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ABSTRACT  

 A comprehensive and general method for the prediction of strong motion amplitudes, developed by 
Strong Motion Research Group at University of Southern California, is reviewed. It uses synthetic 
translational accelerograms and the theory of linear wave propagation to predict all other components of 
strong motion: rotations (torsion and rocking), strains and curvatures. It gives site-specific synthetic 
motions which have realistic non-stationary frequency content, site-specific dispersion properties, and 
amplitudes and the duration which are compatible with empirical scaling equations developed for the 
estimation of strong motion in California. 
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INTRODUCTION 

 For many applications, it is necessary to estimate future shaking at a particular site which is outside 
the range of strong-motion parameters for which the existing recorded data is available. This happens, in 
particular, in those parts of the world where recorded data is not yet available. Considerable variability in 
the characteristics of recorded strong-motions recorded under similar conditions, may require a 
characterization of future shaking in terms of an ensemble of accelerograms rather than in terms of just 
one or two “typical” records. In many earthquake engineering analyses, particularly those which deal with 
the non-linear response of structures, the entire analysis must be performed in the time domain, because 
the superposition techniques do not apply.   This and many related situations have thus created a need for 
the development of techniques for the generation of synthetic (artificial) strong-motion time histories that 
simulate realistic ground motions. In this work, we will review the only complete and comprehensive 
family of papers which outline the methods for generation of artificial time histories of (1) translational 
acceleration, (2) rotational acceleration (torsion and rocking), (3) surface strain, and (4) surface curvature. 
 Apparent irregularity of early recorded accelerograms and the limited number of records in the 1950's 
have led investigators to explore the possibility of modeling strong ground shaking by means of random 
time functions of simple but known properties. Housner (1955), for example, assumed that an 
accelerogram could be modeled by a series of one-cycle sine-wave pulses; others used a series of pulses 
distributed randomly in time (Goodman et al., 1955; Rosenblueth, 1956; Bycroft, 1960; Rosenblueth and 
Bustamante, 1962). On the basis of such artificial time functions of known statistical properties, it became 
clear (Bolotin, 1960) that the nonstationarity of ground motion can influence structural response 
significantly.  This prompted the development of methods for the construction of artificial accelerograms 
by using nonstationary random time series (e.g., Bogdanoff et al., 1961; Amin and Ang, 1966; Goto and 
Toki, 1969).  The nonstationarity in these models was achieved typically by (a) multiplying stationary 
random time series by a nonstationary envelope function, (b) changing the frequency content of an 
artificial accelerogram as a function of time, and by (c) superimposing simple earthquake sources with 
some phase delays in time (e.g., Rascon and Cornell, 1969) to represent the propagation of a simple 
earthquake source (e.g., Honda, 1957) by means of radiated P and S waves only. 
 Observational studies of strong ground motion in the 1970's showed that a typical strong motion 
record consists of near-field, intermediate-field, body and surface waves contributing different amounts to 
the total result, depending on the earthquake source mechanism and on the wave path (Trifunac, 1971a, 
1971b; Trifunac, 1972a, 1972b; Trifunac, 1973).  Empirical studies of spectral characteristics (Trifunac, 
1976, 1979a, 1979b, 1993, 1994, 1995a, 1995b; Trifunac and Anderson, 1977; Trifunac and Lee, 1978, 
1985) and frequency-dependent duration (Trifunac and Westermo, 1976a, 1976b; Trifunac and Novikova, 
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1994, 1995) have further shown the nature of the dependence of strong motion on the geologic 
environment of the recording station. Consequently, realistic artificial accelerograms must have 
nonstationary frequency, amplitude and duration characteristics that agree with the trends present in the 
recorded accelerograms. 
 In choosing a suitable accelerogram for a particular analysis, many factors must be taken into 
account, for example, the distance between the source and the site, the size of the earthquake, and the 
geology surrounding the site. The recorded accelerograms cannot be modified in a simple way to satisfy 
the requirements at all sites (Lee and Trifunac, 1989), and thus, site-dependent artificial accelerograms 
are needed. 
 The majority of the proposed methods for the generation of synthetic accelerograms fall into two 
categories:  (1) methods that utilize random functions, and (2) methods that involve source mechanism 
and wave propagation models.  Using the former methods, the resulting accelerograms do not always 
have a correct frequency content for engineering applications, and the frequency characteristics of the 
time record are often uniform from beginning to the end of the record.  For a recorded accelerogram, the 
frequency contained in the beginning of the record (during the arrival of body and high-frequency surface 
waves) is generally higher. Using the latter methods, a more physically consistent record can be 
generated, but it is impossible to model all the details of the source as well as of the wave path adequately 
for the complete frequency range of interest (e.g., 0.5-30 Hz). Because of the simplifications, the 
generated records often lack proper high-frequency characteristics, when compared with the recorded 
accelerograms. 
 This work reviews a unique and comprehensive group of methods for constructing synthetic 
accelerograms, which have a given Fourier amplitude spectrum, ( ),ωF  and a given duration.  The 
Fourier amplitude spectrum and the duration can be obtained from correlations with the earthquake 
parameters.  The times of arrival of the waves can be derived from the dispersive properties of the site. 
This introduces the specific characteristics of each site into the resulting artificial records of strong 
motion. 

GENERATION OF SYNTHETIC TRANSLATIONAL ACCELEROGRAMS 

 The synthetic translational components of acceleration are constructed to have a required Fourier 
amplitude spectrum, ( ),ωFS  and a given duration, ( ),ωD  at the site. For completeness in this 
presentation, a review of the method first proposed by Trifunac (1971b), and later refined by Wong and 
Trifunac (1978, 1979), for the generation of synthetic accelerograms is briefly summarized as follows. 

1. Dispersion Curves at a Site 

 For a given site, a profile with equivalent layered medium is first determined. A model can have L  
layers. For each layer ,i  with ,to1 Li =  the parameters iiiih ρβα and,,  must be specified, where 

=ih  thickness of the th−i  layer, velocity,wave−= Piα −= Siβ wave velocity, and =iρ  density 
of the medium, with the bottom ( )Li =  medium of infinite thickness.  

 In such a medium, surface waves will travel in a dispersive manner, and this will, in general, depend 
on (1) the material properties of the medium, (2) the frequency of the wave motion, and on (3) the 
thicknesses of different layers. 
 Through calculations for the group and phase velocities of the Rayleigh and Love surface waves, the 
dispersion curves can be evaluated. The results will be given for each mode of Rayleigh and Love surface 
waves separately, and will consist of phase and group velocities, ( ) ( ),and nmnm UC ωω  for a given set 
of selected frequencies, ....,,2,1, Nnn =ω  

2. Arrival Times 

 Once the dispersion curves have been computed, the arrival time of the th−m mode at frequency 
nω  can be written as  
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 ( ) ( )*
nm m nt R R U ω=  (1) 

where, R  is the epicentral distance from the source to the site. For computational efficiency, Equation (1) 
will be assumed to hold not only at frequency ,nω  but at a frequency band ,n nω ω± ∆  which is narrow 
enough for ( )ωmU  to be assumed constant. 

