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ABSTRACT

The weighted residual method was applied to the problem of scattering and diffraction of plane elastic
waves, in the form of SH waves, by a tunnel of arbitrary shape located below the surface of a two-
dimensional half-space. In order to demonstrate the versatility of the method, it was applied to shallow
and deep circular, elliptical, square, and rotated square tunnels with walls that were harder and denser
than the surrounding medium. Results obtained were quite similar to those obtained using available
closed form solutions. It was shown that significant ground motion amplifications, with respect to the
amplitude of incident waves, occurred on the ground surface in the vicimty of the tunnel. Amplifications
were dependent upon the shape and depth of the tunnel and the frequency and angle of incidence of
incoming SH-waves. Amplification profiles for the lower frequency incident waves were simple near the
tunnel on the surface of the half-space with peak amplifications that did not vary much from 2, the value
expected on the surface of a smooth half-space in the absence of a sub-surface discontinuity. As the
frequency of the incident waves is increase”. the amplification profiles near the tunnel became more
complicated with peak values exceeding 7 for rotated square shaped tunnels located near the ground
surface.
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INTRODUCTION

One of the many areas of earthquake engineering and seismological research has been the effect of
local site conditions on ground motion. Among the local site topographics of interest are tunnels located
below the- ground surface, In this paper, the problem of the scattering and diffraction of incident SH
waves by an arbitrarily shaped tunnel below the surface of a two-dimensional half-space is studied. A
numerical solution for the problem is appropriate as the boundary between the material of the
discontinuity and the half-space may be non-circular or irregular, making it difficult to describe the
solution in closed form using the cylindrical coordinate system employed. The method of weighted
residuals 1s implemented in order to study possible amplifications and de-amplifications of displacements -
on the surface of the half-space above and near a sub-surface tunnel.

Currently, with respect to sub-surface discontinuities, closed form solutions exist for a cavity in an
infinite space (Pao and Mow, 1973), a circular cavity in a half-space {Lee, 1977), an elastic tunnel and
inclusion in a half-space (Lee and Trifunac, 1979), and a circular cavity in a wedge shaped half-space
(Lee and Sherif, 1996). With respect to the scattering of SH-waves by surface discontinuitics, closed
form solutions exist for a semi-cylindrical valley (Trifunac, 1971), a semi-cylindrical canyon (Trifunac,
1973), a semi-elliptical valley (Wong and Trifunac, 1974a), a semi-cylindrical canyon (Wong and
Trifunac, 1974b), a circular arc hill (Yuan and Men, 1992), a cylindrical canyon of circular arc cross-
section (Yuan and Liao, 1994), a cylindrical alluvial valley of circular arc cross-section {Yuan and Liao,
1995), and a circular alluvial valley in a wedge shaped medium (Sherif and Lee, 1997). Other analytic
solutions have been developed by Gregory (1967), Gregory (1970), Datta (1978), Dravinski (1982, 1983).
Dravinski (1983) used a boundary integral method to determine the effects of elastic inclusions of
arbitrary shape on incident elastic waves in a half-space. A closed form solution for the scattering and
diffraction of P, SV, and SH-waves by a three-dimensional alluvial valley has also been developed (Lee,
1984). A closed form solution for the three-dimensional diffraction of elastic waves by a spherical cavity
in an elastic half-space was developed by Lee (1988). Datta and El-Akily (1978) and Datta and Shah
(1982) used the method of matched wave expansions to address the probiem of a cavity buried in elastic
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half-space. Datta and Shah (1982), Shah et al. (1982) and Wong et al. (1985) used a hybrid approach
combining the finite element method for the medium immediately surrounding the cavity with a wave
function expansion or a Green’s function representation for the remaining medium. Luco and de Barros
(1994a) used an indirect boundary intcgral approach based on a two dimensional Green’s function to
determine the seismic response in the vicinity of a cylindrical cavity. Franssens and Lagasse (1984) used
a finite efement approach to determine the scattering of elastic waves by a cylindrical obstacte embedded
in a multi-layered medium. Luco and de Barros (1994b) and de Barros and Luco (1994) used a hybrid
approach consisting of an indirect boundary integral based on a moving Green’s function for the soil
medium and Donnel shell theory for the tunnel wall to determine the seismic response of a cylindrical
shell embedded in a half-space. A large body of work has been devoted to the effects of earthquake
waves on buried tunnels, pipelines, and other underground structures. A review of this work and
bibliography may be found in Luco and de Barros (1994a). Sanchez-Sesma (1987) provides a general
review of methods available for the study of site effects on strong ground motion.

