
ISET Journal of Earthquake Technology, Paper No. 432, Vol. 40, No.1, March 2003, pp. 51-59 
 

DEFORMATION OF A MONOCLINIC ELASTIC HALF-SPACE BY  
A LONG INCLINED STRIKE-SLIP FAULT 

Sarva Jit Singh, Anil Kumar and Jagdish Singh 
Department of Mathematics 

Maharshi Dayanand University 
Rohtak-124001 

ABSTRACT 

Closed-form analytical expression for the horizontal displacement due to a long inclined strike-slip 
fault situated in a monoclinic elastic half-space is obtained.  The fault  is of infinite length in the strike-
direction and of finite width in the down-dip-direction.  The effect of the anisotropy on the displacement 
field is also studied.  
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INTRODUCTION 

The deformation of an isotropic elastic half-space by a long strike-slip fault has been studied very 
extensively (e.g., Maruyama, 1966; Savage, 1980). Pan (1989) formulated the problem of the deformation 
of a transversely isotropic multilayered half-space by a dislocation source in terms of layer matrices. Garg 
et al. (1996) obtained an analytical solution for the deformation of an orthotropic layered half-space 
caused by a long strike-slip fault. Ting (1995) derived the Green’s functions for a line force and a screw 
dislocation for the anti-plane deformation of a monoclinic elastic medium consisting of a single half-
space or two half-spaces in welded contact. The calculation of the anti-plane deformation due to a line 
source in a monoclinic medium is much more difficult than the corresponding calculation for a source in 
an orthotropic medium because of the presence of the mixed derivatives in the equation of equilibrium in 
the former case (see Equation (10)).  

In this paper, we use the results of Ting (1995) to obtain a closed-form analytical expression for the 
along-strike horizontal displacement caused by a long inclined strike-slip fault located in a monoclinic 
elastic half-space. It is shown that the width and the inclination of the image fault are different from the 
width and the inclination of the source fault placed in a monoclinic half-space. For an isotropic or an 
orthotropic half-space, the width and the inclination of the image fault and the source fault are the same.  

As mentioned by Crampin (1989), monoclinic symmetry is the symmetry of two sets of non-
orthogonal parallel cracks, where the plane of symmetry is perpendicular to the lines of intersection of the 
two sets of crack faces. Monoclinic symmetry of systems of cracks may be found near the surface of the 
Earth where lithostatic pressures have not closed cracks perpendicular to the maximum compressional 
stress.  

BASIC EQUATIONS 

In the absence of body forces, the equations of equilibrium are  

 ( ), 0 1, 2,3ij j iτ = =   (1) 

where ijτ  is the stress tensor, and the comma indicates differentiation with respect to the Cartesian                    

co-ordinates ( ).,, 321 xxx   Summation over repeated indices is understood.  If ije  denotes the strain 

tensor and iu  the displacement vector, the strain displacement relations are  

 ( ) 2,, ijjiij uue +=   (2) 
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The generalized Hooke’s law for a homogeneous, anisotropic, elastic medium may be expressed in 
the form  
 skijksksijksij uCeC ,==τ   (3) 

where ijksC  are the elastic stiffnesses satisfying the symmetry relations 

 ksijjiksijks CCC ==   (4) 

From Equations (1) and (3), the equations of equilibrium become  
 0, =sjkijks uC   (5) 

For a two-dimensional deformation in which the displacement components iu  are independent of ,3x  
Equation (5) yields  

 
( )

( ) ( ) 012,323113222,323211,313112,2221122

22,222211,212112,121111222,121211,1111

=++++++

+++++

CCCuCuCuCC
uCuCuCCuCuC

iiiiii

iiiiii    (6) 

From Equation (6), we note that the plane strain deformation  
 ( ) ( ) 0,,,, 321222111 === uxxuuxxuu   (7) 

and the anti-plane strain deformation    
 ( )2,13321 ,0 xxuuuu ===   (8) 

are decoupled, provided (Ting, 1995)  
 0564625241514 ====== CCCCCC   (9) 

In Equation (9), we have used the contracted Voigt notation for the stiffnesses ijksC  according to the 
scheme   
 11 → 1, 22 → 2,  33 → 3,  23 → 4,  13 → 5,  12 → 6.   

The conditions, as in Equation (9), are satisfied by a monoclinic material with 3 0x =  as the 
symmetry plane.  However, Equation (9) represents a material more general than a monoclinic material, 
because the latter requires 34 35 0C C= =  also.  In fact, 34 35andC C  do not appear in Equation (6) at all.  
Assuming that the conditions, as in Equation (9), are satisfied, the only equation of equilibrium for anti-
plane strain is  
 55 3, 11 45 3, 12 44 3, 222 0C u C u C u+ + =   (10) 

From Equation (3), the non-zero stresses are given by  
 31 55 3,1 45 3,2C u C uτ = +  

 32 45 3,1 44 3,2C u C uτ = +                        (11) 

 33 33 3,1 34 3,2C u C uτ = +  

Thus, in general, 33 0.τ ≠   However, for a monoclinic material, 33 0.τ =  In the following, it will be 
assumed that the anisotropic material under discussion satisfies the relations, as in Equation (9).  

