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ABSTRACT 

The identification of mode shapes is an important but challenging task of vibration based system 

identification procedures. We propose a simple and robust procedure for extracting mode shape information 

from the vibration signatures of structures with particular reference to the earthquake  excitation cases. A 

wavelet based synchrosqueezed transform technique is used to decompose the measured vibration response 

into individual modal response components. The modal frequencies and mode shapes are obtained from the 

analysis of these isolated modal components. The proposed scheme is validated by considering the response 

of UCLA Factor Building for a suite of three different ground motions. 
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INTRODUCTION 

Civil engineering systems comprise of massive structures, which have to withstand a variety of dynamic 

loads like wind, earthquakes, traffic, etc. Continuous operation of these  systems, including several life line 

facilities, requires rigorous maintenance regime and also a mechanism to ascertain any changes in structural 

properties during regular operating conditions and also in extreme events such as strong earthquakes, high  

speed winds, etc. Several methods based on the analysis of vibration signatures of structures for assessing 

its health have been proposed in recent times to detect and identify damage in a structural system. The aim 

is to provide an early indication of physical damage for facilitating preventive maintenance (Doebling et 

al., 1996). 

System identification is the process of estimating structural system parameters (physical, ormodal) 

through analysis of input and/or output data (Shiradhonkar and Shrikhande, 2011; Shrikhande, 2014). Due 

to difficulty in recording the input data in several instances such as wind, or traffic induced vibrations, some 

output only system identification techniques have been developed, namely, random decrement (Ibrahim, 

1977), natural excitation (James III et al., 1993), eigensystem realization algorithm (Juang and Pappa, 

1985), subspace identification (van Overschee and de Moor, 2012) frequency domain decomposition 

(Brincker et al., 2001), and a few wavelet-based techniques (Staszewski, 1997; Lardies and Gouttebroze, 

2002; Yang and Nagarajaiah, 2015). Hilbert-Huang transform (HHT) has also been used for iterative 

empirical mode decomposition to extract intrinsic mode functions from the measured system response 

(Huang et al., 1998). A wavelet based Hilbert-Huang transform (HHT) technique has also been used in 

modal identification (Yang et al., 2003a, b). 

While most of the processes provide a robust estimation of the natural frequency and damping, the 

estimation of mode shapes has remained a challenging proposition. The problem of modal identification is 

structurally similar to the problem of blind source separation (BSS), wherein a set of independent sources 

are sought to be separated from an uncertain mixture of these  sources as shown in Figure 1. The general 

BSS problem statement can be defined as:  

 𝒙(𝑡) = 𝑨 𝒔(𝑡) + 𝒏(𝑡) (1) 

where, 𝒙(𝑡) is the vector of observed output, 𝒔(𝑡) is the vector of independent source signals, 𝑨 is the 

mixing matrix, and 𝒏(𝑡) represents the measurement noise. 
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Fig. 1  Basic blind source separation framework 

The BSS technique has shown its application in the various field, like artificial intelligence, image 

processing, biomedical engineering, telecommunication and structural dynamics. Application of BSS in 

structural dynamics identification has been studied earlier based on independent component analysis (ICA) 

(Hyvarinen and Oja, 2000; Comon, 1994), second order blind identification (SOBI) (Belouchrani et al., 

1997) and a complexity pursuit (CP) as a generalization of the SOBI procedure (Antoni et al., 2017). Modal 

identification  by using BSS has been considered for a variety of structural systems with varying degrees 

of success, particularly with reference to the estimation of mode shapes (Zang et al., 2004; Kerschen et al., 

2007; Poncelet et al., 2007; Zhou and Chelidze, 2007; Hazra and Narasimhan, 2009; Hazra et al., 2010, 

2012; Sadhu et al., 2012; Sadhu and Hazra, 2013; Sadhu et al., 2017). 

