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ABSTRACT 

The paper deals with the responses of degraded dam-reservoir-foundation system with absorptive 
reservoir bottom. A two dimensional strong coupling methodology, in which dam and foundation are 
simulated by displacement and reservoir is by pressure is used to model the dam-reservoir-foundation 
system. The material properties of dam at different ages are predicted by an isotropic degradation index 
and a reflection coefficient is introduced to simulate the reservoir bottom absorption. From the present 
study, it is clear that the crest displacement increases with age of the dam. On the other hand, the principal 
stresses of dam and hydrodynamic pressure decrease with the age of dam. However, at later age of the 
dam, the effect of reservoir bottom absorption on the performance of dam-reservoir-foundation is quite 
less. 

KEYWORDS: Dam-reservoir-foundation system, Long term ageing, Degradation index, Absorptive 
reservoir bottom, Hydrodynamic pressure 

INTRODUCTION 

Safety evolution of any structures is the prime importance to the designers. In design of a dam, the 
accurate prediction of behavior at any age during its design life is the challenging job. The responses of 
gravity dams become realistic if fluid-structure and soil-structure interactions are considered 
simultaneously. Zienkiewicz et al. (1983) evaluated responses of dam considering fluid-structure 
interaction. Similarly, concrete gravity dam was studied in frequency domain by Chandrashaker and 
Humar (1993). A hybrid finite and boundary element technique was used to analyze the dam-reservoir-
foundation coupled system in time domain by Touheiand Ohmachi, 1993.  Bayraktar et al., 2005; Bilici et 
al., 2009 and Wang, 2011found dynamic responses of dam-reservoir-foundation systems in frequency 
domain. Mirzabozorg et al. (2010) used spatially varying seismic excitation to obtain the responses of 
arch dams. In this study, the foundation is assumed to be massed and is modeled by infinite elements. 
Bayraktar et al. (2011) used 3D solid element to model the dam and foundation (SOLID 45) and eight-
node 3D fluid element (FLUID 80) in ANSYS to model the dam, foundation and reservoir respectively. 
Similarly, Papazafeiropoulos et al. (2011),Banerjee et al. (2014) and Sarkar et al. (2007) investigated the 
performance of dam-reservoir-foundation system against different external excitations. 

In most of the previous studies, the responses of dam-reservoir-foundation coupled system were 
investigated with constant elastic properties of concrete in the dam. However, due to heat transport, 
freeze-thaw action, dissolution processes such as calcium leaching and chemical expansive reactions such 
as alkali-silica reaction and due to continuous contact of dam with reservoir the strength of the concrete 
decreases with the age of the dam. Kuhl. D et al. (2004) proposed a coupled thermo-mechanical model to 
describe the interaction of calcium leaching and mechanical damage in cementitious materials. Authors 
used total porosity to simulate the degradation of the stiffness with the age of concrete. Gogoi and Maity 
(2007) and Burman et al. (2009) considered the gain of compressive strength of concrete as well as the 
deterioration of the concrete in their respective modeling study. Therefore, the behavior of dam-reservoir-
foundation coupled system will be more exact if the long term degradation of concrete in dams is 
incorporated in the study. 

The characteristic of reservoir bottom or accumulation of sediments at reservoir bottom may have 
some impact on the performance of dam-reservoir-foundation coupled system. In most of the cases the 
reservoir bottom is considered as rigid one. However, some researchers considered reservoir bottom 
absorption in their respective studies. Lotfi (1986) considered the sediment layer at reservoir bottom as 
viscoelastic and almost incompressible. Some researchers (Sharan, 1992; Chandrashaker and Humar, 
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1993; Tan and Chopra, 1995; Li et al., 1996; Hatami, 1997) used a damping boundary condition at the 
reservoir bottom to simulate the reservoir bottom absorption. Bougacha and Tassoulas (1991a, b) 
modeled the sediment as a two-phase medium i.e., fluid-filled and poroelastic solid.  Dominguez et al. 
(1993) developed a boundary element approach for the dynamic analysis of continuous systems that 
consists of water, viscoelastic and fluid-filled poroelastic zones of arbitrary shapes. Based on the solution 
of the wave equation in a sediment layer of visco-elastic material with a constant thickness, Hatami 
(1997), and Chuhan et al. (2001) and  Gupta and Pattanur (2007) proposed a wave reflection coefficient 
approach. A novel procedure for measuring the overall or average reflection coefficient at the reservoir 
boundaries was developed Ghanaat et al. (2000). Influence of sediment layers at the bottom of the 
reservoir on dynamic behavior of aged concrete dam-reservoir system was studied by Gogoi and Maity 
(2007). 