LINE FORCE 

As shown by Ting (1995), the solution of Equation (10) representing the displacement field due to a 
line force f  per unit length parallel to the 3 axisx −  acting in a homogeneous, anisotropic, infinite, 
elastic medium at the point 1 20,x x d= =  is  

 ( )3 Re ln
2

fu z pd
mπ

= − −   (12) 

where Re  denotes the real part and  
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 1 2z x px= +  

 ( )45 44 , 1p C im C i= − + = −                        (13) 

 ( )1 22
44 55 45 0m C C C= − >  

The corresponding stresses are given by  
 31 ,2 32 ,1,τ φ τ φ= − =                  (14) 
where 

 ( )Im ln
2
f z pdφ
π

= −   (15) 

                  
and Im  indicates the imaginary part.  

For an isotropic body of rigidity 45 44 55, 0, , ,C C C m p iµ µ µ= = = = = , and  

 ( )3 1 2Re ln
2

fu x i x d
πµ

= − + −    

 ( )1 2Im ln
2
f x i x dφ
π

= + −                          (16) 

The elastic field due to a line force f  placed at the point 1 20,x x d= =  of an anisotropic half-space  

( )2 0x ≥  is given by (Ting, 1995) 

 ( )( )3 Re ln
2

fu z pd z pd
mπ

= − − −     

 ( )( )Im ln
2
f z pd z pdφ
π

= − −       (17) 

where an overbar indicates complex conjugate.  The solution, as in Equation (17), satisfies the boundary 
condition   
 32 20 at 0xτ = =   (18) 

STRIKE-SLIP FAULT  

Taking the 3 axisx − along the strike of the fault and the 2 axisx −  vertically downwards, the 
displacement field due to a long strike-slip fault of arbitrary orientation can be expressed as the line 
integral (Maruyama, 1966)  

 ( ) ( ) ( ) ( ) ( )3
3 3 3 ,k kL

u x u G x n dsξ ξ ξ ξ= ∆∫   (19) 

where ( )3u ξ∆  is the displacement discontinuity, kn  is the unit normal to the fault section L, and   

 ( ) ( )3 3
3 3 3 3, ,k k s

s

G x C G xξ ξ
ξ
∂

=
∂

 (20) 

In Equation (20), ( )3
3 ,G x ξ  is the Green’s function representing the displacement at the point ( )x  in 

the 3 directionx −  due to a line force of unit magnitude acting at the point ( )ξ  in the 3 directionx − .  
From Equation (17), we have, for an anisotropic half-space,  

 
( ){ }{ }

( )

3
3 1 1 2 2 1 1 2 2

1 Re ln
2

1 ln RS
2

G x p x x px p
m

m

ξ ξ ξ ξ
π

π

 = − − + − − + − 

=−
 (21) 
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where 

 

( ) ( )

( ) ( )

2 22 2
1 1 2 2 2 2

2 22 2
1 1 2 2 2 2

1/ 22
55 45

45 44 44 2
44 44

,

,

, ,

, /

r i

r i

r i r i

r i

R x p x p x

S x p x p x

p p ip p p ip

C Cp C C p m C
C C

ξ ξ ξ

ξ ξ ξ

= − + − + −  

= − + − + +  
= + = −

 
= − = = − 

 

 (22) 

Using the Voigt notation for the stiffnesses, Equations (19) and (20) yield  

 ( ) ( ) ( ) ( )3
3 1 55 2 45 1 45 2 44 3L

1 2

, dsu x b n C n C n C n C G x ξ
ξ ξ

 ∂ ∂
= + + + ∂ ∂ 
∫  (23) 

where 3b u= ∆  is the displacement discontinuity.  Inserting the expression for 3
3G  from (21), we find  

 

( ) ( ) ( ){ }

( ) ( ){

3 1 55 2 45 1 1 2 2 2 2

1 45 2 44 1 1 2 2 2 2

2 2 2 2 2
2 2

1 1 1
2

1 1

ds

rL

r r

i

u x b n C n C x p x
m R S

n C n C p x p x
R S

x xp
R S

ξ ξ
π

ξ ξ

ξ ξ

 = + − + − +    
 + + − + − +      

− +  + −  
 

∫

 (24) 