3.  Contribution of the Modes at a Given Frequency Band 

 Within the frequency band ,nn ωω ∆±  the −m th mode of surface waves is assumed to have a 
Fourier transform 
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where, nφ  is the phase. It is introduced to model the source randomness and other effects along the path. 
*
nmt  is the arrival time of the −m th mode given in Equation (1). nmA  is the relative amplitude of the 
−m th mode. The phase nφ  will be assumed to be a random number between π−  and .π  The relative 

amplitude nmA  will be described in the next section. 

 The inverse transform of (2) is given by 
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This represents the contribution of the −m th mode at the given frequency band. The total contribution of 
all the modes is then given by  
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where, M is the total number of wave modes, and nα  is the scaling factor used to determine the final 
amplitude of ( ),nFS ω  as described in the next sub-section.  

4. Determination of nmA  and nα  

 Relative amplitudes of different modes of surface waves, nmA , depend on the source mechanism and 
the propagation path, and are difficult to be estimated in a general case. Hence, it is useful to estimate 
these amplitudes empirically on the basis of previous acceleration recordings. 
 The following empirical equations for nmA  have been suggested by Trifunac (1971b) 

 ( ) ( ) ( )nnnm AmAA ωω 21=  (4) 

where, 

 ( ) ( )( ) mR XCCmmmA +−−= 2
0

2
01 2exp  (5) 

and 

 ( ) ( )( ) nRBpnn XBBA +−−= 22
02 2exp ωωωω  (6) 
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with mX  and nX  being random numbers between -1 and 1, and the values of other constants are  
suggested in Table 1. 

Table 1: Empirical Scaling Coefficients for Equations (5) and (6) (from Trifunac, 1971a, 1971b) 

Mode 
0C  om  RC  0B  pω  Bω  RB  

1 3 5 0.2 1.5 10 5 0.1 
2 3 5 0.2 1.5 10 5 0.1 
3 3 5 0.2 1.5 10 5 0.1 
4 3 5 0.2 2.0 25 15 0.1 
5 3 5 0.2 2.0 25 15 0.1 
6 3 6 0.2 3.0 30 10 0.3 
7 3 7 0.2 1.5 30 5 0.25 

 
 The scaling factor nα  is next determined, by using the empirically determined Fourier amplitudes. 
The Fourier amplitude of ( )tan  in Equation (3c) is given by  

 ( ) ( )( )*
1

exp ,
2
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( ) ( )for 0 , and .n nA Aω ω ω≤ < ∞ − =  

 It is seen that the amplitude ( )ωnA  is defined only over the narrow band of width .2 nω∆  Its mean 
amplitude over this band is given by 
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which should agree with the empirically estimated Fourier amplitude, ( ),nSF ω
)
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Combining Equations (7), (8) and (9), nα  becomes 
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The Fourier amplitude ( )nSF ω
)

 at frequency nω  may be estimated from empirical scaling equations, by 
using the earthquake parameters specified at the site. These parameters may include a suitable 
combination of the following: M = local magnitude LM  or surface wave magnitude SM  (Richter, 
1958), R  = epicentral distance, MMI  = modified Mercalli intensity at the site, s  = geological site 
classification ( s  = 0, 1 or 2), LS  = geotechnical site classification, h  = depth of sediments, and  
v  = component direction ( 0 :v =  horizontal;  :1=v  vertical). 

5. The Total Accelerogram 

 The total accelerogram can be expressed as  
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n
n∑

=

=
1

 (11) 
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where, N is the total number of frequency bands.  From Equation (3), (11) becomes 

 ( ) ( ) ( )nnn

N

n

M

m nm

nmn
nm t

tt
tt

Ata φωα
ω

+







−

−∆
= ∑ ∑

= =

cos
sin

1 1
*

*

 (12) 

One final property, the duration or ‘length’ of  ( )ta , will be determined by using the empirical results on 
strong motion duration (Trifunac and Brady, 1975; Trifunac and Novikova, 1994) and the first and last 
arrival times of the waves.  

 
Fig. 1 Love and Rayleigh waves curves for El Centro Area, California: phase velocity 

6. Example of Synthetic Accelerograms 

 To illustrate synthetic accelerograms, we choose the site at Westmoreland in Imperial Valley, 
California. Dispersion curves for this site were computed assuming the properties of layered medium in 
Table 2. 

Table 2:  Properties of the Layered Medium Adopted to Represent the Site Properties in the  
Area of Westmoreland in Imperial Valley, California 

Layer # Depth 
(km) 

P-Wave Velocity 
(km/sec) 

S-Wave Velocity 
(km/sec) 

Density 
(gm/cm3) 

1 
2 
3 
4 
5 
6 

0.18 
0.55 
0.98 
1.19 
2.68 

∞ 

1.70 
1.96 
2.71 
3.76 
4.69 
6.40 

1.98 
1.13 
1.57 
2.17 
2.71 
3.70 

1.28 
1.36 
1.59 
1.91 
2.19 
2.71 
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 Fig. 2 Love and Rayleigh waves curves for El Centro Area, California: group velocity 

 Figure 1 shows the Rayleigh- and Love-wave phase velocities (in km/sec) versus the period of the 
waves (in seconds). The 5 solid curves are for the first 5 modes of the Rayleigh waves.  Mode 1 is the 
rightmost solid curve, and mode 5 is next to the leftmost solid curve, with the intermediate modes in 
between.  The same holds for the modes of Love waves.  At low periods, all the curves approach the 
minimum −S wave velocity (0.98 km/s at this site). Figure 2 shows the corresponding group velocity 
curves.  The two curves at the extreme left in Figures 1 and 2 approximately model the arrival of the wave 
components associated with the incident P  and S waves. 
 The following earthquake parameters are chosen for this site, as input for the computer program 
SYNACC (Wong and Trifunac, 1978): earthquake magnitude, 5.6=M , epicentral distance,  
D  = 10.0 km, confidence level, p = 0.5, site condition, s  = 0  (alluvium), and component direction,  v  
= 0 (horizontal). 
 Figure 3 shows a plot of the synthetic translational acceleration, and the velocity and displacement 
time-histories calculated from it. Figure 4 presents the corresponding response and Fourier spectra. 