It is apparent from the literatures referred above that the coupled effect of dam-reservoir-foundation 
system is important for accurate responses of concrete gravity dam at any age during its service life. Very 
few research works considering the three systems in a coupled way are observed using standard software 
such as ANSYS and ABAQUS. However, the effects of degradation of concrete in dam and reservoir 
bottom absorption cannot be incorporated in such software. In the present study, a computer code has 
been developed to obtain response of concrete gravity dam at different ages with absorptive reservoir 
bottom. 

THEORETICAL FORMULATION 

1.    Finite Element Formulation of Dam and Soil Foundation 
The equation of motion of a structure subjected to external forces can be written in standard finite 

element form as 

 0d d d d gM u C u K u M u       (1) 

where, T
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Where, ܰ and ܤ are the shape function and strain displacement matrixes. ρ is the density. u ,u and u
are nodal accelerations, velocities and displacements, gu  is the external acceleration. In present 
investigation dam and foundation have been discretised by two dimensional eight node rectangular 
elements and both the structures are assumed to be in a state of plane strain and Rayleigh damping is 
considered as structural damping. 

2.    Degradation Model for Concrete 
The concept of degradation of concrete strength is based on the reduction of the net area capable of 

supporting stresses. The loss of rigidity of the material follows as a consequence of material degradation 
due to various environmental and loading conditions. In the present study, a parameter named as 
degradation index is introduced to consider the deterioration in elastic property of dam with age and this 
degradation index can be expressed as  
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Here, Ψ௝  is tributary area of the surface in direction ݆; and Ψ௝ௗ is area affected by degradation. In a 
scale of 0 to 1, the orthotropic degradation index, ݀୥௝ = 0 , indicates no degradation and ݀୥୨ = 1, 
indicates completely degraded material. The index ݆ = 1, 2 corresponds with the Cartesian axes ݔ and ݕ 
in the two dimensional case. The effective constitutive relationship for plane strain analysis can be 
expressed as 
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Where,  ଵ = ൫1 − ݀୥ଵ൯ and  ଶ = ൫1 − ݀୥ଶ൯. In the above equation, ܧௗ is the elastic modulus of 
the material without degradation. If ݀୥ଵ = ݀୥ଶ = ݀୥, the isotropic degradation model is expressed as 

    
2

1g gD d D       (4) 

Where, ൣܦ୥൧ and [ܦ] are the constitutive matrices of the degraded and un-degraded model 
respectively. 

3.    Evaluation of Degradation Index 
In normal practice, it is assumed that all the cement particles in concrete get hydrated in 28 days and 

concrete gets its full compressive strength. But in reality, concrete gains some compressive strength with 
age beyond 28 days. On the other hand, the durability of concrete is considerably affected due to damage 
resulting from time variant external loading, moisture, heat transport, freez-thaw actions, chemically 
expansive reaction and chemical dissolution. Out of the wide range of environmental induced 
mechanisms, damage due to chemical and mechanical degradation is modeled here to get reasonable 
elasticity properties of concrete at its different ages. 

4.    Gain in Compressive Strength with Age 
The gain of compressive strength of concrete can be predicted by curve fitting on 50 years of 

experiential data published by Washa et al. (1989).  The authors proposed four different curves for 
different concretes. All the curves showed an increase in compressive strength roughly   proportional to 
the logarithm of age during the first 10 years and very small variation thereafter. Gogoi and Maity (2007) 
carried out a least square curve fitting analysis on the set of compressive strength data published by 
Washa et al. (1989) and proposed following equation to predict the gain of compressive strength with 
passage of time in years. 

 ( ) 3.57 ln( ) 44.33f t t   (5) 

Where ݂(ݐ) is the gain of compressive strength in SI unit, ݐ is the age of concrete in years. The value 
of modulus of elasticity of concrete in SI unit is obtained by the expression proposed by Neville and 
Brooks (1987). 

 0 5000 ( )E f t  (6) 

5.    Degradation with Age 
The compressive strength of concrete is expected to decrease with its age due to chemical and 

mechanical degradation and this degradation is measured in terms of degradation index. In present work, 
the degradation due to hygro-chemo-mechanical actions is implemented and the total porosity,  which is 

the sum of the initial porosity 0 , the porosity due to matrix dissolution c  and the apparent porosity m  
is considered as the measurement of degradation index. Bangert et al. (2003) and Kuhl et al. (2004) have 
suggested the following relationship to relate these parameters. 