This paper presents the application of the weighted residual approach to the scattering and diffraction
of incident SH waves by an arbitrarily shaped tunnel below the surface of the half-space. This approach
is used to evaluate boundary conditions and is a special case of the method of moments (Harrington;
1967, 1968). This approach has been applied to electromagnetic wave fields (Harrington, 1967}, acoustic
radiation ficlds (Fenlon, 1969), scattering and diffraction of SH-waves in a half-space by elastic
inclusions, cavities, tunnels, canyons, canals, and alluvial valleys of arbitrary shape (Manoogian, 1992;
Manoogian, 1995, Manoogian and Lee, 1995; Lee and Manoogian, 1995; Manoogian, 1996; Manoogian
and Lee, 1996; Manoogian, 1998a; Manoogian, 1598b). Manoogian (1998b) is a shorter version of the
article presented here. Key differences are a more comprehensive literature review, a demonstration that
the weighted residual method results in the equations of the closed form solution for the special case of a
circular tunnel in which orthogonality may be assumed, a better set of figures, the additional case of a
rotated square tunnel, some further discussion, and some minor additions elsewhere. The method of
weighted residuals was used for general elastic waves scattered by canyons of irregular shape (Lee and
Wu, 1994a, 1994b) and the scattering of SH-waves by cavities of arbitrary shape in a waveguide (Hayir
and Bakyrtap, 1999).  Use of this method results in a matrix equation from which the unknown
cocfficients are determined and used to develop a series solution for the scattering, diffraction, and
transmisston of waves by the tunnel. This paper presents an application of the weighted residual
approach used to determine the scattering and diffraction of plane waves by a tunnel of arbitrary shape
within an elastic half-space. Boundary conditions for the tunnel differ significantly from those of the
cavity and elastic inclusion. The character of amplifications on the ground above tunnels of various
shapes are studied. The method is applied to the problem of a tunnel of circular shape in an elastic half-
space and compared to closed form solutions in order to verify the approach. Applications to problems of
tunnels of other shapes in an elastic haif-space are used to show the versatility of the approach. The
advantage of the method of weighted residuals addressed in this article with respect to closed form
solutions is its versatility. A closed form tunnel solution is limited to a tunnel of specific shape. Once the
weighted residual solution is formulated for an arbitrarily shaped tunnel, it may be used for tunnels of
various shapes without reformulating the solution.
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MODEL, EXCITATION, AND SOLUTION

The cross section of the model to be studied is shown in Figure 1. It represents a circular tunnel of
arbitrary shape situated below the surface of the half-space. Although the approach is derived using a
circular tunnel with clastic walls of any thickness f, 0 <7 < a, the resulting equations may be used for a

tunnel of any size or shape. Variations from the circular tunnel shape are handled using normal and
tangent angles of the tunnel surfaces with respect to the r-axis. The origin is at the center of the tunnel.
The half-space is assumed to consist of an clastic, homogencous, isotropic, material with rigidity x and

shear wave velocity ¢, . The material in the tunnel wall is assumed to consist of an elastic, homogeneous
isotropic material with rigidity 4, and shear wave velocity c,,. Coordinate systems are shown in Figure
1. The z-axis may be assumed to be perpendicular to the plane defined by these coordinate systems.

Initially, define the excitation, w*, as shown below:
w' = exp(-iot)exp(ikrcos(8 -8 )) m

This corresponds to a wave with incidence angle &, amplitude of 1, excitation frequency @, and
wavelength A =2z /k, where k =w/cy, c, and c are the compornents of the phase velocity in the

direction of the coordinate axes. In order to develop a soluuon to the problem, use the method of imaging
(Lee, 1977; Lee and Trifunac, 1979). Consider an unbounded medium with an identical tunnel located

aty=2D. Consider two additional coortinate systems defined within the tunnel at O, with

(x,y)=(0,2D); a Cartesian coordinate system (x,,) and a polar coordinate system (r, 3 9,) as shown
in Figure 2.
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Assume another incident plane SH-wave as defined below:

w{" = exp(-iax)expfikr, cos(6, - 5 )) | @)

Omit exp(~iax)from latter expressions. Transform w{ into the original coordinate system and
combine with w' as shown below:

W+ wl!)= exp(ikrcos( 8+ 5 )) + exp(i2kDcos ) exp(-ikrcos(6-5)) €)