THE TORSIONAL COMPONENT OF EARTHQUAKE GROUND MOTIONS 

 The importance of torsional and rocking excitations has been indicated by the studies of Dravinski 
and Trifunac (1979, 1980), Kobori and Shinozaki (1975), Luco (1976), Bielak (1978), Lee (1979), Gupta 
and Trifunac (1987, 1988, 1990a, 1990b, 1990c, 1991), Todorovska and Lee (1989), and Todorovska and 
Trifunac (1989, 1990a, 1990b, 1992, 1993).  With the slow development of strong-motion instruments 
that record rotational components of strong motions (Hudson, 1983; Trifunac and Todorovska, 2001), it 
becomes necessary to explore the possibility of estimating those in terms of the corresponding 
translational components of strong shaking. 
 By considering the horizontal propagation of plane waves with constant velocity ,C  Newmark 
(1969) estimated the contribution to the displacements of building foundation, resulting from torsional 
earthquake ground motions. Tso and Hsu (1978) used a similar approach, in addition to assuming that the 
motions also included plane non-dispersive waves.  Nathan and MacKenzie (1975) discussed the possible 



ISET Journal of Earthquake Technology, December  2002 279 
 

 

averaging effects of foundation sizes on the resulting torsional excitations of buildings. These 
investigations, however, failed to consider the dependence of the phase velocity on the frequencies of the 
incoming Love waves.  Their assumption that the incoming waves are of constant phase velocity at all 
frequencies, makes their results useless. Lee and Trifunac (1985) included the effects of wave dispersion 
and transient arrivals in the estimation of torsional accelerograms in an elastic layered half-space. The 
earlier work of Trifunac (1982) in calculating the torsional component of incident plane SH-waves was 
extended to enable the calculation of torsion from surface Love waves. 
 

 
Fig. 3 Artificial earthquake synthetic translational accelerogram 

1. The Torsional Motion of Incident Waves 

 Figure 5 shows the rectangular coordinate system ( )321 ,, xxx  with the incident and reflected plane 
SH-waves, in the presence of the stress-free boundary ( ),02 =x  at the surface of the elastic, 
homogeneous and isotropic half space ( ).02 ≤x  The particle motions of the waves are in the 

−3x direction. 

 The incident SH-wave is assumed to have amplitude 0A  and angle of incidence 0θ  (Figure 5). The 
reflected wave will also have amplitude 0A  and the same angle of reflection 0θ . The resulting motion is  
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with ω  being the frequency of the incoming wave, with velocity ,β  and ,k ω β=  the corresponding 
wave number.  The torsional component of motion associated with the SH-waves at the half-space surface 
( )02 =x  is (Trifunac, 1982): 
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Fig. 4 Artificial earthquake synthetic translational response and Fourier spectra 
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It is seen that the torsional motion has a phase shift of 2π−  relative to the translational motion. From 
Equation (14), one can define the amplitude ratio,  
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where, 0sinθβ=xc  is the phase velocity in the horizontal ( )1x  direction. Including the phase shift, 
Equation (14) can be rewritten as 
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which shows that at the ground surface ( ),02 =x  the amplitude of torsional motion increases linearly 
with frequency, .ω  

 
Fig. 5 Incident SH wave on half-space 

2. Estimation of Synthetic Torsional Motion 

 Recording of the rotational components of strong motion is at present limited only to a few 
experimental programs (Shibata et al., 1976; Trifunac and Todorovska, 2001).  It is not very likely that a 
significant amount of such data will, in the near future, be available for empirical and theoretical analyses.  
It thus becomes necessary to explore the possibility of estimating torsional acceleration in terms of the 
corresponding translational components of strong motion, along with the information on the types and the 
direction of approach of the incident waves. 
 Expressing the strong earthquake translational ground motion in terms of the Fourier amplitude 
spectrum, the Fourier amplitude spectrum of the corresponding torsional motion can be estimated by 
using Equation (16). By employing this result in conjunction with the method for the synthesis of 
artificial translational accelerograms, as described in the previous section, the complete time-history of 
synthetic torsional motion can be constructed. 
 From Equation (2), the −m th mode of surface waves, within the frequency band ,nn ωω ∆± has the 
Fourier transform of the translational motion given by 
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The corresponding Fourier transform of the rotational motion is thus given by 
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where, ( )nmnm CC ω=  is the phase velocity of the −m th mode of surface Love waves,  assumed to be 
constant within the frequency band .nn ωω ∆±  The total contribution from all the modes of Love waves 
to the rotational motion in this frequency band is  
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where, nα  is the scaling factor, as given in Equation (10). 

 The total Fourier transform of the rotational accelerogram is then given by 
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where, N  is the total number of frequency bands considered. The ratio of the Fourier amplitude of the 
rotational acceleration to that of the translational motion thus takes the form 
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for the frequencies within the frequency band .nn ωω ∆±  On simplifying, Equation (21) takes the form 
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and, in particular for ,nωω =  

 
( )
( ) ∑

∑
=

=

=

=
Ψ

M

m nm

M

m nmnmn

A

CA
A

n 1

1

2
ω

ω
ω

ωω

 (23) 

 An asymptotic expansion of Equation (23) for large and small frequencies is possible. At the  
high-frequency end, the phase velocities of all modes of surface waves approach ,minβ  the minimum 
shear wave velocity in the layered model.  Thus 
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At the low-frequency end, essentially the only mode present in the layered model is the first mode, and its 
phase velocity approaches ,maxβ  the maximum shear wave velocity in the layered medium.  Thus, 
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It is noted that from the dimensional analysis point of view, Equations (24) and (25) agree with the 
equations proposed by Newmark (1969). However, it is seen that the “velocity” representing the overall 
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average trend of the ratio ( ) ( )ωω AΨ  is not constant. It changes from ( )min forβ ω →∞  to 

( )max for 0 ,β ω →  the velocity in the half-space beneath the surface layers. 

 
Fig. 6 Artificial earthquake synthetic torsional accelerogram 

3. Examples of Synthetic Torsion 

 Following the analysis in the previous sections, one can generate the translational (horizontal and 
vertical) and torsional accelerograms simultaneously. For illustration, the same site at Westmoreland in 
Imperial Valley is used, as in Sub-section 6 of the previous section.  Thus, the same dispersion curves for 
this site are used here. 
 Figure 6 gives a plot of the synthetic torsional acceleration, velocity and displacement, with units in 
rad/s2, rad/s and rad, respectively. Figure 7 presents the corresponding torsional response and Fourier 
spectra. As in the case of the response spectra for the translational accelerogram, the torsional response 
spectra represent the maximum torsional response of single-degree-of-freedom systems of specified 
natural periods and damping ratios, when subjected to the torsional accelerogram as input.  The units for 
torsional displacement, SD, pseudo relative velocity, PSV, and relative pseudo acceleration, PSA, are rad, 
rad/s, and rad/s2, respectively. 
 Figure 8 shows the ratio of torsional to translational response for different periods and damping 
ratios. As indicated by Equation (16), the ratio is high at the high-frequency (short-period) end, and 
decreases almost linearly towards the low-frequency (long-period) end. The Fourier spectrum (dashed 
line) also starts out with the large ratio at the high-frequency end, and progressively decreases to the small 
ratios at the low-frequency (long-period) end.  The five solid curves correspond to the damping values of 
0, 2, 5, 10 and 20% of critical.  At the high-frequency end, the zero damping curve has a higher ratio than 
the 2, 5, 10 and 20% curves.  The ratios for all five damping ratios decrease progressively with decreasing 
frequency (increasing period), with the order of the ratios switched at the low-frequency end, so that the 
20% damping curve ends up with the highest ratio, followed by 10%, 5%, 2% and 0% curves, with the 
ratio for the Fourier spectrum being the lowest on average. 
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 Figure 9 shows the ratios of torsional to translational Fourier spectrum amplitudes, as calculated from 
Equation (23). The dashed line joining the high- and low-frequency asymptotic limits, connects the 
amplitudes given by Equations (24) and (25).  Comparison with Figure 8 shows that this straight line 
approximates the overall trend of the ratios of torsional to translational spectral amplitudes very well. 