 0 c m       (7) 
The apparent mechanically induced porosity, ߮௠ considers the influence of mechanically induced 

micro-pores and micro-cracks on the macroscopic material properties of the porous material. It is 
obtained as 

  01m c gd      (8) 
Where, ݀୥ is the scalar degradation parameter. The strain based exponential degradation function as 

proposed by Simo and Ju (1987) is given as 
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Where, 0  and   are values of strain that represents the initial threshold degradation and the internal 
variable defining the current damage threshold depending on the loading history. 0 is given by ௧݂ ⁄଴ܧ , 
where ௧݂ is the static tensile strength and ܧ଴ is the elastic modulus of the un-degraded material before any 
mechanical loading is imposed. The value of ݀୥ at any age can be determined from equation (9) that will 
vary with  caused by the mechanical loading history. In the absence of degradation due to mechanical 
loading, 0 = , which makes ݀୥ = 0 and hence m =0. c  and c  are material parameters that can be 
obtained experimentally (Bangert et al., 2003). In equation (9), the value of ܽ௦ is considered to be 1.0 by 
Simo and Ju (1987) which is the maximum allowable degradation due to mechanically induced porosity. 

6.    Truncation Boundary for Soil Foundation 
For finite element modeling of infinite soil foundation, one of the biggest chalange is to model the 

boundary domain accurately. The modeling of the truncation boundary should be such that it has 
capability to absorb the outgoing waves. The most commonly used absorbing boundary is presented in 
this section. This boundary condition is based on one dimensional wave propagation. However, in 2-D 
case, the absorbing boundary condition is formulated from eq. (10) and eq. (11) as follows. 

 0p( s ) c u( s )    (10) 

 0s( s ) c v( s )    (11) 

Where, ߪ and ߬ are normal and shear stresses at truncation boundary and ݑ and ݒ are normal and 
shear displacements. ܿ௣ and ܿ௩ represent the compression wave and shear wave velocity respectively and 
 denotes the coordinate of truncation boundary. In discretized form, the damper coefficient ܿ௡ and ܿ௧ in ݏ
normal and tangential directions may be expressed as. 

 1n pc A c  (12) 

 2t sc A c  (13) 

The dashpot coefficient ܿ௦ and ܿ௣ in two mutually orthogonal directions are given by the following 
expressions. 
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 is the shear modulus and is expressed as ܩ
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 ଶ are the applicable area and depend on the direction of wave propagation. Usually these twoܣ ଵ andܣ
factors are considered to be equal to 1. However, White et al. (1977) proposed a ‘diffused’ version of 
expression of equation (12) and equation (13) and area ܣଵ and ܣଶ were evaluated by minimizing the ratio 
between the reflected energy and the incidental energy. For an isotropic medium this results  
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and ݏ can be expressed as 
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7.    Formulation for Infinite Fluid Domain 
Assuming fluid to be linearly compressible, inviscid and with small amplitude irrotational motion, the 

hydrodynamic pressure distribution due external excitation is given as 

 2
2

1( , , ) ( , , )p x y t p x y t
c

    (20) 

Where, ܿ is the acoustic wave velocity in the water and ∇ଶ is the Laplacian operator in two 
dimensions. The pressure distribution in the fluid domain is obtained by solving equation (20) with the 
following boundary conditions. A typical geometry of dam-reservoir-foundation system is shown in 
Figure 1. 

i) At surface I 

Considering the effect of surface wave of the fluid, the boundary condition of the free surface is taken 
as 

 1 pp +  = 0
g y




  (21) 

ii) At surface II 

At dam-reservoir interface, the pressure should satisfy 

 i t
f

p (0, y, t) = ae
n





 (22) 

Where i tae   is the horizontal component of the ground acceleration in which,   is the circular 

frequency of vibration and 1i   , ݊ is the outwardly directed normal to the element surface along the 
interface. f  is the mass density of the fluid. 

iii) At surface III 

In the present study, the reservoir bottom absorption is modeled according to the technique proposed 
by Hall and Chopra (1982). Neglecting the vertical acceleration at reservoir, the pressure should satisfy 
the following condition. 