We present a new BSS approach to modal identification based on synchrosqueezed transform (SST) in 

a non-statistical framework for empirical mode decomposition. The empirical mode decomposition scheme, 

originally proposed by Huang et al. (1998), is designed to extract slowly varying nearly harmonic 

components meeting the criteria for existence of instantaneous frequency based on Hilbert-Huang transform 

(HHT). The suggested process, however, is an iterative numerical sifting procedure with no connection to 

the mechanics  of the problem. The decomposition, therefore, is not unique and individual components may 

not be representative of the system properties. The synchrosqueezed trans-form based empirical mode 

decomposition proposed by Daubechies et al. (2011) allows for unambiguous extraction of slowly varying 

harmonic components of different instantaneous frequencies which are representatives of the underlying 

physical system. This wavelet based tool allows for extraction of independent sources from the observed 

data (Daubechies et al., 2011; Brevdo et al., 2011; Thakur et al., 2013) and we use it for extraction of modal 

responses from the recorded vibration signature. We propose an elegant and robust procedure to extract the 

mode shapes from the separated modal response components. The modal parameters of UCLA Factor 

Building (Skolnik et al., 2006) are identified for validation of the proposed scheme using the noisy response 

data for a suite of earthquake time histories. 

BLIND SOURCE SEPARATION AND MODAL IDENTIFICATION 

The governing differential equation of structural dynamics is given as: 

 𝑴�̈� + 𝑪�̇� + 𝑲𝒖 = 𝒇 (2) 

where, 𝑴, 𝑪 and 𝑲 are the mass, damping and the stiffness matrices, 𝒖 denotes the displacement response, 

𝒇 is the excitation, and a dot indicates time derivative. The system response can be given by a linear 

combination of the normal modes of the system: 

 𝒖(𝑡) = 𝚽 𝒒(𝑡) = ∑ 𝜙𝑖
𝑛
𝑖=1 𝑞𝑖(𝑡) (3) 

where, 𝒒 denotes modal coordinates, and 𝚽 is the mode shape matrix. Kerschen et al. (2007) proposed that 

modal coordinates vectors 𝒒(𝑡) can be viewed as independent sources, if the ratios of system natural 

frequencies are not integers. Thus the modal expansion of system response Eq. (3) can be seen as being 

analogous to the BSS statement Eq. (1) with modal coordinates 𝒒 being proportional to virtual sources s 

regardless of the number and type of the physical excitation force and, the mixing matrix 𝑨 is similar to the 

mode shape  matrix 𝚽. The modal parameters (natural frequencies and modal damping) are identified from 

the post-processing of the identified source time histories, and the mode shapes are provided by the columns 

of the mixing matrix. 

For a base excited structure, such as during earthquake excitation, the equations of motion are given in 

terms of the relative displacement of the mass with respect to the base: 

 𝑴�̈� + 𝑪�̇� + 𝑲𝒖 = −𝑴𝑹�̈�𝑔 (4) 
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where, �̈�𝑔  represents the ground acceleration, 𝑹  is matrix of rigid body influence coefficients, and 𝒖 

denotes the displacement of inertia points relative to the base. The solution by mode superposition proceeds 

with the modal expansion as in Eq. (3). However, the relative motion can not be measured directly and the 

inertial accelerometers used for building instrumentation pickup total acceleration of the point (Celebi, 

2002). Therefore the modal expansion theorem is simplified for base excited structures and is given as 

(Kaloni and Shrikhande, 2016, 2017a): 

 �̈�𝑡 = −𝑴−1(𝑲𝒖 + 𝑪�̇�) ≈ −𝚽(𝚲𝒒) (5) 

where, �̈�𝑡 is the total acceleration of inertia points, and 𝚲 is the diagonal matrix of system eigenvalues. The 

weighted modal coordinates are the sources to be identified while the mode shapes can be inferred from the 

mixing matrix. The weighting of modal coordinates by the respective eigenvalues enhances the energy of 

higher mode components which helps in the identification of higher modes as well. 