Consider a strike-slip fault of width L  and infinite length along the strike ( )3x  direction.  Let d  be 

the depth of the upper edge A  of the fault. If ( ),s δ  are the polar coordinates of any point ( )1 2,Q ξ ξ  on 
the fault, we have (Figure 1)  

 
Fig. 1 Geometry of a long fault in a half-space (The fault is of infinite length in the strike 

( )3 direction.x −   AB is the fault section by the 1 2 planex x −  which is also the plane of 
elastic symmetry of the monoclinic elastic half-space 2 0,x d≥  is the depth of the upper 
edge A of the fault and δ  the dip angle. ( ),s δ  denote the polar coordinates of any point 

( )1 2,Q ξ ξ on the fault.)   
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 1 2

1 2

cos , sin
sin , cos

s d s
n n
ξ δ ξ δ

δ δ
= = +
= − =

 (25) 

Using these values and (22), Equation (24) simplifies to  

 ( ) 5 6
3 2 2

02

L Y Yu x bds
R S

α
π

 = − 
 ∫  (26) 

where 

 ( ) ( ) ( ) ( )22 2 2
1 2 1 2 1 2sin 2 2 2R A s Cx B x d s x x d x x dε δ γ ε= + − + − + + − + −    

                ( ) ( ){ }2 2 2
1 2 5

1 sin 2 ,
sin 2

A s Cx B x d Y
A

ε δ α
ε δ

= + − − − +  +
 

( ) ( ) ( ) ( ) ( )22 2 2 2
1 2 2 1 2 1 2 2sin 2 2 2 2 4S A s C x x B x d s x x d x x d x dε δ ε γ ε ε= + − + − + + + + + − −  

             ( ) ( ) ( ){ }2 2 2
1 2 2 6

1 sin 2 2 ,
sin 2

A s C x x B x d Y
A

ε δ ε α
ε δ

= + − + + + +  +
 

 ( )5 1 2sin cos ,Y x x dδ δ= − + −  

 ( ) ( )6 1 2 22 sin cos ,Y x x x dε δ δ= + + +  

 45 44 55 44, ,rp C C C Cε γ= = − =  

 ( )1 22 ,ipα γ ε= = −  

 2 2cos sin ,A δ γ γ= +  

 cos sin ,B ε δ γ δ= +  

 cos sinC δ ε δ= +  (27) 

Assuming b  to be constant over L  and performing the integration in Equation (26), we obtain  

 

( ) ( ) ( )
( ){ }

( )
( ){ }

( ) ( ) ( )
( ) ( ){ }
( ) ( )

( ) ( )

1 21
3

2 1

1 21

2 1

1 2 21

1 2 2

1 2 21

1 2 2

2
tan

2 cos sin

tan
2 cos sin

2 2
tan

2 2 sin cos

2
tan

2 2 sin c

A sin L Cx B x dbu x
x d x

Cx B x db
x d x

A sin L C x x B x db
x x x d

C x x B x db
x x x d

ε δ
π α δ δ

π α δ δ

ε δ ε
π α ε δ δ

ε
π α ε δ

−

−

−

−

 + − − −
=  

− −  
 + −

+  
− −  

 + − + + +
−  

+ + +  

+ − +
−

+ + +{ }osδ

 
 
  

 (28) 

For an orthotropic medium with the coordinate planes coinciding with the planes of symmetry, 0ε =  
and, therefore, Equation (28) reduces to  
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( ) ( )
( ){ }

( )
( ){ }

( )
( ){ }

( )

1 2 1 21 1
3 1 2 1 2

2 1 2 1

1 2 1 21 1
1 2 1 2

1 2 1 2

cos sin cos sin
tan tan

2 2cos sin cos sin

cos sin cos sin
tan tan

2 2sin cos sin

AL x x d x x db bu x
x d x x d x

AL x x d x x db b
x x d x x

δ γ δ δ γ δ
π πγ δ δ γ δ δ

δ γ δ δ γ δ
π πγ δ δ γ δ

− −

− −

   − − − + −
= +   

− − − −      
 − + + − +

− − 
+ + + +   ( ){ }cosd δ

 
 
  

(29) 

For an isotropic material, 0, 1ε γ= = , and therefore, Equation (28) becomes   

 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

1 2 1 21 1
3

2 1 2 1

1 2 1 21 1

1 2 1 2

cos sin cos sin
tan tan

2 cos sin 2 cos sin

cos sin cos sin
tan tan

2 sin cos 2 sin cos

L x x d x x db bu x
x d x x d x

L x x d x x db b
x x d x x d

δ δ δ δ
π δ δ π δ δ

δ δ δ δ
π δ δ π δ δ

− −

− −

   − − − + −
= +   − − − −   

   − + + − +
− −   + + + +   

 (30) 

Equation (30) coincides with known results [see, e.g., Savage (1980) for the particular case of δ = 90o, 
and Singh and Rani (1996) for the particular case of 0d = ].  

