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ABSTRACT

The weighted residual method was applied to the problem of scattering and diffraction of plane elastic waves,
in the form of antiplane waves, by a soft alhurvial valley of arbitrary shape on the surface of a two-dimensional
half-space. In order to demonsirate the versatility of the method, it was applied to shallow and deep circular,
elliptical, and rectangular alluvial valleys. Results obtained are quite similar to those obtained using avaitable
closed form solutions. It was shown that significant ground motion amplitudes, with respect to the amplitude of
incident waves, occurred on the ground surface of or near the alluvial valley. Amplitudes were dependent upon
the shape and depth of the valley, the relative properties of the material in the valley and the sumounding medium,
and the frequency and angle of incidence of incoming waves, Surface amplitude profiles for the lower frequency
incident waves were simple near the discontinuity with peak amplitudes that did not vary much from 2 excepton
the surface of the alluvium. As the frequency of the incident waves was increased, the amplitude profiles near the
valley became morc complicated with peak values exceeding 5 on the surface of the half-space adjacent to the
valley and exceeding 10 on the surface of the soft valley alluvium,

KEYWORDS: Weighted Residuals, SH-Wave, Diffraction, Alluvial Valley, Half-Space
INTRODUCTION

One of the many areas of earthquake engineering and seismological research has been the effect of local site
conditions cn ground motion. Among the local site topographies of interest are alluvial valleys located on the
ground or half-space surface. In this paper, the problem of the scattering and diffraction of incident SH waves by
af arbitrarily shaped alluvial valley on surface of a two-dimensional half-space is studied. A numerical solution
for the problem is appropriate as the boundary between the material of the discontinuity and the half-space may
be irregular, making it difficult to describe the solution in closed form. The method of weighted residuals is
implemented in order to study possible amplifications and de-amplifications of displacements on the surface of
the half-space adjacent to and within an alluvial valley, :

Currently, with respect to sub-surface discontinuities, closed form solutions exist for incident SH-waves for
a cavity in an infinite space (Pao and Mow, 1973), a circular cavity in a half-space (Lee, 1977) and an elastic
tunnel and inclusion in a half-space (Lee and Trifunac, 1979). Among others, analytic solutions have been
developed by Gregory (1967), Gregory (1970), Datta (1978), Dravinski (1983a). Currently, with respect to
surface discontinuities, closed form solutions for incident SH-waves exist for a semi-cylindrical valley (Trifunac,
1971), a semi-eltiptical valley (Wong and Trifunac, 1974a), a semi-cylindrical canyon (Trifunac, 1973), a semi-
elliptical canyon (Wong and Trifunac, 1974b), a circular arc hill (Yuan and Men, 1992), a cylindrical canyon of
circular arc cross-section (Yuan and Liao, 1994), a cylindrical alluvial valley of circular arc cross-section (Yuan
and Liao, 1995), and a valley in a wedge shaped half-space (Sherif and Lee, 1997). Analytical solutions exist for
a shallow circular afluvial valley subjected to incident SH-waves (Todorovska and Lee, 1991) and a shallow
circular cylindrical canyon for P, SV, and SH-waves (Cao and Lee, 1989, 1990; Lee and Cao, 1989). Closed
form solutions have been developed for the scattering and diffraction of P, SV, and SH-waves by a three-
dimensional alluvial valley (Lee, 1984) and a three dimensional spherical cavity (Lee, 1988).