Due-tothepmcnceoftheumneLﬂmcwavesarescaueredanddif&aaedwithintheha]f—spmand
transmitted into the tunnel walls. Practically, a thin tunnel wall would be transparent to longer incident
SH-waves. Within the half-space, the result is a sum of the mcident, reflected; scattered, and diffracted
waves. Within the tunnel, the result consists of the transmitted waves. These must satisfy the wave
equation as defined below:

Fw Iaw+ 1@w 13w

—_— 4
8 rar 098 o or .()

Assume waves scattered by the tunrel and its image in the form shown below:

) = 3 HO(kr)d, cosné + B, sinnd) n=012,. )
n=l()

W = 3 HO(rd, cosné, + B, sinnb,) n=0,2,.. ©)
n=0

Equation (6) is transformed into the (r,8) coordinate system using the Graf addition theorem

(Abramowitz and Stcgun, 1964) as given in Lec and Manoogian (1995). Rewritc w{*) into the following
form

w =, (r,8) gz J ()4, cosm8 + B, sin mg) )

The transmitted wave, inside the tunnel wall, is defined as shown below:
W= LI CRHD (k) + CRHR (k)] cosn§ + [ DY HE (k1) + DF HY (k,1)]sinn6 ] ®
=0
n=012..

Define k, =@ /c,, as the wave number in the tunnel wall. Boundary conditions of interest include

the stress free boundary conditions at the free surface of the half-space, displacement and stress continuity
conditions at the boundary between the half-space and the tunnel wall, and a stress free condition on the
inside face of the wall of the tunnel must be used. The stress free condition at the surface of the half-
space is shown below:

ow
T3 = b= yup = 0 ©

%

Contimity conditions at the interface between the half-space and the tunnel are shown below:
w+wld 4y 4 wi) = (10)
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o+ ol + o+ ol = o an

The stress free boundary condition on the inside wall of the tunnel is shown below.
=0 (12)

The stress free condition at the surface of the half-space has been met for W), w{, wir), w* by the
method of images. The displacement continuity condition, Equation (10), is satisfied by substituting
Equations (3), (3), (7), and (8). Assemble (3), (5), (7), and (8) into Equation (11) in order to satisfy the
stress boundary condition. Assemble (8) into (12) in order to satisfy the stress free boundary condition on
the rim of the tunnel. Assemble the resulting equations into the weighted residual forms shown below:

0= Walr(8),0)(W"+wf + W+ - )d8  form=0,12,... (13)
O =[S Walr(8),0)(c"+ 0+ 7940 _)d8  form=0,12... 14)
0= Wn(r(0),6):%d6 form=0,1,2,.. (15)

Define W, (r(9),0) as the weight function and 7#7) 20} and ™ as stresses due to the
incident and reflected waves, scattered waves, and transmitted waves. The weight functions used
in the computations were cosmé& and sinm@. The number of terms, n and m, used in each
solution was based on experimentation for each incident wave frequency, 7, for the shallow
circular tunnel computations. Sufficient convergence was achieved using a range of
nm=0123for n=025and n,m=012,.. 12 forp=2. Using the shallow square tunnel
solutions for the frequency 7=2, & =0°as the worst case example, the surface displacement at
xfa=0 was 3.374712, 3.474715, and 3.483500 for maximum values of »and m=11,12 and 13.

Tunnels of other shapes as well as deeper square tunnels had smaller differences in displacements as the
values of 7 and m were varied. Weight functions using Bessel and Hankel functions were also tested.
Solutions resulting from the use of Hankel functions were successfiul but resulted in very large

coeflicients for higher values of 1 and m in the coefficient matrix, [C,_]. It was found that the use of
Bessel functions resulted in very small terms for large # and m and in the possibility of an ill conditioned
coefficient matrix. The use of cosm@and sin m8 as weight functions was sufficient. The weighted
residual forms are assembled into matrix form [C,,, Jir, }= {8, and solved using a Gaussian elimination
procedure for complex coefficients, Denote the matrix [C,_ ] as the matrix of coefficients from
Equations (13), (14), and (15). It is a square matrix. Vectors {z, }and {6, } consist of the unknown
constants and coefficients from incident and reflected wave weighted residual expressions. Constants
4,,B,, C,C, D, and D arc determined and substituted into Equations (5), (7), and (8). The

transmitted wave amplitudes axe defined by Equation (8). The scattered wave amplitudes are added to
Equation (3) to obtain amplitudes in the half-space.

