶሼ𝑤ഥሽ𝑒௜ఠ௧  where ሼwഥሽ is the amplitude of ሼwሽ. After substitutionሼwሽ and ሼwሷ ሽ in Equation (4) get    
 (ሾ𝐾௕௦ሿ − 𝜔ଶሾ𝑀ሿ)ሼ𝑤ഥሽ = ሼ0ሽ  
 Non – trivial solution of Equation (5) requires that 
 |(ሾ𝐾௕௦ሿ − 𝜔ଶሾ𝑀ሿ)| = 0 (5) 
the characteristic equation. Where ‘ω’ is the natural frequency. 
 The mode shapes and natural frequency from the Eigen value solution of Equation (5) for the beam 
soil system can be obtained. 

4 Finite Element Formulation 
 The finite element method was used to solve the problem. The derivations of the beam and foundation 
stiffness, as well as the force vector, are all included. In conjunction with the Winkler foundation model, 
the strain energy and virtual work methods are used. To make matrix inversion and solution of the derived 
equations easier, a computer program written in Matlab is created. Consider the three nodded beam with 
nodal displacements and forces as shown in Figure 3. This section has nodes at x = (-L/2, 0, L/2). For 
more details of two DOF per node three nodded beam is available in [1, 13, 14, 24]. 

 
Fig. 3 Three-nodded beam element components for displacement and force 

 The element has six DOF in total, defined by the vector of nodal displacement. 𝑞 = ሾ𝑣ଵ 𝜃ଵ 𝑣ଶ 𝜃ଶ 𝑣ଷ 𝜃ଷሿ் 
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The corresponding nodal force vector 𝑃 = ሾ𝑃ଵ 𝑀ଵ 𝑃ଶ 𝑀ଶ 𝑃ଷ 𝑀ଷሿ் 
 Using the boundary conditions of Figure 3, the nodal displacement can be expressed in terms of the 
nodal displacement vector q in the form v = Nq, where N is the shape function and q is the nodal 
displacement. 
 Three nodded two DOF per node beam components have shape functions 𝑁ଵ = 4𝑥ଶ𝐿ଶ − 10𝑥ଷ𝐿ଷ − 8𝑥ସ𝐿ସ + 24𝑥ହ𝐿ହ ; 𝑁ଶ =  𝑥ଶ2𝐿 − 𝑥ଷ𝐿ଶ − 2𝑥ସ𝐿ଷ + 4𝑥ହ𝐿ସ  𝑁ଷ = 16𝑥ସ𝐿ସ − 8𝑥ଶ𝐿ଶ +  1; 𝑁ସ = 𝑥 − 8𝑥ଷ𝐿ଶ + 16𝑥ହ𝐿ସ  𝑁ହ = 4𝑥ଶ𝐿ଶ + 10𝑥ଷ𝐿ଷ − 8𝑥ସ𝐿ସ − 24𝑥ହ𝐿ହ ; 𝑁଺ = 2𝑥ସ𝐿ଷ − 𝑥ଷ𝐿ଶ − 𝑥ଶ2𝐿 + 4𝑥ହ𝐿ସ  

Strain energy of beam element , 𝑈௕ = ׬ 𝐸𝐼ሼ𝑑ሽ்ሾ𝑁ᇱᇱሿ்ሾ𝑁ᇱᇱሿሼ𝑑ሽ𝑳𝟐ି𝑳𝟐 𝑑𝑥 =  ଵଶ ሼ𝑑ሽ்ሾ𝐾௕ሿሼ𝑑ሽ 

where beam element stiffness is 𝐾௕ = 𝐸𝐼 ׬ ሾ𝑁′′ሿ்ሾ𝑁′′ሿ𝑳𝟐ି𝑳𝟐 𝑑𝑥 

The flexural stiffness matrix for the three nodded beam elements is 

𝐾௕ = 𝐸𝐼35𝐿ଷ ⎣⎢⎢
⎢⎢⎡ 5092 1138𝐿 −3584 1920𝐿 −1508 242𝐿1138𝐿 332𝐿ଶ −896𝐿 320𝐿ଶ −242𝐿 38𝐿ଶ−3584 −896𝐿 7168 0 −3584 896𝐿1920𝐿 320𝐿ଶ 0 1280𝐿ଶ −1920𝐿 320𝐿ଶ−1508 −242𝐿 −3584 −1920𝐿 5092 −1138𝐿242𝐿 38𝐿ଶ 896𝐿 320𝐿ଶ −1138𝐿 332𝐿ଶ ⎦⎥⎥