Several numerical approaches for the analysis and diffraction of SH-waves by an alluyvial valley have been
studied. A combined finite element and analytical technique was used for the scattering of plane SH-waves by
arbitrarily shaped canyons (Shah et al., 1982), the three dimensional scattering of seismic waves by a cylindrical
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alluvial valley (Liu et al., 1991), the three dimensional scattering of seismic waves by cylindrical alluvial valleys
of arbitrary cross-section (Khair et al., 1980), the scattering of SH-waves and Rayleigh waves by a cylindrical
alluvial valley of arbitrary shape (Khair et al., 1991). Indirect and direct boundary element methods have been
applicd for the scattering of elastic waves by a dipping layer of alluvium (Wong et al., 1977), dipping layers of
arbitrary shape (Dravinski, 1983b; Dravinski and Mossessian, 1987; Mossessian and Dravinski, 1990a, 1990b),
extended to three dimensional problems by Sanchez-Sesma (1983), an infinitely long cylindrical canyon with
arbitrary but uniform cross-section (Luco et al., 1990), an alluvial valley of arbitrary shape (Sanchez-Sesma et
al., 1993), an irregular valley (Reinoso et al,, 1997), multilayered media with irregular interfaces (Ding and
Dravinski, 1996), the three dimensional response of a layered cylindrical valley in a layered half-space (Luco and
deBarros, 1995), and the seismic response of three dimensional alluvial valleys for incident P, S, and Rayleigh
‘waves (Sanchez-Sesma and Luzon, 1995). Other approaches include a generalized inverse method to model the
diffraction of P, 5V, and Rayleigh waves by a canyon of general shape (Wong, 1979, 1982), a wave expansion
technique to address the scattering and diffraction of plane SH-waves by two dimensional homogeneitics (Moeen-
Vaziri and Trifunac, 1988a), and the scattering of elastic waves by three dimensional canyons (Esraghi and
Dravinski, 1989), a least squares technique and series expansion to model the scattering and diffraction of plane P
and SV-waves by two dimensional homogeneities (Moeen-Vaziri and Trifunac, 1988b), a method of matched
asymptotic expansions to address the scattering of SH waves by surface irregularities {Sabina and Willis, 1975), a
discrete wave number boundary element method to address the scattering of elastic waves by a hemispherical
canyon (Kim and Papageorgiou, 1993) and the valley of Caracas, Venezuela (Papageorgiou and Kim, 1993), an
approximate solution for surface ground motions of alluvial valleys subjected to incident SH-waves (Sanchez
Sesma et al., 1988). Sanchez-Sesma (1987) reviews some methods available to study strong ground motion,

This paper presents the application of the weighted residual approach to the scattering and diffraction’of
incident SH waves by arbitrarily shaped alluvial valleys on the surface of a half-space. This approach is used to
evaluate boundary conditions and is a special case of the method of moments (Harrington 1967, 1968). This
approach has been applied to electromagnetic wave fields (Harrington, 1967), acoustic radiation fields (Fenlen,
1969), elastic inclusions, canyons, cavities, alluvial valleys, canals, and tumnels of arbitrary shape (Manoogian,
1992, 1995, 1996, 1998a, 1998b), Lee and Wu, 1994a, 1994b; Mancogian and Lee, 1995, 1996; Lee and
Manoogian, 1995). Use of this method results in a matrix equation from which the unknown coefficients are
determined and used to develop a series solution for the scattering, diffraction, and transmission of waves by the
alluvia! valley. In each case, it is shown that the numerical solutions by this method can be reduced to the closed-
form analytic solution when the topography is circular. This paper presents a new application of the weighted
residual approach used to determine the scattering and diffraction of antiplane waves by discontinuities on an
elastic half-space. The method is applied to alluvial valleys of many shapes, verified using closed form solutions
for semi-circular and semi-elliptical alluvial valley solutions, and the character of amplitudes above and near the
discontinuity are studied. '

Fig. 1 Alluvial valley model
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MODEL, EXCITATION, AND SOLUTION

The cross-section of the model to be studied is shown in Figure 1. It represents a shallow valley of circular
shape situated on the surface of the half-space. Although the approach is derived using a shallow circular alhuvial
valley,meresultingequationsmaybeusedforavaﬂcyofmysizcorshape. The origin is on the surface of the
half-space, centered with respect to the canyon edges. The half-space is assumed to consist of an elasiic,
homogeneous, isotropic material with rigidity 4 and shear wave velocity ;. The valley is assumed to consist of
an elastic, homogeneous, isotropic material with rigidity #, and shear wave veiocity c4,. Two coordinate
systems are required, a Cartesian coordinate system and a cylindrical coordinate system as shown in Figure 1. The
z—axismaybeasswnedmbepetpendicularmthcplmcdcﬁnedbythweooordinatesystmls. '