1 Synchrosqueezed Transform and Source Separation 

Synchrosqueezed transform (SST) is a wavelet based time-frequency analysis tool for identifying 

different harmonic components in a time series (Daubechies and Maes, 1996). Being non-iterative in nature, 

it offers significant advantages over the Empirical Mode Decomposition (EMD) algorithm (Huang et al., 

1998). Synchrosqueezed transform of a signal involves three steps: (i) computation of wavelet transform, 

(ii) the synchrosqueezing operation to map the wavelet coefficients from the time-scale plane to time-

frequency plane, and (iii) reconstruction of the time-domain signal from its synchrosqueezed transform. It 

is possible to extract individual harmonics by using ideal band-pass filter with unit gain over the desired 

frequency band after the synchrosqueezing operation and before the time domain reconstruction. The 

continuous wavelet coefficients (CWT)  𝑊𝑦(𝑎, 𝑏) are estimated as (Daubechies, 1992): 

 𝑊𝑦(𝑎, 𝑏) =
1

√𝑎
∫ 𝑦(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡 (6) 

where 𝜓∗(𝑡)  is the complex conjugate of the mother wavelet 𝜓(𝑡). The parameters 𝑎a and 𝑏b control the 

scale and time-shift of the transform process. The wavelet transform provides information regarding the 

instantaneous frequencies (Daubechies et al., 2011). The instantaneous frequency 𝜔(𝑎, 𝑏) of the signal y 

for any point in time-scale plane (𝑎, 𝑏) is given by: 

 ω(a, b) = {
−i

Wy(a,b)

∂[Wy(a,b)]

∂b

∞
;  

|Wy(a, b)| ≠ 0

|Wy(a, b)| = 0
 (7) 

After conversion of signals in time-scale plane, synchrosqueezing operation is applied, where wavelet 

coefficients are mapped from time-scale plane to the time-frequency plane, i.e., (b,a)→(b,ω(a,b)). Let us 

assume that the wavelet coefficient  Wy(a, b) is evaluated at discrete values of the scale parameter, 𝑎𝑘, with 

(∆𝑎)𝑘 = 𝑎𝑘−𝑎𝑘 − 1  and its synchrosqueezed transform 𝑇𝑦(𝜔, 𝑏 )  is determined at centre ωl  of the 

frequency interval [ωl − ∆ω/2,  ωl + ∆ω/2], with[ωl − ωl−1 = ∆ω],  by adding different contributions 

(Daubechies et al., 2011): 

 Ty(ωl , b) =
1

∆ω
∑  Wy(ak, b)ak

−3
2⁄ (∆a)kak:|ω(ak ,b)−ωl|≤

∆ω

2

 (8) 

This procedure facilitates the refinement of the signal representation in time-frequency plane around 

frequency, ωl. The final step involves reconstruction of original signal from its synchrosqueezed transform 

given by: 

 y(t) = ℜ [
1

∁ψ
∑ Ty(ωl , t)l ] = ∑ ℜ(yl(t))l  (9) 

where, ℜ(∙)denotes the real part of a complex quantity, and the normalizing constant Cψ is related to the 

mother wavelet 𝜓(𝑡) as: 

  ∁ψ=
1

2
∫

ψ̂∗(ξ)

ξ

∞

0
dξ (10) 

with 𝜓 ̂(𝜉) being the Fourier transform of ψ(t) and the superscript (∙)∗  indicating complex conjugate. 

Alternatively, it is possible to extract components in different non-overlapping frequency bands by using 

ideal band-pass filter with unit gain in the pass-band to extract the relevant information from the time-

frequency plane which is then transformed to time-domain by using Eq. (9). These time-domain 
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constituents can be added to recover the original time-domain signal, e.g., ℜ(yl(t))denotes the constituent 

signal corresponding to the band centered at frequency ωl. 

