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ABSTRACT

The Airy stress function for a long tensile fault of arbitrary dip and finite width buried in a
homogeneous, isotropic, perfectly clastic half-space is obtained. This Airy stress function is used to
derive closed-form analytical expressions for the displacements and stresses at an arbitrary point of the
half-space caused by a long vertical tensile fault of finite width. The variation of the displacement and
stress fields with distance from the fault and with depth is studied numerically. Contour maps showing the
displacement and stress fields around a long vertical tensile fault in a half-space are also presented.
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INTRODUCTION

Since dislocation theory was first introduced in the field of seismology by Steketee (1958}, numerous
theoretical formulations describing the deformation of an isotropic, homogencous, semi-infinite medium
have been developed (Okada, 1992). In contrast to the progress that has been made in the modelling of the
deformation fields due to a shear fault, the studies related to a tensile fault are scarce. The main reason for
this is the importance that has been attached to modecl the static ficld changes associated with earthquake
occurrence. Tensile fault representation also has several very important geophysical applications, such as
modelling of the deformation fields due to a dyke injection in the volcanic region, mine collapse and
fluid-driven cracks. Recent studies have shown that a large number of earthquake sources cannot be
represented by the double-couple source mechanism which models a shear fault. According to Sipkin
(1986}, the non-double-couple mechanism might be due to tensile failure under high fluid pressure.

Maruyama (1964) obtamed surface displacements due to vertical and horizontal rectangular tensile
faults in a semi-infinite Poisson solid. Davis (1983) modelled the crustal deformation associated with
hydrofracture by a dipping rectangular tensile faunlt beneath the surface of an elastic half-space. Yang and
Davis (1986) obtained closed analytical expressions for the displacements, strains and stresses due to a
rectangular inclined tensile fanit in an clastic half-space.

Singh and Garg (1986) obtained integral expressions for the Airy stress function in an unbounded
medium due to various two-dimensional sources. Beginning with these results, Rant et al. (1991) obtained
closed-form analytical expressions for the Airy stress function, and displacements and stresses in a
homogeneous, isotropic, perfectly elastic half-space due to an arbitrary line source. By integration over
the width of the fault, Rani and Singh (1992) obtained the expressions for the Airy stress function, and
displacements and stresses in a uniform half-space due to a long dip-slip fault of finite width.

The aim of the present paper is to study the two-dimensional deformation of a uniform half-space
caused by a long tensile fault of finite width. The corresponding problem of a long dip-slip fault has been
discussed by Freund and Bamett (1976) and Rani and Singh (1992). Although two-dimensional
approximation is an oversimplification of the physical system, it is very useful in gaining insight into the
relationship among various fault parameters and in improving understanding of the deformation (see, e.g.,
Savage, 1987). Moreover, there are faults which are sufficiently long and shallow that the two-
dimensional approximation may be used. The two-dimensional solution obtained here is useful because of
its considerable simplicity as compared to the three-dimensional solution given by Yang and Davis
(1986). We begin with the closed-form expression for the Airy stress function for an arbitrary line source
in a uniform half-space givea by Rani et al. (1991). Analytic integration over the width of the fault yiclds
the Airy stress function for a long tensile fault of arbitrary dip and finite width. The expressions for the
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displacements and stresses at any point of the half-space caused by a long vertical tensile fault follow
immediately.

THEORY

Let the Cartesian coordinates be denoted by (x,, X,, x,) with the x,-axis vertically downwards.
Consider a two-dimensional approximation in which the displacement components u,, #, and u, are
independent of x, so that &/dx, = 0. Under this assumption, the plane strain problem (2, =0)can be
solved in terms of the Airy stress function U/ such that

. _dU _d'U . = ot )
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where 7, are the componcnts of stress. Following Rani et al. (1991), the Airy stress function for an

arbitrary line source parallel to the x, -axis acting at the point (0, 0, h) in a uniform hﬁlf-space x, 20is
given by

2
U=1I,tan"| —2— |+ M, %af%s hl—P log R +Q, g—h)-
x; ~ A R? R?

I DY 2x,x, | M~ ;vc2 4k, (x, + h)

ol e s
- 2x:(x3+h) O (2 ;2 4}”‘3(’:3'*'")2

+P ngS—“‘“‘"‘S.z_ +S_2 (x, -h +2hx3)—"—"§"i"-_

where R? =x2 +(x, -h)’, §*=x} +(x, +hY, x,=h

In Equation (2), L,, M,, F,, O, are the source coefficients and L‘, M™, P", O are the values of
these coefficients valid for X, < h. Singh and Garg (1986) and Singh and Rani (1991) have given these

source coefficients for various seismic sources, For ready reference the relevant source coefficients are
given in the Appendix.

Let U, denote the Airy stress function at an arbitrary point P(x,, x, ) for a unit concentrated force

acting at the point Q(y,, ;) in the x, -direction. Then, the Airy stress function for a long fault can be
expressed as a line integral (Manryama).