Initially, define the excitation, w*, as shown below:

w" = exp(-iat) exp(iw[f--—)-’-D m
cx Cy

This corresponds to a wave with incidence angle & , amplitude of 1, excitation frequency @, and wavelength
A=2zxlk, where k=w/fc,,c, and ¢, are the components of the phase velocity in the direction of the

coordinate axes. In the absence of the valley, the incident SH-wave is reflected by the frec surface {(y=0)and
defined as shown below:

w = exp(-iax) exp[im (.’.‘- +2 D @)

Cx Cy
Omit exp (— iax) from latter expressions. Add Equations (1) and (2) and define the result as shown below:
w(ﬂr) = wﬁ) + w(r) 3)
The following relations are applied to Equations (1) and (2) to convert from the Cartesian to the polar (r,6)
coordinate system:
x =rcos@
y=rsind
¢, =cgfcosd @
c, =cgfsind
k= w/cﬂ
The incident and reflected waves are combined into the expression shown below:
' W' = exp(ikrcos (0 + 8 )+ exp(ikrcos(6-8 )) )
Due to the presence of the valley, the waves are scattered and diffracted within the half-space and transmitted
into the valley. Within the half-space, the result is a sum of the incident, reflected, scattered, and diffracted

waves. Within the valley, the result consists of the transmitted waves. These must satisfy the wave equation as
defined below:

a’w+law+' 1w _ 1 Fw
8y ror P00 chor
Assume a scattered wave in the form shown below:

W= A HD (kr)cosnd M

=0

The transmitted wave is defined as shown below:

(6)

w”=Y Cadu(k.7)coSn8 (8)

=0
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Here k, = w/c,, isthe wave number in the valley. Both w) and w®) are Fourier serics in 8. Only the cosine

tmms,musedmmamemsmbumdmymmaﬂwmfmofmehﬂf-spmmdvdkym
automatically satisfied (Cao and Lee, 1989a). In addition to the stress free boundary conditions at the free surface
of the half-space, displacement and stress continuity conditions between the half-space and the valley must be
used. These may be defined as follows:

_BOow_p v -
ro8 r o6 9)
8=0n |
at the surface of the half-space, and continuity conditions

0= wﬁ"’d + w{:),_ w(“) (10)

b 1 awrm) aw(d I awrt)
O0=pyl—— p+ + +
"(ar”raa""ar roo™

[aww 19w™ J b
- + -——

nr

o roe’™) |
Here, at the interface between the valley and the half-space, 72, and #, are the unit normals in the 7 and 6
directions. The frec surface boundary condition is automatically satisfied by w'*) and w® . The displacement
continuity condition, Equation (10), is satisfied by substituting Equations (5), (7), and (8). The stress continuity
condition, Equation (11), is satisfied by substituting Equations (5),(7), and (8). Assemble the resulting equations
into the weighted residual forms shown below:
0= (3" Walr (0).8)(w"+ Wo—y )dg 2
m=012..
0= [ Walr(8).6)(c""+ "1 )dg
m=012.. :
Define W, (r(6),0) as the weight function and 70*? 7 and £ as stresses due to the incident and
reflected waves, scattered waves, and transmitted waves. The weight function used in this case was cosm®,
Since convergence was achieved and solutions matched closed form solutiqns_, others were not tested. The

(13}

weightedresidualfmmsareas_sembledintothematxixfmmshownbelow: ' A ,
[c-][A”]zlb-l - o (14)
Denote the matrix [C_,] as the matrix of coefficients from the scaitcred and transmitted wave weightod residual
expressions, Equations (12) and (13). The vector [b_ Jconsists of the coefficients from incident and reflected
wave weighted residual expressions. The matrix [C2] and the vector [5,} may be partitioned as shown below:

: C3 C4C.) [bma] .

where [C1]andC2]are the scattored and transmitted wave téris frben the diptacemsent continuity condition,
[C3]and[C4] are the scattered and transmitted wave terms from the stress continuity condition, and [b,,, | and
[5...] arc the excitation terms from the displacement and stross continuity conditions. Solve for C, in order to

obtain the following expression: :
ed=lcAbal-leslad | (16)
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Solve for A, in order to obtain the following expression:

4] [ci-e2lea el fond-lc2lca) bl an
Constants 4, and C, are determined and substituted into Equations (7) and (8). The transmitted wave

amplitudes are defined by Equation (8). The scattered wave amplitudes are added to Equation (5) to obtain
amplitades in the hatf-space.

SPECTAL CASE--SEMI-CIRCULAR ALLUVIAL VALLEY

The case of a semi-circular alluvial valley on the surface of an elastic half-space is worthy of syecial
* consideration as the closed form analytic solution for incident plane SH waves has been available for many years
(Trifunac, 1971). Using the (moment) method of weighted residues introduced above, the same continuity
equations of displacement and stress can be applied at the interface of the half-space and alluvial valley materials.
Then the continuity conditions (Equations (10) and (11)) take the following form. At r = q, the displacement
continuity Equation (10) stays the same.

w?+ w74y =y (18)
The stress continuity equation at » = @ becomes
F ) ) 0 w(V)
— fi) {r} (5 ) —
wrrwr W)= u — 19)
o ( )= B (

with & and u, respectively the shear modulus of the half-space and the alluvium. The surface boundary

conditions remain the same. In applying the method of weighted residucs, Equations (12), (13) may be further
simplified using the orthogonality of the cosine functions. Expressions for the incident and reflected plane waves,

w and w) in Equation (5) may be expanded in terms of Bessel functions in the polar coordinate system with
the origin at the center of the surface of the valley:

W= 3 eat® 1 olfa) e olfeos m6 cos ms )

m=0
where, as before, cosm@ are the weight functions, the orthogonality of these trigonometric functions may be
applied, using the well known identities (Abramowitz and Stegun, 1964)

o formzn

/2 for m=n
The weighted residues integral for the displacement continuity at r = a takes the form for m = 0,1,2...

J:cos mé cosn@ do ={ Qn -

[“cos mo (W +wl? +w+ w'~w?),, 6 =0 @2)
Similarly, the orthogonality property for the stress continuity equation gives at 7 = 4, for m = 0,1,2...
L' cos mé .g [w(u + o+ W+l — %W)]La de =0 (23)
The following equation results
£, i" %J_(ka) cos mé+¢, (- i)"% Jutka) cos mé

(24)
+ Am—q Hﬁ)(ka) COs m6 - ’_:l-v Cm‘a_Jnl(kva) cos mé =0
ar Mo Or

The above expressions for the coefficiénts for m =0,1,2... in the above are the same form as the analytic
closed form cxpressions developed by substituting Equations (5), (7), and (8) into the continuity conditions (10)
and (11) in solving the diffraction problem of a semi-circular alluvial valley as a boundary value problem using
wave propagation theory. By comparing the resulting displacement amplitudes calculated using the exact
analytical approach (Trifunac, 1971) and the weighted residue approach used here as a numerical method, the



1i2 Antiplane Deformations near Arbitrarily Shaped Alluvial Valleys

validity of the approximate numerical method can be tested and improved upon. The weighted residual raethod
can be applied with confidence to problems involving other arbitrarily shaped valleys when closed form solutions
are not available.