 
Fig. 7 Artificial earthquake synthetic torsional response and Fourier spectra 

THE ROCKING COMPONENT OF STRONG EARTHQUAKE GROUND MOTION 

 The rotational components of strong earthquake ground motions have been studied by a number of 
investigators since the 1970's (Lee, 1979; Trifunac, 1982). Yim et al. (1980), and Koh and Spanos (1984) 
studied the rocking response of rigid structures to strong ground motion. Ishiyama (1982) investigated the 
motions and overturning of a rigid body in response to earthquake excitations, both experimentally and 
theoretically. Psycharis (1983) studied the rocking, toppling and uplift of flexible structures due to 
earthquake motions. Similar studies were carried out by Kato et al. (1984), and by Baba and Nakashima 
(1984). 
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 As in the case of torsional motions, the development of strong-motion instruments to record the 
rocking components of earthquake ground motions is slow. It is again necessary to estimate these motions 
in terms of the corresponding translational components of strong shaking. For this purpose, the earlier 
work of Trifunac (1982) on calculating the rocking angles associated with incident plane P- and SV-
waves was extended by Lee and Trifunac (1987) to calculate the rocking component of motion associated 
with incoming P-, SV- and Rayleigh waves.  
 

 
Fig. 8  Artificial earthquake synthetic torsion/transverse response and Fourier spectral ratio 

1.  The Rocking Motion Associated with Incident Waves 

 The following describes estimation of the rocking component from the known translational 
components of motion. Estimating the rocking from incident P- and SV-waves has been reviewed by 
Trifunac (1982). 
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Fig. 9 Artificial earthquake synthetic torsion/transverse Fourier spectral ratio 

 

 

 
Fig. 10 Incident P-wave on half-space 
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1.1 Incident P-Waves 

 Figure 10 shows the coordinate system ( )21 , xx  and the incident and reflected rays associated with 
incident plane P-waves in an elastic homogeneous and isotropic half-space ( ).02 ≤x  The amplitudes of 
the incident and reflected P-waves, and reflected SV-waves are 0 ,A  1 2, and ,A A  respectively.  Two 
components of motion at the surface ( )02 =x  are 

 ( ) ( )1 0 0 1 1 2 2 1 0sin sin cos exp sinu A A A i k x tαθ θ θ θ ω= + + −    (26) 

 ( ) ( )[ ]txkiAAAu ωθθθθ α −+−= 012211002 sinexpsincoscos  (27) 

and the rocking component about the −3x direction is given by 

 ( )[ ]txkikAi
x
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x
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ωθψ αβ −=

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



∂
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−
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= 012
2

1

1

2
12 sinexp

22
1

 (28) 

where, αk and βk  are 

 βωαω βα == kk ,  (29) 

with ω  being the circular frequency, and α  and ,β  the respective velocities of P- and SV-waves. In the 

above and subsequent equations, t  represents time and .1−≡i  Trifunac (1982) further showed that 

 ( ) ( )αωαβψ Cu =212  (30) 

thus expressing rocking in terms of the translation, 2u . Here, αC is the horizontal phase velocity. 

 

 
Fig. 11  Incident SV-wave on half-space 
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1.2 Incident SV-Waves 

 Figure 11 shows the coordinate system ( )21 , xx  and the incident and reflected rays associated with 
plane SV-waves. The amplitudes of the incident SV-waves and reflected P- and SV-waves are 0 ,A  

1 2and ,A A  respectively. The two translational, 1u  and ,2u  and rocking, ,12ψ components of motions 
are 
 ( ) ( )[ ]txkiAAAu ωθθθθ β −++−= 012211001 sinexpcossincos  (31a) 

 ( ) ( )[ ]txkiAAAu ωθθθθ β −+−= 012211002 sinexpsincossin  (31b) 

and 
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u
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ωθψ β
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
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
∂
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−
∂
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= 0120
2

1

1

2
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22
1

 (32) 

The ratio, 

 αωψ Cu =212  (33) 

gives the rocking component 12ψ  in terms of the translational component 2u .  

 

 
Fig. 12  Incident Rayleigh wave on half-space 

1.3 Rayleigh Waves 

 Figure 12 shows the coordinate system ( )21 , xx  for the half-space with L layers, with the last (L-th) 
layer extending to −∞=2x . Using Lamé potentials, Φ  and Ψ , the Rayleigh waves in the top layer are 
given by 
 ( ) ( )[ ] ( )( )ctxikikrxAikrxA −−+=Φ 12221 expexpexp  (34a) 

and 
 ( ) ( )[ ] ( )( )ctxikiksxBiksxB −−+=Ψ 12221 expexpexp  (34b) 



ISET Journal of Earthquake Technology, December  2002 289 
 

 

where, ck ω=  is the wave number,  c  is the phase velocity in the −1x direction, ,and,, 2121 BBAA  
are the amplitudes to be determined, and  r  and s  are defined by 

 ( )1222 −= αcr  (35a) 

 ( )1222 −= βcs  (35b) 

The two components of displacement are given by 
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Using Equations (34a) and (34b), this gives 
 ( ) ( ) ( ) ( )[ ] ( )( )ctxikiksxsBiksxsBikrxAikrxAiku −−−+−+= 1222122211 expexpexpexpexp  (37a) 

and 
 ( ) ( ) ( ) ( )[ ] ( )( )ctxikiksxBiksxBikrxrAikrxrAiku −−−+−−= 1222122212 expexpexpexpexp  (37b) 

From 
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and 
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the rocking component is 
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At the surface of the half-space ( ),02 =x  this reduces to 
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Equation (40) can be simplified further. The potentials Φ  and Ψ  in Equation (34) also satisfy the stress-
free boundary conditions at the surface of the half-space ( ) :02 =x  

 01222 == σσ  (41) 

where, 22σ  is the normal stress, and 12σ  is the shear stress. Those are given by 
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with λ  and µ  being the Lamé constants. Using the expressions for Φ  and Ψ  in Equation (34) to 
calculate 12σ  and setting it to zero at 02 =x gives 
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 ( ) ( )( ) 012 21
2

21 =+−+−− BBsAAr  (43) 

Also, from Equation (37), the displacement 2u  at 02 =x  is 

 ( ) ( )( )212102 2
BBAAriku x +−−==  (44) 

Combining Equations (43) and (44) gives 

 ( )( ) ( )( )ctxikBBsiku x −++
−

== 121
2

02 exp1
22

 (45) 

from which the rocking at the surface ( )02 =x  is (see Equation (40)): 

 cuiiku 2212 ωψ ==  (46) 