  ,0, ( ,0, )p x t qp x t
n


 


  (23) 

Assuming a time harmonic behavior of pressure ݔ)݌, 0, (ݐ = ,ݔ)଴݌ 0, (ݐ i te  , the equation (23) may be 
expressed as: 

  ,0, ( ,0, )p x t i qp x t
n







 (24) 

Where, ݊ is the outwardly directed normal to the element surface and ݍ is a coefficient expressed as: 
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  is the frequency independent reflection coefficient. 

iv) At surface IV 

In case of finite fluid domain, this surface is considered to be rigid and thus the boundary condition in 
this case will become as follows: 

  , , 0.0p L y t
n



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 (26) 
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Where, ܮ is the distance between structural surface and surface IV. In case of infinite fluid domain, 

the domain needs to be truncated at a suitable distance for the finite element analysis. The truncation 
boundary as proposed by Gogoi and Maity (2006) has been implemented for the finite element analysis of 
infinite reservoir. 

8.    Finite Element Formulation for Fluid domain 
By using Galerkin approach and assuming pressure to be the nodal unknown variable, the discretised 

form of equation (20) may be written as 

 2
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Where, ௥ܰ௝  is the interpolation function for the reservoir and Ω is the region under consideration. 
Using Green's theorem equation (27) may be transformed to 
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in which ݅ varies from 1 to total number of nodes and Γ represents the boundaries of the fluid domain. 
The last term of the above equation may be written as 
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The whole system of equation (28) may be written in a matrix form as 
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Here the subscript ݂,  ௦݂ , ௕݂, and ݐ stand for the free surface, fluid-structure interface, fluid-bed 
interface and truncation surface respectively. If the boundary conditions mentioned above are 
implemented, the equation (30) may be modified as  
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In which, 
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Where, 
[ܶ] is the transformation matrix at fluid structure interface and ܰௗ is the shape function and   is a 

coefficient as expressed by Gogoi and Maity (2006). 

9.    Formulation of Dam-Reservoir-Foundation Coupled System 
In this section equilibrium equations dam, reservoir and soil foundation are coupled in such a way 

they act as a single system and the coupling procedure is as follows 
The discrete dam equation with damping may be written as: 

 0d d d d d d d gM u C u K u Qp M u        (43) 

The coupling term [ܳ] in equation (43) arises due to the acceleration and pressure at the dam-
reservoir interface and can be expressed as: 
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Where, ݊ is the direction vector of the normal to the dam-reservoir interface and, ܰௗ௥  is the shape 
function of bar element at the dam-reservoir interface. Similarly, discretized fluid equation may be written 
as: 

 0T
d rEp Ap Gp Q u F        (45) 

Now, the system of equation (43) and (45) are coupled in a second-order ordinary differential 
equations, which defines the equation for coupled dam-reservoir system completely. The equation (43) 
and (45) may be written as a set: 
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The responses of dam considering the effect of reservoir adjacent to it may be obtained from equation 
(46) and this equation is the equilibrium equation for dam-reservoir coupled system. However, the 
equation (46) does not include the elasticity of elastic foundation. The dynamic equilibrium equations for 
coupled dam-reservoir-foundation may be developed in the following way. 
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Here “added motion” approach is used and the subscripts ‘‘݀, ݂ and ܿ’’ stand for the nodes within the 
dam, nodes within the foundation and nodes at the junction of dam and foundation respectively and gU  is 
the ground acceleration vector. The mass, damping and stiffness at the common junction are the sum of 
the contributions from the dam (݀) and foundation (݂), and are expressed in equation (47) and the 

coupling matrix is rearranged as     T
d cQ Q Q    . Where, [ܳௗ] associates with the nodes of dam 

other than common nodes and [ܳ௖] is associated with the common nodes at the junction of dam and 
foundation as shown in Figure 1. The absolute responses of dam-reservoir-foundation are considered to 
be the sum of two parts, viz. free field response and added part of the responses and expressed in equation 
(50) 
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 (49) 

Where, superscripts “݂ and ܽ” define free field and added part response respectively. Now, putting 
the equation (47) in equation (49), the following equation is obtained. 
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 (50) 

where, 
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and 
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Free field responses are obtained by analyzing the foundation. Since the analysis is now for the 
foundation part only, the corresponding values of the displacement, velocity and acceleration for the dam 
and reservoir domain are taken as zero. This involves the introduction of the following change of 
variables:  
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Therefore, if the foundation domain is subjected to earthquake motion, the free-field responses are 
obtained by solving the following expression. 
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After obtaining the free field response the interaction force ܴ is calculated using equation (55) in the 
following simplified manner: 

 

0 0 00 0 0 0 0 0 0 0 0 0 0 0
0 0 00 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 00 0 0

dd dc dd dc dd dc
d d df f f

cd cc cd cc cd ccc c c

M M C C K K
R

M M C C K Ku u u

          
          