U= [Au,U,n,ds ©)
L

where the summation convention has been used (the suffixes can assume the values 2 and 3 only). In
Equation (3), Au, is the displacement dislocation vector; n,is the unit normal to *he fault section
L, A, u arc the Lame constants; and

0 0 o
U,=U; =29, B)TUt +F(§Uj "'EU;J
k ¥ i
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Fig. 1 Geometry of a long tensile fault of width L =§, -5, (the Cartesian coordinates of a
point on the fault are (y,,y,) and its polar coordinates (s, 5), where & is
the dip angle and 5, <5<s,)

For a tensile fault, vector Aw, is parallel to the normal n; to the fault. Therefore, if bis the
magnitude of Au; and & is the dip angle (Figure 1), we have '

Au,=-bsin g, Au,=bcosd, 4
n, =—sind, n, =cosd )

Using Equations (4) and (5) in Equation (3), we get the following expression for the Airy stress
function for a line source

U = bds[U,, 5in*6 ~ U, sin 28 + U, cos? 6 | ®)

where dsis the width of the line fault. Therefore, the Airy stress function for a long tensile fauit of
arbitrary dip can be expressed as a linear combination of '

@ bdsU,,, the Airy stross function for a vertical tensile fault {5 = 90° ) with dislocation in the x, -
direction;

(i) ddsU,,,the Airy stress function for a horizontal tensile fault (5 = 0°) with dislocation in the
X, ~direction; and

(iii) bdsU ,, the Airy stress function for a vertical dip-slip fault.

Using the values of the source coefficients L,, M,, P,, Q, given in the Appendix, Equations (2)

and (6) yield the Airy stress function due to a long tensile fault of arbitrary dip located at the point
(yz, y3) in the form
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where o =Poisson’s ratio, 1= rigidity,

R =(x,-3,) +(x-y), §*= (e, =y ) +(x; + s y
From Figure 1, we put y, = scosd, y, =ssind into Equation (7) and integrate over s between
the limits (s1 , s,). We thus obtain the following expression for the Airy stress function for a long tensile
fault of finite width L = 5, —s;
U= —-‘l—lb—[(x2 cosd + x, sin & — s)log(R/S)+ 2x, sin 5(x2 + x§X1/Sz)
27(1-0)
52
+2x, sin 8(x, sin § — x, coss )(S/S : )] | (8)
5,
where now

R? = (x, —scos8)* +(x, - ssin8)’,

8% =(x, -5cos8) +(x, +ssin &),

O, = £6:)- 1)

From Equations (1) and (8), we get the following expressions for stress components due to a vertical
tonsile fault (5 =90°):

T, = 27r(1 )[(xa—sXIIRz) (3x3+sX1/S )+2x2(x —-s)(l/R‘)
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Corresponding to siresses given by Equations (9) to (11), the displacements are found to be
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Sz
NUMERICAL RESULTS

We wish to study the two-dimensional displacement and stress fields around a long vertical tensile
fault of finite width L in a uniform half-space. We, therefore, put s, =0, s, =L, and assume
o = 0.25. For numerical calculations, we define the following dimensionless quantities

al
Y=x,/L, Z=x,/L, D-bu,,P.—Ery (14)
Thus, Y is the dimensionless distance from the fault trace; Z is the dimensionless depth; D, and D, are
the dimensionless displacements and F,,, P,, and P,, are the dimensionless stresses.
From Equations (9} to (14), we obtain
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where

A =Y*+(Z-1), B* =Y +(Z+1)

Figure 2 shows the variation of the dimensionless normal stress P,, with the dimensionless distance
from the fault at x, =0, L/2,3L/2. P, is zeroat x, = Ofor x, = 0; it is non-zero for other values of
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x,. Normal stress F,, is negative (compressive stress) at x, =0 for O<x, <L;forx, > L, itis
positive (tensile stress). F,, tends to zero as x,tends to infinity. Moreover, as the depth x, increases,
P,, converges to zero faster.

Figure 3 shows the variation of the dimensionless normal and shear stresses with depth at three
locations: x, = L/10, L/2, L. The variation of P,, is smooth at x, = L, but for x, =L/10, P,
varies strongly with depth. We notice that near the fault, the variation of P,; with depth is noteworthy;
however, as we move away from the fault, this variation becomes smooth.

Figure 4(a) shows the variation of the dimensionless horizontal displacement D, with the
dimensionless distance from the fault for x, =0, L/2, 3L/2. From Equation (18), we note that at
x, =0, D, =0 for x, > L and has the value #/2 =1.571 for x, < L. Figure 4(b) shows the variation
of the vertical displacement D; with distance from the fault for x; =0, L/2, 3L/2. The pattem of
variation of D, is simifar for the three values of x; considered. Figure 5 (a, b) shows the variation of the
displacements with depth for x, = L/10, L/2, L.

The contour maps in vertical planes perpendicular to the length of the fault for the stresses
P, and P,, are given in Figures 6(a, b) and for the displacement components D, and D, in Figures 7
(a, b). In these maps, the horizontal axis is the distance from the fault and the vertical axis is the depth,
both measured in the units of the fault width . The contour values for the isolines are indicated. The

stresses are measured in the units of ub/zl and the displacements in the units of /7. These maps
exhibit the variation of the elastic field around the fault.
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Fig. 4 Variation of the dimensionless (a) horizontal displacement D, , (b) vertical displacement
D, with distance from the fault
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Fig. 6 Contour maps for dimensionless (a) normal stress P,,, (b) shearing stress P, . (continuous

lines indicate positive values; broken lines indicate negative values; the fault trace is shown by
thick line)
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APPENDIX
1. Vertical dip-slip fault

1bds
L,=P = =0, M =+ __
0 1] QD 1] 271'(1 _ O')
2. Vertical tensile fault
L =M '—'O, P = - =t
’ ° ° Qo 27:(] —cr)
3. Horizontal tensile fault
ubds
L,=M, =0, P =0 =——"_
0 0 0 QO 2”(1 _ O')
The upper sign is for x; > &, the lower sign is for X, <h, bis the magnitude of the displacement
dislocation, and ds is the width of the line fault.