SPECIAL CASE-CIRCULAR UNDERGROUND TUNNEL

The case of a circular tunnel below the surface of an elastic half-space is worthy of special
consideration as the closed form analytic solution for incident planc SH waves has been available for
almost 20 years (Lee and Trifunac, 1979). Using the {moment) method of weighted residues introduced
above, the same continuity equations of displacement and stress can be applied at the surface of the
tunnel. Let a and 3, respectively, be the outer and inner radius of the tunnel wall with ¢ > &> 0. Then
the boundary conditions (Equations (9, (10), and (11)) take the following form. At r =a, the outer
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radius interfacing between the tunnel wall and the half-space, the dlsplacement continuity equation
(Equation (10)) stays the same.

W+ W+ ™+ w{u =y (16)

The stress continuity equation (Equation (11)) at 7 = abecomes

aw

with u and u, respectively-the shmr modulus of the half-space and the medium of the tunnel wall,
Similarly, the zero stress condition (Equation (12)) at the inner wall of the tunnel (> = 5) becomes

aw(v)
¢ =0 18
e (13)
In applying the method of weighted residues, Equations (16), (17), (18) may be further simplified
using the orthogonality of the sine and cosine functions. Expressions for the incident and reflected plane
WwWaves, w' and wl(”, in Equations (1) and (2} may be expanded in terms of Bessel functions (Lee and
Manoogian, 1995) in the polar coordinate system with the crigin at the center of the tunnel.

w= w0 )= is_,-*.]_(k,r) (cosm& cosm@ + sin mé& sin m@ ) (19)

m=0

w(') = w(v(r, 6 ) = exp(i2kDcosd ) ; em(-i )" Im(k,r)( cosmS cosm@ - sin m& sin m@ ) (20)
m=0

Expressions for W', w") and w™from Equations (5), (7), and (8) involving the unknown
cocfficients will be used mthewelghtedmdual equations. This will first be applied at the inner radius
(r b) of the tunnel wall, where the stress is zero, For m=0,1,2,...

2 (cosm@

rio

LW _de=0 @1y
sinm&)a" = -
Here, as bcfdre; sinm@ and cosm@ are the weight functions. At » = b, for m,n=0,1,2,..., the stress

function Ow™/0r from Equation {12) becomes a trigonometric function in 8. The orthogonality of the
sine and cosine trigonometric functions m iy be applied, using the well known identities (Abramowitz and
Stegun, 1964)

0 m=n

*cosmbeosn@df=| # m=n=0 (22)
2 m=n=0
0 m=n

o Sinm@sinn@df=\z m=n=0 (23)
0 m=n=0
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** coumBinn@d@ = 0 forany m,n | 24)

resulting, for m=0,1,2,. .,

COHY (kb)+ CZHY (k,b)=0 )
DYHY (%,0)+ DI H (k,b)=0
where HY and H® are the derivatives of H® and H® Equation (25) enables C%? and D@10 be
expressed in terms of C E) and DE) respectively for each m. Next, the weighted residues integral for
the displacement continuity at 7 = a takes the form for m=0,12,... ~

. cosmB .
;(- -QJ(W"”W;(')*‘W"“M -, d8 =0 (26)
sinm

Again the orthogonality of the sines and cosines gives, for m =0,1,2,...

HY (k)

Julka)

_CoHW (k@ CRHZ (ka) _
Ju(ka)

+ Ao+ gui™ cOSME(1+ (-1 J" D5 )

Am
@n

Bu ﬁt;ﬁ;} B+ gyi” cosmS(1-(-1)" ¢*2%)

_DWHY (b9 + DPHT (k9) _
JSulka)
Similarly, the orthogonality property for the stress continuity equation gives at r=a for
m=012..

2%

:*(c(.)smﬂJ (w4l + 3+ w{-) ™)), d8 =0 (29)
sinm6 ) or ‘"
The following equations result
i
A.Ifj"; (k(kaj') + Aut 6, i"cOSME(1+ (-1 )" ?7%¢ )

(30)
cVHY (k@) +CPH (k@) _

S fhat)

-(-‘—‘x)("")
M
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HY (ka)
Jufka)
Wl s D (k.a
_(gx)(_lgi)D. Ha' (&, )’ DR HS (k.a)
uook J(ka)
with H4 () and J., () denoting respectively the first order derivatives of the corresponding Hankel
and Bessel functions.