This is a very simple result, as in the case of incident P-waves (Equation (30)) or incident SV-waves 
(Equation (33)). Equation (46) will be used in conjunction with our method for the synthesis of artificial 
translational accelerograms to construct the time-history of rocking. 
 The simple relations between rocking 12ψ  and displacement 2u  in all of the above three cases (plane 
P-, SV-waves, and surface Rayleigh waves) is a consequence of a more fundamental principle satisfied by 
elastic waves in general. Starting with the Φ  and Ψ  potentials, the two components of displacement, 1u  
and 2u , are given by Equation (36).  At the surface of the half space ( )02 =x , the boundary condition 

012 =σ  implies that (Equation (42)) 
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so that Equation (36) shows that this is equivalent to 
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The rocking 12ψ  at the surface ( )02 =x  then becomes 
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Thus, if the waves have the displacement 2u  given by 

 ( ) ( )( )ctxikxfu −= 122 exp  (50) 

for a general function ( )2xf , such that the wave equations are satisfied, then from Equation (49) 

 212 iku=ψ  (51) 

which is the simple relation previously obtained for all three cases. Similar conclusion can be drawn for 
the torsional motions also. 

2. Estimation of Synthetic Rocking 

 From the preceding analysis, it is seen that the rocking component of motion, ,12ψ  can be related to 
the translational component, ,2u  of the Rayleigh surface waves in the layered half-space. Equation (46) 
further shows that at the ground surface ( )02 =x , the amplitudes of rocking increase linearly with 
frequency .ω  Similar results have been previously observed for the case of torsional motion, where it 
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was shown that the torsional component of motion, ,13ψ  is associated with the translational component, 
,3u  of the Love waves at 02 =x  

 3313 22
u

c
ikui ω

−=
−

=Ψ  (52) 

where, c  is the phase velocity of Love waves.  The same estimation steps can thus be carried over from 
torsion to rocking. Starting from the −m th mode of surface waves within the frequency band 

,nn ωω ∆±  the Fourier transform of the vertical translation, ( ),ωnmA  is given by (Lee and Trifunac, 
1987) 
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and 

 ( ) ( )*
nm nmω ω− =A A  (53b) 

where, ( )*
nm ωA  is the complex conjugate of ( )ωnmA . nmA  is the relative amplitude of the −m th mode, 

given by the empirical equations suggested by Trifunac (1971b), and has been used in the synthesis of 
artificial accelerograms for both the translational components and torsional component. *

nmt  is the arrival 
time of the −m th mode defined earlier. nφ  is the phase of the wave at the given frequency band, 
introduced to include the effects of source and other miscellaneous effects along the propagation path.  It 
is assumed to be a random number between π−  and π . 
  The corresponding Fourier transform of the −m th mode of rocking, ( )ωnmΨ , in the frequency band, 

,2 nω∆  is 
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where, ( )nnmnm CC ω=  is the phase velocity of the −m th mode of Rayleigh waves, assumed to be 
constant within the frequency band .nn ωω ∆±  Combining all of the M modes of Rayleigh waves gives 
the Fourier transform of vertical displacement, ( )ωnA , at the frequency band as 

 ( ) ( )∑
=

=
M

m
nmn

1
ωω AA  (55) 

Note that for the Fourier transform of horizontal displacements, this will include both the modes of Love 
and Rayleigh waves in the band nω∆2 , and with relative contributions determined from the angles 

between 1x  and 3x  axes relative to the azimuth of wave arrival. Similarly, the total rocking ( ), ,n ωΨ  at 

the frequency band 2 nω∆  is 

 ( ) ( )ωψω ∑
=

=Ψ
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m
nmn

1
 (56) 

The total Fourier transforms of vertical displacement, ( ),ωA  and rocking, ( ),ωΨ  then become 

 ( ) ( )ωαω n
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n
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1

 (57a) 

and 
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 ( ) ( )ωαω n
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n
nΨ=Ψ ∑

=1
 (57b) 

where, N  is the total number of frequency bands considered. nα  is the scaling factor determined so that 
the Fourier amplitude of vertical displacement at frequency nω  will match with the corresponding actual 

or estimated component of Fourier amplitude ( )nFS ω  at the site. The actual Fourier amplitudes are 
those calculated from the actual accelerogram recorded at the site. The estimated Fourier amplitudes are 
those calculated from the empirical models for scaling Fourier amplitude spectra of strong ground 
acceleration in terms of the earthquake magnitude, source-to-station distance, site intensity, and recording 
site conditions. 
 

 
Fig. 13 Artificial earthquake synthetic rocking accelerogram 

 The ratio of the Fourier amplitude of rocking acceleration to that of vertical translation is 
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Using Equations (53) through (56), this becomes 
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and, in particular for ,nωω =  
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Note that except for the factor of 1/2, the same empirical relation was obtained for the ratio of Fourier 
amplitude of torsional to Fourier amplitude of horizontal accelerations. 
 As for torsional motions, the asymptotic expansion of Equation (60) for large and small frequencies is 
possible here. At the high-frequency end, the phase velocities of all modes of Rayleigh surface waves 
approach ,minβ  the minimum shear wave velocity in the layered half-space model.  Thus, 
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At the low-frequency end, the only mode present in the layered medium is the first mode, and its phase 
velocity approaches ,maxβ  the largest (usually for half-space) shear wave velocity in the layered model.  
Thus, 
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Fig. 14 Artificial earthquake synthetic rocking response and Fourier spectra 
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Fig. 15 Artificial earthquake synthetic rocking/vertical response and Fourier spectral ratio 

3. Examples of Synthetic Rocking 

 Following the analysis in the previous sections, one can readily generate the translational (horizontal:  
radial, transverse; and vertical), torsional and rocking accelerograms simultaneously. As in Sub-section 3 
of the previous section, the same site at Westmoreland in Imperial Valley, and the same dispersion curves 
are used in the following examples. 
 Figure 13 shows a plot of the synthetic rocking motions. It presents examples of the rocking 
acceleration, velocity and displacement in rad/s2, rad/s, and rad, respectively. Figure 14 gives the 
corresponding rocking response and Fourier spectra. It represents the maximum rocking responses of over 
80 single-degree-of-freedom systems, with natural periods in the range 0.04-8 s and with 5 damping ratios 
( )20.0and10.0,05.0,02.0,0=ζ , when subjected to the corresponding rocking accelerograms. The 
units for the rocking displacement, SD, pseudo relative velocity, PSV, and pseudo acceleration, PSA, 
responses are rad, rad/s, and rad/s2, respectively. Figure 15 shows the ratio of rocking to vertical 
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translational response. As indicated in Equation (46), this ratio tends to vary linearly with frequency, or 
inversely with period. 