SURFACE DISPLACEMENT AMPLITUDES

Of particular interest are the displacement amplitudes on the surface of the half-space near the valley andon
the valley surface. If the amplitude of the incident plane SH-waves is 1, the responses shown define amplitude
and de-amplitude factors. The resultant motion is defined by the modulus as shown below:

amplitude = (Re2 (w)+ I’ (w))’2 (25)

In the absence of the valley, foi a uniform half-space, the modutus of the ground displacement is 2. Due to

the existence of the valley, incident waves are scattered and diffracted into the half-space and transmitted into the

valley. As a result, the moduti may differ significantly from 2. Displacements were calculated for a discrete set

of dimensionless frequencies, 7, at intervals of 0,25 ranging fram 0.25 to 2. The dimensionless frequency, 17, is
defined as shown below: '

n===—=== @6

Let @ be the half-width of the valley, the distance between the edges of the valley at the surface.

Figures that follow show the displacement amplitudes on the surface of the half-space and the valley for an
incident SH-wave of amplitude 1. All disptacements are plotted with respect to the dimensionless distance x/a .
The most interesting cases are those with alluvial fill that is softer and less dense than the surrounding material.
The plots of surface amplitudes that follow include semi-circular and semi-clliptical alluvial valleys with
configurations similar to those found in Trifunac (1971) and Wong and Trifunac (1974a) in order to verify the
weighted residual formulation. The method is also applied to shallow circular (h/a = 0.5) and rectangular
shaped alluvial valleys to demonstrate the versatility of the weighted residual approach. Once formulated and
programmed, the solution may be used to study the surface displacements on and near alluvial valleys of a variety
of shapes. Computations were not attempted for altuvial valleys with /2 /a less than 0.5. Convergence becomes a
problem for the shallowest valleys as the Hankel fuactions for the points closest to the origin, located on the
surface and midpoint of the alluvium, become nearly singular. Manoogian (1992) includes results for a shallow
elliptical canyon with //@=0.3. Attempts to obtain surface displacements for a shallow canyon with
h/a =0.05 were not successful. Yuan and Liao (1995) have addressed this issue, in part, by moving the origin
above the half-space for the case of a shallow cylindrical alluvial valley. Use of the Yuan and Liso (1995)
approach in combination with the methods used in this article could allow for solutions for very shallow alluvial
valleys. The number of terms needed for the convergence of the solution was determined by experimentation.
The number of terms used was actually iarger than needed and was defined as the maxinmum mumber of terms that
could be used without causing a numerical overflow.

Figure 2 shows the surface displacements on and near a soft semi-circular val!ey(h]azl) for a
dimensionless frequency range from 0.25 to 2 for an (horizontal) incident wave with an angle of incidence of 0°,
u, /p=1/6 and p,/p=2/3. Figure 3 shows the amplitudes for 77 =2. These match the results of the
closed form solution (Trifumac, 1971). Surface responses are symmetrical for a vertically incident wave,
& =90°, with peak amplitudes of about 4 on the half-space near the valley and exceeding 10 on the surface of
the valley for 77 =1.5. As the angle of incidence decreases toward 0°, the responses become larger and more
complex on the half-space for x/a <—1. This is due to the interference of incident and reflected waves, waves
scattered by the valley and waves transmitted back into the half-space from the valiey. On the other side of the
valley, x/a > 1, a shadow zone exists in which the amplitudes are smoother and tend toward 2. On the surface of
the valley, significant amplification occurs with respect to half-space amplifications. Since the wave number, £, ,
in the valley is twice that of the half-space, the amplitude pattern is more complex than that found on the haif-
space.
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Figure 4 shows the surface displacement amplitudes on and near a shallow circular valley for a frequency
range from 0.25 to 2 for an incident wave with an angle of incidence of 30°, u, /_u =1/6 and p, /p =2/3.
Figure 5 shows the surface amplitudes for 77 =2. As in the case of the circular valley discussed previously,
amplitudes are symmetrical for an incident wave with vertical orientation. Amplitude patterns on the half-space
on this shallower valley are similar to those found for the circular valley, but less complex and of smaller
amplitude.