The expressions for the cocfficients for m =0,1,2,... in the above are of the same form as the
analytic closed form expressions derived earlier (Lee and Trifunac, 1979) in solving the diffraction
problem of a circular underground tunnel as a boundary value problem using wave propagation theory.
By comparing the resulting displacement amplitudes calculated using the exact analytic approach earlier
and the weighted residue approach used here as a numerical method, the validity of the approximate

numerical method can be tested and improved upon. The residual method can be applied with confidence
to problems involving other arbitrarily shaped tunnels when analytic solutions are not available.

Bn + B+ £ i"cosmS(1-(-1)" ™ )

31

=0

SURFACE DISPLACEMENTS

Of particular interest are the displacement amplitudes on the surface of the half-space above the
tunnel. If the amplitude of the incident plane SH-waves is 1, the responses shown define amplification
and de-amplification factors. The resultant motion is defined by the modulus,
amplitude = ( R’ W) + Im’ (w) J”. In the absence of the tunnel, for a uniform half-space, the modulus

of the ground displacement is 2 (Achenbach, 1973). Due to the existence of the tunnel, incident waves
are scattered and diffracted into the half-space and transmitted into the tonnel, and moduli differ
significantly from 2. Displacements were calculated for a discrete set of dimensionless frequencies at

intervals of 0.25 ranging from 0.25 to 2. The dimensionless frequency is 7 =2a/A =ka/zw =wa/nf,

with a representing the radius of the tunnel, based on the properties of the half-space. Figures that
follow show the displacement amplitudes on the surface of the half-space. All displacements are plotted

with respect to the dimensionless distance x/a for incident waves of unit amplitude. Results that follow

are based on tunnels with stiffer and denser walls, with properties similar to those used in Lec and
Trifunac (1979). Results for circular tunnels were visually compared to those for similarly situated and
configured tunnels of Lee and Trifunac (1979), the benchmark closed form solution used by others such
as de Barros and Luco (1994). As a result of the selected properties and the practical thickness of the
tunnel walls, SH-waves are predominantly scattered into the half-space.

Figure 3 shows the surface displacement amplitudes for the case of a circular tunnel for a frequency
range from 025 to 2 for an incident wave with an angle of incidence of

0°, u,/u=3,p,/p=3, D=15a,t=01a Figure 4 shows the surface displacement amplitudes for
the same tunnel for a frequency 77 =2 and angles of incidence of 0°, 30°, 60°, and 90°. Amplitude
profiles on the half-space become more prominent and complex for higher frequency incoming waves.
For lower frequency incoming SH-wav s, the amplitudes are smoother and tend towards 2. Amplitudes
for vertically incident waves are symmetrical with respect to x/a = 0. The largest amplitude was 4.05
for a frequency of 77=2. Laterally incident waves for x/a <0 result in amplitude profiles that are
complicated with higher, sharper peaks. At xfa >0, a shadow zone exists with simpler amplitude

profiles with values closer to 2. Solutions for this case are similar by visual comparison to Figure 6 of
Lee and Trifunac (1979).

Figure 5 shows the surface displacement amplitudes for the case of a deeper circular tunnel for a
frequency range from 025 to 2 for an incident wave with an angle of incidence of

60°, pu,/u=3, p,/p=3, D=>5a,t=0.1a Figure 6 shows the surface displacement aruplitudes for
the same tunnel for a frequency #/=2 and angles of incidence of 0°, 30°, 60°, and 90°. Amplitude
profiles on the half-space are similar in character but less prominent than for those for the shallower
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tunnels of Figures 3 and 4. The largest amplitude was 2.95 for a frequency of 17 =2. Solutions for this
case again are similar to those given in Figure 4 of Lee and Trifunac (1979).

Figure 7 shows the surface displacement amplitudes above an elliptical tunnel with bfa=0.75
where b is the minor radius of the tunnel, D =1.54,6 =30°, g, /u =3, and p,/p=3, t=0.1a.
Figure 8 shows the surface displacement amplitudes for the same tunnel for a frequency n=2 and
angles of incidence of 0°, 30°, 60°, and 90°. Lower frequency incident waves produce simple surface
amplification profiles. Higher frequency incident waves result in amplification profiles, which are more
complex with higher peak values. The largest amplitude was 5.10 for an angle of incidence of 90° and a
frequency of #7=2. [Laterally incident waves for x/a <0 result in amplitude profiles that are
complicated with higher, sharper peaks. At x/a >0, a shadow zone exists with simpler amplitude
profiles with vatues closer to 2. For vertically incident waves, amplitude profiles are symmetrical.