SURFACE STRAINS OF EARTHQUAKE GROUND MOTIONS 

 Expressions for surface strains in an elastic half-space associated with incident plane (P, SV and SH) 
body waves are given in Trifunac (1979b). Those associated with the Rayleigh and Love surface waves 
are given in Lee (1990). 
 Studies of earthquake-induced damage to engineered structures show that there are cases of damages, 
which result from the differential motions caused by large strains associated with ground shaking 
(Trifunac, 1979b, 1997). In some cases, these strains are superimposed on the dynamic responses, and 
only contribute to the resultant total vibrations. In other cases, when the characteristic frequencies of the 
system differ from the principal frequency content of strong motion, these local strains may affect the 
structural systems in a quasi-static manner. Long underground pipelines and railroad tracks may buckle, 
and bridges may collapse because of the excessive differential support motions, due to excessive local 
strains associated with earthquake ground shaking (Trifunac and Todorovska, 1997a, 1997b; Trifunac et 
al., 1996). Studies of the responses of long structures excited by ground shaking (Kojić et al., 1988; 
Todorovska and Trifunac, 1989, 1990a, 1990b; Trifunac and Todorovska, 1997a) have demonstrated the 
need for detailed description of motions at various points of single (or multiple) foundation(s), with 
emphasis on the differential motions associated with large surface strains. 

1. The Surface Strains Associated with Incident Waves 

 This sub-section is devoted to estimation of the surface strains from the known translational 
components of motion (Trifunac, 1979b; Lee, 1990). Referring to Figures 10 and 11 for incident P- and 
SV-waves, and Figure 5 for incident SH-waves, the surface strains at 2 0,x =  associated with incident P- 
and SV-waves, are 
 101,1 sin

1
uikux θε α==  (63a) 
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ε α 




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and 
 ( ) 021 1,22,121

=+= uuxxε  (63c) 

Those associated with incident plane SH-waves are 
 0

21
== xx εε  (64a) 

 ( ) ( ) ( ) 301,31,33,1 sin212121
31

uikuuuxx θε β==+=  (64b) 

Lee (1990) showed that similar expressions for surface strains can also be derived for the Rayleigh and 
Love waves. Referring to Equations (34)-(37) for the Φ  and Ψ  potentials, and the horizontal ( )1x  and 
vertical ( )2x  components of displacements associated with Rayleigh waves, the associated surface strains 
at 02 =x  are 

 ( )[ ] ( )( )ctxikBBsAAkux −−++−== 12121
2

1,1 exp
1

ε  (65a) 

 ( ) ( )[ ] ( )( )ctxikBBsAArkux −−−+−== 12121
2

2,2 exp
2

ε  (65b) 

where, ( )αβ <<c  is the phase velocity of the surface waves in the −1x direction; ck ω=  is the 
corresponding wave number; and r  and s  are, respectively, numbers given by (Equation (35)) 

 ( ) 2122 1−= αcr  (66a) 

 ( ) 2122 1−= βcs  (66b) 
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Recall from Equation (37a) that the horizontal component of displacement at the surface ( )02 =x  is 
given by 
 ( )[ ] ( )( )ctxikBBsAAiku −−++= 121211 exp  (67) 

It is clear from Equations (65a) and (67) that for Rayleigh waves, the surface normal strain in the 
horizontal ( )1x  direction at 02 =x  is 

 11,11
ikuux ==ε  (68) 

 The surface normal strain, ,
2xε  in the vertical ( )2x  direction at 02 =x  can also be expressed in 

terms of .1u  Recalling the stress-free boundary conditions at the half-space surface (Equation (41)), 

 01222 == σσ  (69) 

and, from Equation (42), expressing the stresses in terms of the potentials at 02 =x  gives 
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 ( ) ( )( ) 012 21
2

21 =+−+−− BBsAAr  (70b) 

Using Equation (70a), Equations (67) and (65b) can be rewritten as 
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Using the expressions for r  and s  in Equation (66), Equation (71) can be further simplified to 

 ( ) ( )( )ctxikAAciku −+= 1212
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 (72a) 

 ( )( ) ( )( )ctxikAAcckx −+−−= 121
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from which it follows that 
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This is of the same form as Equation (63b), for incident plane P- and SV-waves. For 0.25,ν =  

( )2 3,α β =  and thus, Equation (73) takes the form 

 132
uik

x −=ε  (74) 

The surface shear strains, 
12xxε and ,

32 xxε  are both zero, because the corresponding shear stresses, 

12xxτ and ,
32 xxτ  vanish at the half-space surface ( ).02 =x  

 Similar expressions for surface strains associated with Love waves can be derived. Starting with the 
anti-plane displacement, ,3u  in the top layer of the layered half-space, 

 ( ) ( )( )ctxikeBeBu iksxiksx −+= −
1213 exp22  (75) 

the associated surface strains are given by 
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 03,333
== uxxε  (76c) 

The surface shear strain 
32xxε  is zero, because the corresponding shear stress 

32 xxτ vanishes at the  
half-space surface. 
 

 
Fig. 16 Artificial earthquake synthetic acceleration and surface strain accelerogram: LA001 

2. Estimation of Synthetic Strain 

 From the preceding analysis, it is seen that the surface strains associated with strong earthquake 
motions are related to the translational components of body Rayleigh and Love waves in the half-space.  
The three non-vanishing components of surface strains, 

1xε  (Equation (68)), 
2xε  (Equation (73)) and 

31xxε  (Equation (76a)), have amplitudes, which all increase linearly with wave number k  and hence with 
frequency ω . 



298 Empirical Scaling of Strong Earthquake Ground Motion 
 – Part III: Synthetic Strong Motion 

 

 

 From Equation (2), the −m th mode of acceleration of horizontal motion 1u&&  for Rayleigh waves has 
Fourier transform, within frequency band ,n nω ω± ∆  as 
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 ( ) ( )*
nm nmω ω− =A A  

where, ( )*
nm ωA  is the complex conjugate of ( )ωnmA . The corresponding Fourier transform of the  

in-plane displacement of horizontal motion, ,1u  denoted by ( ),ωnmU  is then 
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Similar expressions can be written for the Fourier transform of the anti-plane displacement of horizontal 
motion, ,3u  for Love waves. From this, on using Equations (68), (73) and (76a), the Fourier transforms 

of the −m th mode of strains ( ) ( ) ( )ωεωεωε nmnmnm ,13,22,11 and,  (respectively for ( )
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where, ( )nmnm CC ω=  is the phase velocity of the −m th mode of Rayleigh waves in Equations (79a) 
and (79b), and ( )ωnmU  is the transform of displacement ( )tu1 . In Equation (79c), ( )nmnm CC ω=  is for 
the Love waves, with ( )ωnmU  being the transform of the corresponding anti-plane displacement ( )tu3 . 
Those are assumed to be constant within the frequency band .n nω ω± ∆  

 As in the generation of torsion and rocking time-histories, the total contribution from all the modes of 
surface and body waves in the same frequency band takes the form  
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and nα  is the scaling factor, as given by Equation (10). For 1== ji  and 2== ji ,  the contribution of 
surface waves comes only from the Rayleigh waves, and for ,3,1 == ji  the contribution is from the 
Love waves. The total Fourier transform of the strain time-history is then 

 ( ) ( )∑
=

Ε=Ε
N

n
nijij

1
, ωω  (82) 

where, N  is the total number of frequency bands used. 
 