                                                

 
 (55) 

After obtaining the interaction forces ܴ, the added responses of the dam, foundation and reservoir 
domain are calculated using equation (50). These calculated responses are added to the free field 
responses to obtain the absolute responses of the coupled dam- reservoir-foundation system. 
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Fig. 1 Dam-Reservoir-Foundation system 

RESULTS AND DISCUSSIONS 

In the present study, dam-reservoir-foundation coupled system is assumed to be in a state of plane 
strain. A rigorous study is carried out to study the effect of hygro-chemo-mechanical degradation of 
concrete in dam on the dynamic responses of the dam-reservoir-foundation system with absorptive 
reservoir bottom.  

1.    Validation of the Present Algorithm 
The developed Eulerian-Lagrangian coupling methodology for dam-reservoir-foundation system is 

validated with a bench mark problem carried out by Papazafeiropoulos et al. (2011). The geometry and 
material properties of this system are as considered by Papazafeiropoulos et al. (2011). This validation 
study is carried out for two different modulus of elasticity of foundation. At the truncation surface of 
infinite reservoir and soil foundation, suitable non reflecting boundary conditions as proposed by 
Papazafeiropoulos et al. (2011) are considered. The hydrodynamic pressure along the face of the dam due 
to harmonic excitation at resonance is presented in Figure 2. The results obtained from the present method 
are almost similar to the results obtained by Papazafeiropoulos et al. (2011) for ܧௗ ௦ܧ = 1⁄ . However, a 
little variation of the results is observed for  ܧௗ ௦ܧ = 500⁄  and this variation are due to the different mesh 
size and element used in discretization of dam-reservoir-foundation system. 

 

Fig. 2  Hydrodynamic pressure along the upstream face of the dam  
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2.    Effect of Sediment on Reflection Coefficient 
The reflecting characteristic of reservoir bottom may alter the hydrodynamic pressure on adjacent 

dam. Highly reflective reservoir bottom (ߙ = 1.0) yields exaggerated hydrodynamic pressure. In 
practical situation, a fully absorptive reservoir bottom, i.e., (ߙ = 0.0) may not exists. The value of ‘α’ 
depends on the density of the sediment accumulated at the reservoir bottom. In this section, the effect of 
sediment density on the reflection coefficient is studied. Here, a sediment layer having an elastic modulus 
of 35000 MPa (Leurer 1997) is considered. The variation of reflection coefficient with density is plotted 
in Figure 3. The results show a steep increase in reflection coefficient for sediment densities lower than 
1000 kg/m3. Therefore, for all the practical problems, with sediment density more than 1000 kg/m3, the 
value of ߙ may be considered in the range of 0.5 to 1. 

 
Fig. 3  Effect of sediment density on reflection coefficient 

The effect of depth of sediment on the refection coefficient is also studied.  In this study, it is assumed 
that the sediment is not flushed out at regular intervals and the depth of sediment layer will increase with 
the age of the reservoir. The reflection coefficient considering increasing depth of sediment layer with age 
is calculated. This study is carried out for different properties of the underlying strata for a period of 100 
years. The sediment layer is considered to lie (i) over a rigid stratum (RS) (ii) over a flexible stratum (FS). 
The reflection coefficients obtained in the present analysis are compared with the frequency dependent 
reflection coefficients obtained by Hatami (1997) at an attenuation constant, ܾ = 0.25. The material 
parameters considered in the present analysis is same as in the reference Hatami (1997). Elastic modulus 
of sediment layer=4500 MPa and the wave propagation velocity in sediment is considered to be 1500 
m/sec. The reflection coefficients are evaluated considering a rate of sedimentation as 0.15 m/year and 
0.40 m/year. It is observed from Figure 4 that for sediment layer lying over a rigid stratum (RS), the 
reflection coefficient varies from 1.0 to 0.85 and 1.0 to 0.71 at sedimentation rates of 0.15m/year and 0.40 
m/year respectively within a period of 100 years. 

 
Fig. 4  Variation of reflection coefficient with age 
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considered to the fundamental frequency of dam-reservoir-foundation coupled system. It is observed from 
Figure 4 that for sediment layer overlying a flexible stratum (FS), the reflection coefficient ranges from 
0.63 to 0.57 for a sedimentation rate of 0.15 m/year. At a sedimentation rate of 0.40 m/year, the reflection 
coefficient ranges from 0.63 to 0.51. The decrease in the reflection coefficient with age is significant 
when the sediment layer is considered to be deposited over a rigid stratum than when the sediment layer is 
considered to be deposited over a flexible stratum. These results are in agreement with those published by 
Hatami 1997. 