⎥⎥⎤ 
Strain energy of linear spring 𝑈௥ = 12 න 𝐾ሼ𝑑ሽ்ሾ𝑁ሿ்ሾ𝑁ሿሼ𝑑ሽ 𝑑𝐴 =  12 ሼ𝑑ሽ்ൣ𝐾௙൧ሼ𝑑ሽ 

In which the foundation stiffness matrix for the element is, ൣ𝐾௙൧ = න 𝐾ሾ𝑁ሿ்ሾ𝑁ሿ𝑳𝟐ି𝑳𝟐 𝑑𝐴 = 𝐾𝑏 න ሾ𝑁ሿ்ሾ𝑁ሿ𝑳𝟐ି𝑳𝟐 𝑑𝑥 = 𝑘 න ሾ𝑁ሿ்ሾ𝑁ሿ𝑳𝟐ି𝑳𝟐 𝑑𝑥 

where [N] is the shape function matrix of the beam element. 
The stiffness matrix of foundation for the three nodded beam elements is 

𝐾௙ = 𝑘𝐿13860 ⎣⎢⎢
⎢⎢⎡ 2092 114𝐿 880 −160𝐿 262 −29𝐿114𝐿 8𝐿ଶ 88𝐿 −12𝐿ଶ 29𝐿 −3𝐿ଶ880 88𝐿 5632 0 880 −88𝐿−160𝐿 −12𝐿ଶ 0 128𝐿ଶ 160𝐿 −12𝐿ଶ262 29𝐿 880 160𝐿 2092 −114𝐿−29𝐿 −3𝐿ଶ −88𝐿 −12𝐿ଶ −114𝐿 8𝐿ଶ ⎦⎥⎥

⎥⎥⎤ 
Hence the element stiffness matrix is ∴ ሾ𝑘௘ሿ = ሾ𝐾௕ሿ + ൣ𝐾௙൧ 
By using standard finite element procedure, the global stiffness matrix is obtained ∴ ሾ𝐾௕௦ሿ = ෍൫ሾ𝐾௕ሿ + ൣ𝐾௙൧൯௡

ଵ  

Kinetic energy, T=
1
2
ρA න ൬∂w

∂t
൰2𝑳𝟐ି-𝑳𝟐 dx 

T=
1
2

ሼ𝑑ᇱሽ்ρA න ሾ𝑁ሿ்𝑳𝟐ି𝑳𝟐 ሾ𝑁ሿ𝑑𝑥ሼ𝑑ᇱሽ 
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For element mass matrix 𝑚 = ρA න ሾ𝑁ሿ்𝑳𝟐ି𝑳𝟐 ሾ𝑁ሿ𝑑𝑥 

The consistent mass matrix for the three nodded beam elements is 

𝑚 = ρA𝐿13860 ⎣⎢⎢
⎢⎢⎡ 2092 114𝐿 880 −160𝐿 262 −29𝐿114𝐿 8𝐿ଶ 88𝐿 −12𝐿ଶ 29𝐿 −3𝐿ଶ880 88𝐿 5632 0 880 −88𝐿−160𝐿 −12𝐿ଶ 0 128𝐿ଶ 160𝐿 −12𝐿ଶ262 29𝐿 880 160𝐿 2092 −114𝐿−29𝐿 −3𝐿ଶ −88𝐿 −12𝐿ଶ −114𝐿 8𝐿ଶ ⎦⎥⎥

⎥⎥⎤ 
By using standard finite element procedure, the global mass matrix is obtained ∴ ሾ𝑀ሿ = ෍ 𝑚௡

ଵ  

 Before solving the characteristic equation of system, one needs to be applied boundary conditions. 

RESULTS AND DISCUSSION  

1 Convergence Study and Validation of the Present Formulation 
 The following dimensionless parameters are defined for results comparison 
• Natural frequency parameter, λ or β = [ωL²√(ρA/EI)]½; 
• Foundation parameter, Kw = kL4/EI; 
 An example has been chosen from the study done by Kacar et al. [12] for convergence study as well 
as for validation of the present formulation. The dimensions of the simply supported beam for verification 
were taken as follows: L = 1 m, beam thickness, H = 0.05 m, material properties: Young’s modulus,       
E = 20000 MPa, ρ = 2500 kg/m³. Kw = 10. 