The first two terms on the right-hand side of Equation (28) correspond to the source fault, and the 
remaining two terms correspond to the image fault (Figure 2).  It can be shown that the image of the 
upper edge ( )0,A d  of the source fault AB  is not its mirror image ( )0,MA d− , but the point 

( )1 2 , .A d dε −  Similarly, the image of the lower edge ( )cos , sinB L d Lδ δ+  is the point 

( )( )1 cos 2 sin , sin .B L d L d Lδ ε δ δ+ + − −  

 

Fig. 2  Showing the source fault AB  of width L  and the image fault I IA B  of width IL  for a 
monoclinic half-space 2 0x ≥  (The source fault makes an angle δ  with the horizontal, 
and the image fault makes an angle Iδ  with the horizontal in the opposite sense.  The 
image fault in the case of a monoclinic half-space does not coincide with the mirror 
image of the source fault in the free boundary.)   

The width of the image fault I IA B  is  

 ( )1 22 21 4 sin cos 4 sinIL L ε δ δ ε δ= + +   (31) 

and its inclination is given by  

 cot cot 2Iδ δ ε= +   (32) 
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However, for an orthotropic material, IA  coincides with MA , and 1, .IL L δ δ= =   Figure 3 shows 
the image fault when the source fault is either horizontal or vertical.  For a horizontal source fault, 

, 0IL L δ= = , and for a vertical source fault  

 ( )1 22
11 4 , cot 2IL L ε δ ε= + =   (33) 

 

Fig. 3  Showing the image fault when the source fault is (a) parallel to the boundary, and (b) 
perpendicular to the boundary  

In Figures 2 and 3, we have assumed that 0.ε >   For 0,ε <  these figures can be suitably modified.  

NUMERICAL RESULTS 

Figure 4 shows the variation of the amplification of the fault-width ratio ( )IL L  with the dip angle 

( )δ  for three values of 45 44 ,C Cε = −  viz. 0, 0.3. 0ε ε= ± =  corresponds to isotropic half-space. For 
a surface-breaking, vertical fault, the surface displacement is found from Equation (28) on taking 

20, 2, 0.d xδ π= = =   We find 

 
( ) ( )1 11

3 1
1

tan tan sgn
2

xbu x
L x
α ε π

π γ ε α
− − 

= − − − 
 (34) 

 

Fig. 4  Variation of the amplification factor IL L  with the dip-angle for 55 44 1C Cγ = =  and for 
three values of the anisotropy parameter 45 44 ,C Cε = −  namely, 0, 0.3, 0.3ε = −  ( 0ε =  
corresponds to the isotropic half-space) 
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Figure 5 shows the variation of the dimensionless horizontal surface displacement ( )3u b  with the 

dimensionless horizontal distance ( )1x L  from the fault-trace for 1γ =  and 0, 0.3.ε = ±  For the 

isotropic case ( )0 ,ε =   the displacement is antisymmetric about the origin (fault-trace).  

 

Fig. 5 Variation of the dimensionless along-strike surface displacement ( )3u b  with the 

dimensionless horizontal distance ( )1x L  from the upper edge of a surface-breaking 
vertical fault for 1γ =  and 0, 0.3, 0.3ε = + −  

CONCLUSIONS 

Study of the half-space deformation of an anisotropic half-space by internal sources is interesting 
from theoretical as well as practical point of view. In particular, it is useful to study the deformation of a 
monoclinic half-space by buried faults, since monoclinic symmetry of system of cracks is found near the 
surface of the Earth. To this end, we have solved the problem of a long inclined strike-slip fault in a 
monoclinic elastic half-space. It is remarkable that it is possible to find a closed form analytical solution 
for this complicated problem. The effect of anisotropy on the deformation field is significant. In the case 
of a long inclined strike-slip fault in an isotropic or orthotropic half-space, the width and the inclination of 
the image fault are the same as the width and the inclination, respectively, of the source fault. However, in 
the case of a monoclinic half-space, the width and the inclination of the image fault are different from the 
width and the inclination of the source fault. Further, in the case of a monoclinic half-space, while the 
image of a horizontal fault is a horizontal fault of equal width, the image of a vertical fault is not vertical 
and is of a different width. In the case of a surface-breaking long vertical strike-slip fault in an isotropic 
half-space, the surface displacement is antisymmetric about the fault-trace. However, in the case of a 
monoclinic half-space, the surface displacement is not antisymmetric about the fault-trace. Therefore, an 
examination of the degree of departure from the antisymmetry should give some idea about the anisotropy 
of the medium. 
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