3.    Seismic Response of Aged Dam-Reservoir-Foundation system with Absorptive 
       Reservoir Bottom 

The presence of sediments at the bottom of the reservoir will make the reservoir bed absorptive. In 
this study, it is assumed that the reflection coefficient will remain constant at all ages, as the reservoir 
sediment is flushed out at regular intervals to maintain a constant depth of the sediment layer at reservoir 
bottom. The reflection coefficient is considered to be 0.5. The geometry properties for dam, reservoir and 
foundation are shown in Figure 1. The analysis is carried out to obtain the seismic response of the 
degraded Koyna dam (Figure 1) at the age of 25 years and 50 years with absorptive reservoir bottom and 
the results are plotted in graphical forms (Figures 5-10). The degradation indices considering a design life 
of 100 years at the 25th and 50th year are 0.191 and 0.347 respectively. It was observed from Figures 5-6 
that, the crest displacement of the dam at both the ages of dam due to Koyna earthquake is reduced 
significantly when the absorptive of reservoir bottom is considered and this reduction is almost 24.76% 
and 11.86% for the age of 25 year and 50 year respectively. But Figures 5 and 6 show that though the 
crest displacement of the dam increases with an increase in age, the significance of absorption at the 
reservoir bed reduces comparatively. 

 
Fig. 5  Crest displacement of the dam for different reservoir beds at the age of 25 years 

 
Fig. 6  Crest displacement of the dam for different reservoir beds at the age of 50 years 
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The hydrodynamic pressures coefficient at the heel of the dam due to Koyna earthquake in the 25th 
and 50th year are plotted in Figures 7 and 8 respectively. From these two graphical results it is observed 
that the magnitude of hydrodynamic pressure coefficient decreases with the increase of degradation of the 
dam. The hydrodynamic pressure coefficient obtained at different ages show that the significance of the 
absorptive reservoir bottom is more pronounced at an early age. 

 
Fig. 7  Hydrodynamic pressure for different reservoir beds at the age of 25 years 

 
Fig. 8  Hydrodynamic pressure for different reservoir beds at the age of 50 years 

The major principal stresses at notch of the degraded dam at 25th and 50th year are plotted in Figure 9 
and 10 respectively. The maximum principal stresses at the notch are observed as 7.42×106 MPa and 
5.78×106 MPa for rigid and absorptive reservoir bottom respectively at the age of 25 years. Similarly, 
these stresses values are 5.80×106 MPa and 5.41×106 MPa respectively at the age of 50 years. On 
comparing with the stresses obtained at notch of the dam, it is observed that the stresses changes 
significantly due to the effect of degradation. However, at later age of the dam, the difference in stresses 
for different conditions at reservoir bottom is not much. 

 
Fig. 9  Major principal stress at notch of the dam for different reservoir bed at the age of 25 years 
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Fig. 10 Major principal stress at notch of the dam for different reservoir bed at the age of           
50 years 

CONCLUSIONS 

A dynamic analysis of concrete gravity dam is presented herein to predict the behavior of concrete 
gravity dam at different ages of dam with absorptive reservoir bottom. In the present study, displacement 
and pressure based finite element are used to model dam, foundation and reservoir respectively. 
Degradation due to mechanical loading and chemical reaction within the concrete in dam is considered. 
Again, a reflection coefficient is introduced to simulate the absorptive condition of reservoir bottom and 
these effects on the performances of dam-reservoir-foundation coupled system are studied. From the 
present study, it is noted that the reflection coefficient due to accumulation of sediment at reservoir 
bottom decreases with the age of the dam and this decrease in the reflection coefficient is significant 
when the sediment layer is considered to be deposited over a rigid stratum than the sediment layer over a 
flexible stratum. The responses of the degraded dam-reservoir-foundation coupled system under seismic 
excitation are determined for different absorbing conditions of reservoir bottom. The crest displacement 
of dam at different ages of dam due to earthquake excitation is reduced significantly when the absorptive 
of reservoir bottom is considered. The results further show the increase of crest displacement with the 
increase of age of dam. However, the changes in the crest displacement due to absorptive reservoir 
bottom are decreased with the age of dams. Similar, trends are observed in case of hydrodynamic pressure 
within the reservoir and principal stress in dam and foundation. Therefore, it is concluded that the 
significance of reservoir bottom absorption due to accumulation of sediment decreases with the increase 
of age of dams. 
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