2. Identification of Mode Shapes 

The harmonic constituents of a vibration signature can be separated by the process of synchrosqueezing 

transform, band-pass filtering and reconstruction [Eqs. (6–9)]. Thus the recorded vibration signature at any 

degree of freedom in a structural system can be given by: 

  uk(t) = ∑ ski(t)m
i=1  (11) 

where,  uk(t) represents the response of kth degree of freedom, and ski(t) denotes the ith SST identified 

harmonic component of the kth signal. The estimated independent source components are used for the 

estimation of modal parameters of n degree of freedom structural system. Considering all dynamic degrees 

of freedom, we have: 

 

 un(t) = sn1(t) + sn2(t) + ⋯ + snm(t)
     ⋮       =                            ⋮                              

 u2(t) = sn1(t) + sn2(t) + ⋯ + snm(t)

u1(t)  = sn1(t) + sn2(t) + ⋯ + snm(t)

 (12) 

Considering the modal expansion of the dynamic response with m number of dominant modes, we 

have: 

 [

un(t)
⋮

u2(t)

u1(t)

] = [

ϕn1

⋮
ϕ21

ϕ11

ϕn2 …
  ⋮    ⋱
ϕ22 …
ϕ12 …

ϕnm

⋮
ϕ2m

ϕ1n

] [

q1(t)

q2(t)
⋮

qm(t)

] (13) 

Comparing Eqs. (12 and 13), the one-to-one relationship between the separated harmonic components 

and the mode shape vectors and modal coordinates can be established. Kaloni and Shrikhande [2017b] have 

proposed estimating the mode shape coefficients as the  average of instantaneous ratio of SST identified 

sources with respect to the corresponding components of the signal recorded at the nth degree of freedom. 

It is possible that for some modes, the amplitude of response at the nth degree of freedom might be very 

small and then using this small amplitude as a normalization factor may lead to numerical instability in the 

computation of ratio. We now define the mode shape coefficients as the time average of instantaneous ratio 

(normalization) of SST identified sources with respect to the component with maximum energy for that 

harmonic: 

  ϕki =
mean

t
(

ski(t)

spi(t)
) (14) 

where spi(t) is the source component having maximum energy for ith harmonic, Ei out of all degree of 

freedom k=1, 2, …, n. Where Ei is defined as: 

 Ei (= ∫ (spi(t))
2t

0
dt) (15) 

For the case of seismic excitation through base motion, the estimated mode shape ordinates have a bias 

due to contribution of ground component in addition to structural vibration. This bias (b) given by Eq. (16) 

need to remove from the estimated coefficient to get structural mode shapes. 

 b =
mean

t
(

üg(t)
spi(t)⁄ ) (16) 

The extracted mode shape coefficients can be further normalized either to unit length, or mass 

orthonormal as required. The other modal  parameters (natural frequency and modal damping) are estimated 

from post-processing of maximum energy source components as modal coordinates. The modal frequencies 

are identified by the peak picking method from the Fourier transform of the identified modal responses. 

The modal damping can be estimated by curve fitting, or logarithmic decrement applied to the tail portion 

of the modal response since the response is dominated by the free vibration owing to negligible energy of 

earthquake excitation in the tail portion. 

VALIDATION OF THE PROPOSED METHOD 

We consider the dynamic response of UCLA Doris and Louis Factor building (UCLAFB) for validating 

the proposed method for modal identification. The UCLAFB is a seventeen storey special moment resisting 



ISET Journal of Earthquake Technology, March 2019 5 

 

(SMF) steel frame structure including two ground floors. There are 12 SMF bays in both the EW and NS 

directions of the building. Due to a slight overhang on the east and west sides of the building, the floor are 

a  for floors 10 through 16 increases by 13.5 percent approximate. The building is symmetric about the 

East-West axis and slightly asymmetric about the North-South axis. The modal properties of the UCLAFB 

have been estimated by using the recorded response data to earthquake excitation (Skolnik et al., 2006; 