 

 
Fig. 17 Artificial earthquake synthetic acceleration and surface strain accelerogram: LA002 
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Fig. 18 Artificial earthquake synthetic acceleration and surface strain accelerogram: LA003 

3. Examples of Synthetic Strains 

 We have earlier presented examples for the local site geology and dispersion of the surface waves for 
a site in Westmoreland, Imperial Valley, California. To illustrate “large” strains, we modify this “site” 
(see Table 2) to have a 50 m layer with shear wave velocity of 50 m/s at the top, and a second 130 m layer 
with shear wave velocity of 300 m/s (Table 3). For depths greater than 180 m, we adopt the material 
properties, as in Table 2. For long period motions, the dispersion curves for this modified model would be 
identical to those in Figures 1 and 2. For short periods and layer properties as in Table 3, the phase and 
group velocities would be reduced from 0.98 km/s to 0.05 km/s. The modified site will exemplify “soft” 
soil and geologic conditions in which, as implied by Equations (80) and (81), the strains can be “large”.  
We also consider large amplitudes of strong shaking, in the immediate vicinity of the epicenter. Figure 16 
presents an example computed for the site intensity, ,XIIMMI =  source at epicentral distance of 5 km 
for 0=s  (site on alluvium) and 2=Ls  (deep soil site), and for p  = 0.5, where p  is the probability of 
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exceedance for the derived spectrum (Trifunac, 1989a, 1989b). These conditions result in peak 
accelerations (37.3 m/s2 for radial, 31.9 m/s2 for transverse, and 18.5 m/s2 for vertical ground motions) 
larger than what has been recorded so far, and thus illustrate extreme response amplitudes and the 
associated strains. The resulting peak strains are, respectively, 0.03, 0.01 and 0.02. Because the strains are 
proportional to ,ku  the overall appearance of strain versus time is similar to that of the ground motion 
velocity. Figure 17 shows another example for M  = 7.5, 1.5 km epicentral distance, ,0=s  ,2=Ls  and 

.9.0=p  The radial, transverse and vertical peak accelerations, respectively equal to 19.0 m/s2, 17.86 
m/s2, and 12.9 m/s2, lead to the corresponding peak strains equal to 0.017, 0.011, and 0.009. These 
examples have been chosen to illustrate the extreme cases. Considering the local geologic cross-section, 
as given in Table 2, M = 6.5, ,0=s  ,2=Ls  and 5.0=p  would result in peak accelerations equal to 
4.59 m/s2, 4.48  m/s2, and 2.91 m/s2, for example. Then, the associated strains would equal only to 3.7 x 
10-3, 2.6 x 10-3, and 2.0 x 10-3, for 

1 1 1 3 2 2
, and ,x x x x x xε ε ε  respectively (Figure 18). 

Table 3: Same as Table 2 Except for a Modification in the Top 180 m of Layer 1, to Illustrate the 
Effects for a “Soft” Site 

Layer 
ih (km) α (km/s) 

iβ  (km/s) iρ  (g/cm3) 

1a 
1b 
2 
3 
4 
5 
6 

0.05 
0.13 
0.55 
0.98 
1.19 
2.68 
∞ 

0.105 
0.60 
1.96 
2.71 
3.76 
4.69 
6.40 

0.05 
0.30 
1.13 
1.57 
2.17 
2.71 
3.70 

1.20 
1.28 
1.36 
1.59 
1.91 
2.19 
2.71 

 
 The above examples illustrate the possible strain amplitudes implied by the linear theory, but those 
cannot be taken to be “average” or “typical” estimates, for magnitudes, site intensities, or local conditions 
considered. In general, the strain amplitudes will increase with overall increase in the strong motion 
amplitudes, and with decrease of shear wave velocities of soil and sedimentary layers near the ground 
surface. Time-dependence of strain components near the ground surface is roughly proportional to that of 
the corresponding components of ground velocity, and thus, the peak strains will also increase with the 
peak ground velocity. 
 It is seen that by using the linear theory of wave propagation, the strain amplitudes can be evaluated 
exactly in three-dimensions. When the local geologic conditions are too complex to model the near-
surface motions by the equivalent parallel layer models, the method presented here can be modified to 
give again the exact representation of near-surface strains, but in terms of other than the rectangular 
Cartesian coordinate system (Moeen-Vaziri and Trifunac, 1988a, 1988b; Lee and Wu, 1994a, 1994b; 
Manoogian and Lee, 1996). 
 Many engineering inferences on linear and non-linear strains in rock and in soil, during the passage of 
seismic waves, are limited by the assumption that the incident energy arrives vertically in a one-
dimensional wave propagation model. The method presented here should help in the development of 
input motions and input strains for modeling three-dimensional non-linear responses of soft and  water-
saturated soils, and for full and direct estimation of strains in the linear response range. 

CURVOGRAMS OF EARTHQUAKE GROUND MOTION 

 Analyses of the effects of strong earthquake shaking on engineered structures are performed for 
dynamic forces that result from strong motion accelerations. However, pseudo-static deformations that 
result from wave passage under long structures may also contribute forces, which, in certain cases, may 
be larger than the dynamic forces (Kojić et al., 1988; Todorovska and Lee, 1989; Todorovska and 
Trifunac, 1989, 1990a, 1990b). Such loadings and the resulting response of structures depend on the 
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nature of ground waves, inhomogeneities in the soil, sediments or rock under the foundation, the surface 
topography near structure, and on the nature of the structure-foundation system. 
 

 
Fig. 19  Curvature 

 For ground waves that are long relative to the plan dimensions of a structure, it is possible to describe 
the strong ground motion in terms of the translational and rotational components of ground motion (Gupta 
and Trifunac, 1987, 1988; Lee and Trifunac, 1985, 1987; Trifunac, 1982). For short ground waves with 
wave lengths comparable to or shorter than the structural dimensions, the details of the wave passage 
analysis must be worked out to obtain realistic response analyses (Kojić et al., 1988; Todorovska and 
Trifunac, 1990b). In this work, we consider an intermediate case in which the ground waves have wave 
lengths at least two-three times longer than the structural dimensions, and are long enough to approximate 
the resulting pseudo-static deformations of the foundation system during the wave passage by an 
equivalent segment of circular arc. This is illustrated in Figure 19, which shows the plan view of a 
rectangular foundation deformed into bending by the passing ground wave. Since the significance of such 
a deformation for structural response can be evaluated with sufficient accuracy, if the radius of curvature 
of ground deformation is known, in this section, we present a method for evaluating the curvograms 
(plots of curvature versus time) on ground surface. Trifunac (1990) extended the method for generation of 
synthetic translational (Trifunac, 1971b; Wong and Trifunac, 1978, 1979), rocking (Lee and Trifunac, 
1987), torsional (Lee and Trifunac, 1985) accelerograms, and strain (Lee, 1990) time histories, to obtain 
curvograms of strong motion. 
 Let 321 and, xxx be the radial, vertical and transverse coordinates. Let c  be the apparent phase 
velocity of wave motion in the radial ( )1x  direction. Let 321 and, uuu be the displacements in the 

321 and, xxx directions. Then, the curvature in the vertical plane, ( ),2 tk  is 

 ( )
( )[ ] 2

1

2
2

232
12

2
12

2

2
1 x

u

xu

xutk
∂
∂

≈
∂∂+

∂∂
=  (83) 

For Rayleigh waves propagating along the ground surface, we have 

 ( ) ( )ctxikezUu −= 1
22  (84) 
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Likewise, we have 
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 ( ) )radial(01 ≡tk  (86c) 
as discussed in Trifunac (1990). 