 

Fig. 4 Convergence study for natural frequency for 1st mode of a simply supported (S - S) beam 
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Fig. 5  Convergence study for natural frequency for sixth mode of a S - S beam 

 

 

Fig. 6 Mode shape of clamped-clamped (C - C) beam 
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Fig. 7 Mode shape of S - S beam 

 

 

Fig. 8 Mode shape of clamped-free (C - F) beam 
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Fig. 9 Mode shape of free-free (F - F) beam 

 Convergence study for modes 1 and 6 shown in Figures 4 and 5 and also the mode shape for various 
boundary conditions are given in Figures 6-9. The obtained frequency parameter listed in Table 1 and has 
been compared with Kacar et al. [12] show excellent agreement. It is also observed that only one element 
or three nodes is sufficient for reasonable result for the first mode and up to the sixth mode achieved only 
five elements or eleven nodes is sufficient. 
 In case of F-F beam there will be two rigid body modes in a normal modes analysis with no loads or 
constraints: one translation and other rotation modes. The modal frequency of the first two modes will be 
zero or close to zero. This refers to a rigid body motion rather than a vibrating system. In the present 
study for F-F beam first significant mode is mode 3. 

Table 1: Frequency parameter for validation of the present formulation 

THEORY λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 
Present study (PS) 3.2193 6.2932 9.4278 12.5678 15.7109 18.8555 22.0114 25.1909
Kacar et al. [12] 3.2193 6.2932 9.4278 12.5676 15.7086 18.8499 21.9914 25.1329
Analytical 3.2193 6.2932 9.4278 12.5676 15.7086 18.8499 21.9914 25.1329
Difference (%) 0 0 0 0.0016 0.0149 0.0298 0.0907 0.2308 

 This section starts with some comparisons with similar studies done by other researchers are made. 
The present method can be applied to analyze the free vibration analysis of a beam with various boundary 
conditions, including free-free. 
 An example has been chosen from the study done by Friswell et al. [4] beam on Winkler foundation. 
The foundation, beam’s material properties and load are presented in Table 2. The obtained result listed in 
Table 3 and has been compared with analytical and as well as Friswell et al. [4] and result show full 
agreement with analytical result. 
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Table 2: The foundation property and beam’s properties  

Beam length 6.096 m. 
Beam moment of inertia 0.001439 m4

Elastic modulus of the beam 24.82×106 KN/m2

Mass per meter of the beam  446.3 kg/m 
Foundation modulus, k = Kb 16550 KN/m2 

Table 3: Comparisons of the natural frequencies (Hz) of vibration for the Simple supported beam 

Mode No Analytical Friswell et al. [4] Present Study
1 32.898 32.898 32.898 
2 56.808 56.812 56.808
3 111.90 111.95 111.899
4 193.76 194.08 193.768 

 Table 1 and Table 3 show how superior the present formulation is. 
 Quintic displacement functions, as shown in the Tables 1 and 3 above, provide satisfactory precision. 
The method is also accurate for the free vibrational modes of a beam resting on an elastic foundation, 
which is the study’s major focus and where the results are presented in Tables 1 and 3 alongside 
comparisons to the available literature. 

2 Parametric Study 
 For parametric study the data has been taken as E = 20G Pa and Kw = 20, 40, 50 and various 
boundary condition (B.C.) and L/d = 100. 
 The dimensions of the beam for parametric study were taken as follows: L= 5 m, thickness, d = 50 
mm, and material properties: Young’s modulus, E = 20 GPa and density, ρ = 2500 kg/m3 and the        
non-dimensional value of Kw = 20, 40, 80. The actual values of the Winkler coefficients for Kw = 20, 
were    k = 6666.67 N/m2, and various boundary condition and L/d = 100. Results for parametric study 
are presented in Table 4 and Figures 10 and 11. In case of F-F beam frequency parameter is mode 3 to    
mode 12. 