Hazra and Narasimhan, 2009; Hazra et al., 2010, 2012; Sadhu and Hazra, 2013). The finite element model 

of the UCLAFB has been developed using SAP-2000 and has been validated against the reported modal 

properties of this building. First six translation modes correspond to the natural frequencies ranging from 

0.39 Hz to 2.13 Hz. The dynamic response of the UCLAFB finite element model has been computed for a 

suite of ground motions from Loma Prieta, Hector Mine and Northridge earthquakes. The details of the 

ground motion suite used for analysis is given in Table 1. The total acceleration response at each floor is 

considered as the vibration signature recorded by accelerometers for further processing. The source 

components are estimated from observed data as discussed in the previous section with Morlet wavelet 

(Thakur et al., 2013) as the mother wavelet for wavelet transform. The response along the EW axis at top 

floor for the Northridge event, its synchrosqueezed transform and the extracted harmonics are shown in 

Figure 2. The four identified sources add up to 98% of the total energy of the measured total acceleration 

response. The modal frequencies are identified from the Fourier transform of these extracted components 

while the damping ratio can be estimated from the analysis of their tail portions. 

Table 1: Ground Motion Details 

S. No. Event Name, Date 

and Station 

𝑴𝒘 R (km) PGA (g) 𝒇𝒄 (Hz) Sampling 

rate 

1 Loma Prieta, Oct. 

18, 1989, Hollister 

south & Pine 

7.1 15 0.37 (H1) 

0.18 (H2) 

0.19 (V) 

1.03 200 

2 Northridge, Jan. 17, 

1994 Simi Valley 

Katherine Rd 

6.7 48 0.80 (H1) 

0.54 (H2) 

0.40 (V) 

2.04 100 

3 Hector Mine, Oct. 

16, 1999, Hector 

7.1 27 0.27 (H1) 

0.33 (H2) 

0.14 (V) 

3.44 100 

𝑀𝑤 : Moment magnitude, R: Epicentral distance, PGA: Peak ground acceleration, 𝑓𝑐 : 

Characteristic frequency 

The mode shapes are estimated from the identified harmonic components by Eq. (14). These identified 

mode shapes are compared with those obtained from the calibrated finite element model of the UCLAFB. 

The modal assurance criterion (MAC) (Allemang, 2003) is used  to compute the fidelity of the SST 

identified mode shapes with respect to the reference mode shapes obtained from the calibrated finite 

element model. The modal assurance criteria is defined as: 

 MAC =
|ϕ̂Tϕ|

2

(ϕ̂Tϕ̂)(ϕTϕ)
 (17) 

where, ϕ̂ and ϕ are the estimated and reference mode shape vector respectively. The MAC value ranges 

from 1 to 0 with values close to unity representing a good correlation between the identified and reference 

mode shapes. 

The mode shapes estimated by the proposed SST-based procedure and those from the analytical model 

are shown in Figure 3 for the Northridge event with the respective MAC values. These correspond to the 

worst identification with respect to the MAC values. The agreement between the identified mode shapes 

with the mode shapes of the analytical model are much better for other ground motions considered in this 

study. Their respective MAC values are listed in Table (2) and the identified modal frequencies are shown 

in Table (3). It is possible to identify up to three modes in each direction with high fidelity as indicated by 

the high MAC values.  The vibration energy is smeared across a wider frequency band for higher 

frequencies and it is difficult to isolate a single harmonic component from the synchrosqueezed transform 

as seen in Figure 2. The estimated mode shapes for higher modes are therefore less strongly correlated with 

the mode shapes of analytical model. This is due to the lack of adequate energy in the ground motion in the 

requisite frequency band for exciting the higher modes of vibration. 
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Fig. 2 Northridge event: (a) measured response at the top floor, (b) its synchrosqueezed  

transform, and (c) the extracted harmonic components 

Table 2: Modal assurance criteria (MAC) values for different earthquake in NS and EW direction 