1. Estimation of Synthetic Curvograms 

 From the preceding analysis, it is seen that the curvatures of motion are related to the accelerations, 
( )tu2&&  or ( )tu3&& , corresponding to the translational components of motion. As before (by using Equation 

(2)), we start with the −m th mode of surface waves within the frequency band ,n nω ω± ∆  associated 
with the acceleration of vertical motion, ( )tu2&& , whose Fourier transform  is given by 

 
( )

( )





 ∆≤−

=
+−−

otherwise0
2

*

nn
iti

nm
nm

nnmneA ωωωπ
ω

φωω

A
 (87) 

and 

 ( ) ( )*
nm nmω ω− =A A  (88) 

The inverse transform of Equation (83) is (from Equation (3b)) 
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This represents the contribution of the −m th mode of surface waves to acceleration in the frequency 
band nn ωω ∆± . The corresponding component of curvature is 
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where, as before, ( )nmnm CC ω=  is the phase velocity of the −m th mode of surface waves. The total 
contributions, ( )tan  and ( )tkn , from all modes of surface and body waves in the frequency band 

nn ωω ∆± , to acceleration and curvature are, respectively, 
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Recalling that nα  is the scaling factor, as given in Equation (10), the time histories of acceleration and 
curvature are given by 
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with 2=i  for the vertical curvature ( )( )tk2 , and 3=i  for the transverse curvature ( )( )tk3 . It may be 
recalled that ( ) .01 ≡tk  

 By using the corresponding Rayleigh wave phase velocities ( )nmnm CC ω=  for vertical curvature, 
and Love wave phase velocities for transverse curvature, their time histories can be computed. 
 

 
Fig. 20 Artificial earthquake synthetic acceleration and curvature accelerogram: LA001 
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Fig. 21 Artificial earthquake synthetic acceleration and curvature accelerogram: LA002 

3.  Examples of Synthetic Curvograms 

 To illustrate the appearance of synthetic curvograms, we consider again the site at Westmoreland in 
Imperial Valley, California. The local geology and the associated dispersion curves for this site have been 
used in the preceding sections dealing with the translational, rocking, and torsional accelerograms. For 
continuity and comparison with the earlier analyses, we consider this site again (Tables 2 and 3). From 
Equations (86a) and (86b), it is seen that the largest curvature (smallest radius) will be associated with 
large peak accelerations and with small ,c  i.e., with “soft” layers near the surface. Thus, in the first 
example, we consider the site intensity XIIMMI =  for a source at distance 5=R  km. We also assume 
that the site is on sediments ( )0=s  and on deep soil ( )2=Ls  (Trifunac, 1989a, 1989b), and compute 
empirical Fourier spectrum amplitudes, assuming 50% probability of exceedance ( )5.0=p . To model 

0=s  and 2=Ls  site conditions, we modify the top layer (in Table 2) to consist of two layers of 
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thickness 50 m and 130 m, and with shear wave velocities of 50 and 300 m/s, respectively (Table 3).  For 
depths greater than 180 m, we assume the values given in Table 2. Figure 20 shows the resulting radial, 
transverse, and vertical accelerograms, and the associated transverse and vertical curvograms. The 
smallest radii of curvature corresponding to 14

max,2 cm1054.0 −−×=k  and 14
max,3 cm1089.0 −−×=k  are 

2,minρ  = 185 m and 112min,3 =ρ  m, respectively.  

 Figure 21 illustrates similar results, but for scaling in terms of magnitude (Trifunac, 1989a). For 
,9.0and,km5.1,5.7 === pRM  the peak curvatures are 14

max,2 cm1046.0 −−×=k  and 3,maxk  = 
4 10.68 10 cm ,− −×  and the corresponding radii of curvature are 217min,2 =ρ  m and 147min,3 =ρ  m. 

CONCLUSIONS 

 A comprehensive method for synthesizing realistic strong motion accelerograms (translations and 
rotations), strains and curvatures for use in engineering design has been presented. The advantages of this 
method are that the results are consistent with all known characteristics of the recorded strong shaking. In 
particular, these accelerograms have non-stationary characteristics in time, which are derived from the 
known dispersive properties of earthquake waves guided through shallow low-velocity layers of the 
earth's crust. These dispersive characteristics can be introduced directly as an input into the computer 
program, and thus can portray directly the geologic environment of each specific site. Other scaling 
functionals, required for the synthesis of artificial accelerograms presented here, are: (i) the Fourier 
amplitude spectrum, and (ii) the frequency-dependent duration of strong shaking. These two functionals 
can be estimated via the empirical scaling relations developed either in terms of earthquake magnitude or 
in terms of Modified Mercalli Intensity. 
 It has been shown how the rocking and torsional accelerograms can be generated from the synthetic 
translational accelerograms, by applying the straightforward exact physical principles of elastic wave 
propagation. The rotational accelerograms obtained in this way have realistic physical properties, and 
should  resemble actual rotational ground motions, as long as the synthetic translational accelerograms 
from which those are derived, have such corresponding physical properties.    
 Using  the  linear  theory  of wave  propagation,  the  strain  amplitudes  can be evaluated exactly in 
three-dimensions. When local geologic conditions are too complex to model near-surface motions by the 
equivalent parallel layer models, the method presented here can be modified to give again the exact 
representation of near-surface translations, rotations, and strains (e.g., see Moeen-Vaziri and Trifunac 
(1988a, 1988b)). 
 The above examples illustrate the strain amplitudes implied by the linear theory, and cannot be taken 
to be “average” or “typical” estimates, for magnitudes, site intensities, or local conditions considered. In 
general, the strain amplitudes will increase with an overall increase in the strong motion amplitudes, and 
with a decrease in shear wave velocities of soil and sedimentary layers near the ground surface. Time- 
dependence of strain components near the ground surface is roughly proportional to the corresponding 
components of ground velocity, and thus, peak strains will also increase with peak ground velocity. 
 Finally, the above examples show that the radii of curvature in the range of one to several hundred 
meters may occur for very large accelerations (1-3 g), near epicenter, and when the local soil and geologic 
conditions are characterized by very low wave velocities (e.g., 50 m/s). Such conditions correspond only 
to the instances of exciting very large amplitudes of waves with short wave lengths, and can be expected 
to occur for soft soil and geologic site conditions near epicenters of earthquakes with high stress drop. 
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