Table 4: Parametric study E = 20 GPa and Kw = 20, 40 and 80 

B.C. Kw λ₁ λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 

C-C 
20 4.7766 7.8635 10.9994 14.1390 17.2836 20.4324 23.5979 26.8045 30.1584 33.1830 
40 4.8218 7.8738 11.0032 14.1408 17.2846 20.4330 23.5982 26.8047 30.1585 33.1831 
80 4.9087 7.8942 11.0107 14.1444 17.2865 20.4341 23.5990 26.8052 30.1589 33.1834 

S-S 
20 3.2917 6.3032 9.4308 12.5691 15.7116 18.8559 22.0116 25.1911 28.4169 31.4825 
40 3.4238 6.3231 9.4367 12.5716 15.7129 18.8566 22.0121 25.1914 28.4171 31.4827 
80 3.6496 6.3623 9.4486 12.5766 15.7154 18.8581 22.0130 25.1920 28.4175 31.4830 

C-F 
20 2.3851 4.7417 7.8651 10.9993 14.1391 17.2841 20.4344 23.6037 26.8173 30.1832 
40 2.6900 4.7879 7.8753 11.0031 14.1409 17.2851 20.4350 23.6041 26.8176 30.1834 
80 3.1001 4.8765 7.8957 11.0106 14.1444 17.2870 20.4362 23.6049 26.8181 30.1837 

F-F 
20 2.1147 2.1147 4.7766 7.8635 10.9994 14.1392 17.2846 20.4365 23.6096 26.8303 
40 2.5149 2.5149 4.8218 7.8738 11.0032 14.1410 17.2856 20.4371 23.6100 26.8305 
80 2.9907 2.9907 4.9087 7.8942 11.0107 14.1445 17.2875 20.4383 23.6107 26.8311 

C-S 
20 4.0067 7.0827 10.2149 13.3541 16.4972 19.6438 22.8037 25.9943 29.2574 32.3813 
40 4.0823 7.0967 10.2196 13.3562 16.4983 19.6445 22.8042 25.9946 29.2576 32.3814 
80 4.2219 7.1245 10.2289 13.3604 16.5006 19.6458 22.8050 25.9952 29.2580 32.3817 

S-F 
20 2.1147 4.0067 7.0827 10.2149 13.3541 16.4976 19.6453 22.8084 26.0051 29.2775 
40 2.5149 4.0823 7.0967 10.2196 13.3562 16.4987 19.6460 22.8088 26.0054 29.2777 
80 2.9907 4.2219 7.1245 10.2289 13.3604 16.5009 19.6473 22.8096 26.0059 29.2781 
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Fig. 10 First mode frequency parameter vs foundation parameter 

 

 

Fig. 11 Effect of boundary condition on frequency parameter 

 Table 4 show the variation of frequency parameter with modulus of sub-grade reaction. It is observed 
that the frequency parameter increases with increase of sub-grade reaction, as the modulus of sub-grade 
reaction increases, the foundation stiffness as well as the beam's overall stiffness increases, resulting in a 
greater frequency response. It is seen that the increase in frequency parameter is 1-2% when the 
foundation parameter increase cent percent. 
 Figures 4, 5 shows the rapid convergence rate of the present formulation. 
 It is observed from Table 4 and Figures 10, 11 that with increase of constrains on the edge the 
frequency parameter increases because of beam flexural rigidity increases as edge constraints increases 
and hence higher frequency response. 

CONCLUSIONS 

 The dynamic response of an Euler-Bernoulli beam under free vibration is the subject of this research. 
Winkler elastic foundation supports the beam with constant cross-sectional area over its length. Winkler 
modelling is commonly used to represent beams and pipes that are supported by an elastic soil. Such 
modeling introduces the elastic foundation by a set of mutually independent spring elements. In the 
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present work, the elastic coefficient of the spring set is constant throughout the major axis of the beam. In 
the present study, the free vibration analysis of beam resting on Winkler foundation is investigated using 
quintic displacement functions, the result obtained has excellent agreement with the exact solution as well 
as the referred result and very high convergence rate regardless of boundary conditions, length to depth 
ratio and foundation parameter. It is seen that the three nodded two DOF per node C1 compatible type 
beam element is simple and can be used effectively and easily for free vibration analysis of beams on 
Winkler foundation under any type of boundary conditions. The B. C’s influence is more pronounced for 
a higher mode number than the lower mode. In the light of the above results, it may be concluded that the 
present formulation has generates free vibration responses of beams on Winkler foundation with few 
elements and within few seconds and saves computer memory, resources and time. 

Future Scope of the Work. 
• The present research work can be extended to consider the effect of layered soil or Gibson soil. 
• The analysis can be further extended to account for time varying elastic properties of the soil. 
• The model can be extended to consider forced vibration and stability analysis of beams on elastic 

foundation. 
• The model can be extended to two-parameter and continuum-based foundation model. 
• The model can be extended to consider analysis of anisotropic, laminated and functionally graded 

beams on elastic foundation. 
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