 

Ground Motion 
Mode 1 Mode 2 Mode 3 

NS EW NS EW NS EW 

Loma Prieta 0.9975 0.9990 0.7485 0.9856 0.8114 0.7765 

Northridge 0.9965 0.9973 0.9994 0.8752 0.7230 0.9397 

Hector Mine 0.9991 0.9990 0.7794 0.9228 0.9326 0.8954 

Table 3: Natural frequencies (in Hz) 

 

Ground Motion 

Mode 1 Mode 2 Mode 3 

NS EW NS EW NS EW 

Loma Prieta 0.400 0.38 1.250 1.134 2.118 1.915 

Northridge 0.402 0.390 1.240 1.160 2.121 1.961 

Hector Mine 0.397 0.400 1.236 1.169 2.120 1.964 

Analytical 0.400 0.390 1.220 1.160 2.130 1.950 
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(a) NS Direction 

(b) EW Direction 
Fig. 3 Identified mode shapes for the Northridge event (solid: Analytical and dashed: SST-

based identification) 

1 Robustness to Noisy Data 

The robustness of SST-based modal identification procedure for noisy measurements is verified by 

adding a Gaussian white noise to analytically computed acceleration time histories at each level for all 

example cases considered in this study to have asignal to noise ratio (SNR) of 13 dB. The mode shapes are 

identified for the noisy measurements and the modal assurance criterion computed for noisy data are given 

in Table 4. There is a significant performance degradation for identification of mode shapes beyond the 

first mode. The noisy measurements are then processed through a wavelet-based denoising procedure 

before performing the synchrosqueezed transform and subsequent modal identification. A major 

improvement in the quality of the estimated mode shapes after noise removal can be seen in the Table 4. 

The mode shapes extracted from a noisy data for Northridge event are shown in Figure 4. The effect of 

noise is most significant in the Northridge case and the improvement after denoising is maximum in this 

case as well. The Northridge event is relative short duration event and a lower sampling rate produces fewer 

data points for discrete time processing of the signals. Fewer data points for processing generally lead to 

more errors in processing. 

Table 4: MAC values for mode shapes identified from noisy data and after denoising 

 

Ground Motion 
 

MAC 
Noisy Data Denoised Data 

NS EW NS EW 

 

Loma Prieta 

Mode 1 0.9937 0.9997 0.9969 0.9999 
Mode 2 0.9873 0.8503 0.9633 0.9559 
Mode 3 0.9818 0.9783 0.9793 0.9794 

 

Northridge 

Mode 1 0.9935 0.9976 0.9949 0.9992 
Mode 2 0.5491 0.8010 0.9199 0.8752 
Mode 3 0.3539 0.6543 0.8531 0.9362 

 

Hector Mine 

Mode 1 0.9991 0.9994 0.9984 1.000 
Mode 2 0.9722 0.7071 0.9909 0.9089 
Mode 3 0.8373 0.5707 0.9447 0.9038 
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CONCLUSIONS 

 A blind modal identification scheme based on synchrosqueezed transform is developed within a 

non-statistical framework. Individual modal components are extracted from the measured acceleration 

response. Modal parameters are estimated from the further processing of these identified modal 

components. The validity of the proposed scheme is ascertained using simulation results of UCLA factor 

building from different earthquake records. The robustness of the proposed procedure for modal 

identification with noisy data is studied and it is shown that a simple denoising step enhances the fidelity 

of the modal identification. The proposed SST based blind modal identification can also provide an 

independent check and calibration for judging the suitability of chosen model structure in the model based 

system identification procedures, such as, eigensystem realization, subspace identification, etc. 

(a) NS Direction 

 

(b) EW Direction 

 

Fig. 4 Identified  mode shapes for the Northridge event (solid: Analytical, dashed: SST-based  

identification and Star: Denoised data) 
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