Figure 9 shows the surface displacement amplitudes for a shallow square tunnel with, D =1.5a,
where 24 is the width of the tunnel, & =60%, 1, /u=3, and p,/p =3, 1=0.1a. Figure 10 shows
the surface displacement amplitudes for the same tunnel for a frequency 17 =2 and angles of incidence
of 0°, 30°, 60°, and 90°. For laterally incident waves, amplification profiles on the half-space are more
prominent and complex for x/a <0 with higher peak amplitudes. On the other side of the tunnel,

x/a >0, the amplitude profiles are smoother and tend towards 2. For vertically incident waves,
amplitude profiles are symmetrical. The largest amplitude was 5.03 for an angle of incidence of 90° and a
frequency of n=2.

Figure 11 shows the surface displacement amplitudes for the case of a rotated square tunnel for a
frequency range from 025 to 2 for an incident wave with an angle of incidence of
9% u,/1=3,p,/p=3,D=15a,1=01a. Figure 12 shows the surface displacement amplitudes
for the same tunnel for a frequency 77 =2 and angles of incidence of 0°, 30°, 60°, and 90°, For laterally
incident waves, amplitude profiles on the half-space become more prominent and complex with higher
peak values for x/a < 0. On the other side of the tunnel, x/a > 0, the amplitude profiles are smoother
and tend towards 2. For vertically incident waves, amplitude profiles are symmetrical. The largest
amplitude was 7.49 for an angle of incidence of 0° and a frequency of 17 = 2. Solutions for this case
match with those obtained in Lee and Trifunac (1979).

In general, surface displacements as a result of lower frequency incident waves are simple and vary
slightly from 2 as the tunnel is nearly transparent to these waves, As the incident wave frequency is
increased, the wavelength of the incident wave is closer to the tunnel diameter, and resulting surface

displacements are more complex with values significantly larger than 2. High amplitudes are due to the
development of standing waves between the upper surface of the tunnel and the surface of the half-space.

CONCLUSIONS

I The weighted residual approach approximation for the scattering, diffraction, and transmission of SH-
waves by a tunnel yields solutions, which closely resemble the known closed form solutions.

2. The weighted residual method is another useful method that may be used to determine the effects of
scattering and diffraction of incident SH-waves for tunnels of circular as well as non-circular shapes.

3. Ground surface amplitudes on the half-space above the tunnel may be significantly larger than 2 for a
homogeneous half-space. Amplitudes depend on the angle of incidence and frequency of the
incoming wave, the shape and depth of the tunnel. These computed amplifications indicate that the
presence of an underground tunnel may result in the amplification of carthquake waves.



20

Scattering and Diffraction of SH Waves above an Arbitrarily Shaped Tunnel

! ,.:‘ ’

g °© f,\ ';"
b 1 {/ ‘;1 '»‘V
:‘3 .y " ,QA
- »

3
< N

Q

Yo

Sz,

Fig. 3 Amplitudes on the surface of the half-space above a circular tunnel for an incident
SH-wave, 6 =0°, u,/u=3, py/p=3,D=15a,1=01a

m———
L UL LT E
watbes

-
mmpmmm
"

(PR Aataind

A v

) W\ b

1 . . '-._\*.‘. :. 5

~X i

\ "

\ / i
° 1 \ L A Il 1 o
3 2 1 4] 1 -2 -:_i

xfa

Fig. 4 Amplitudes on the surface of the half-space above a shallow circular tunnel
for varions angles of incidence, py /=3, py/p =3, D=15a,¢=01a



ISET Journal of Earthquake Technology, March-September 2000

.
© ., 4 f@,’?f\\'f{! el
S ] . i PR AL
Brrigienteaty®) 1
S v Vs
]
‘% N
Q P,
-2
e
=)
() . <«
< -

Fig. 5 Amplitudes on the surface of the half-space above a circular tunnel for an incident
SH-wave, 6 =600, u,/u=3, p,/p =3, D=5a,t=01a
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Fig. 11 Amplitudes on the surface of the half-space above a rotated square tannel
for an incident SH-wave, & =30°, g, /u=3, p,/p=3,D=15a, t=01la
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Fig. 12 Amptitudes on the surface of the half-space above a shallow rotated square tunnel
for various angles of incidence, /=3, py/p=3,D=15a,¢t=01a
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