Figure 6 shows the surface displacement amplitudes for a semi-elliptical valley with hfa =0.7, afrequency
range from 0.25 to 2, an incident wave with an angle of incidence of 60°, g, / H=1/6 and p, / p=2/3.
Figure 7 shows the surface amplitudes on and near the valley for 7= 2. These solutions match those of ihe
closed form solution (Wong and Trifunac, 1974a). As in the case of the circular valleys, amplitudes are
symmetrical for an incident wave with a vertical orientation. As the angle of incidence decreases towards 0°,
amplitude patterns on the half-space become more prominent and complex for x /a <—1. On the other side of
the valley, x fa > 1, the amplitudes are smoother and tend towards 2. Within the soft valley, responses are
significantly amplified and have greater complexity with respect to the half-space with peaks exceeding 10 for
77 = 1.5 and an angle of incidence of 0°.

Figure 8 shows the surface amplitudes for a rectangular shaped valley for a dimensionless fréquency range
from 0.25 to 2, incident SH-waves with an angle of incidence of 0°, hfa =1, u, /u=1/6 and p, /p =2/3.
Figure 9 shows the amplitudes for 7=2. As in the cases of the other soft valleys, amplitudes are symmetric for
the case in which the angle of incidence is vertical. For other angles of incidence, amplitudes are more
pronounced and patterns more complex for x /a <—1. On the other side of the valley, amplitudes are less

complex and tend toward 2. Within the valley, amplitudes are significantly larger with respect to those on the
half-space with some cases exceeding 10. It should be noted that amplitudes for the rectangular valleys are not
plotted on the sides of the valleys. Junips in the amplitude plois at x = *a represent the range of the amplitudes
on the sides of the valleys.

CONCLUSIONS

A number of observations result from the work presented:

1. The weighted residual approach approximation for the scattering, diffraction, and transmission of SH-waves
by an atluvial valley yields solutions which will match the known closed form solutions.

2. The weighted residuai approach is suitable for valleys of arbitrary shape though convergence for the
shallowest valleys is more difficult to obtain.

3. Ground surface amplitudes on the half-space outside the valleys may be nearly 6, significantly larger than the
-expected value of 2 for a smooth homogeneous half-space and depend on the angle of incidence,
dimensionless frequency, shape of the valley, and the relative properties of the valley.

4. Ground surface amplitudes on the half-space within the valleys may be as much as 10 to 15 times the
amplitude of the incident wave for a softer valley.

ACKNOWLEDGEMENTS

Thanks to Professors R.K. Miller and L. Teng for their efforts and support.



Antiplane Deformations near Arbitrarily Shaped Alluvial Valleys

114

¢h=d['d gfi=r|"M 1=l T=b
‘KaffeA [EIAN[T# JE[MANO-IIAS € JBU puE U0 soprndure soggms ¢ 31y

X
0 T T T T T T 0

sr 4

spniidwy

gfe=9/'d ofi="]'"“06=¢ 1=PM
‘af[eA [BIAN][R JR[NOJO-IAS & JedU pue Uo sapyridure oggmg 7 B




115

ISET Journal of Earthquake Technology, June-December 1999

, §fz=0d/d ‘9fi=rj ‘Thi=0fy 7=l
‘A3]IeA [RIAN][E IE[ROND MO[[BYS € Teau pue uo saprydure asepng ¢ 81y

spninjdwy

gfe=d["d9fi=r[n"  oc=9 Chi=vfy
‘Aa[[eA [BIANIE JE[NOND MOf[eys © Jeau pue uo sapmyidure sogymg ¢ Bt




Ann‘plane Deformations near Arbitrarily Shaped Alluvial Valleys

i16

gfe=d/'d ofi=r[T Lo=0fy‘T=U ¢fe=9/"d ‘O =1]' 09=90°L0O=0/y

“Aafea [mANTE [eondnjo-1uuss € Jesu pire uo sapnyjdure 30epmg £ B Kafres [EAN[[e [ONdI}o-USs € TESU pire UO sopryidure sogpmg 9 811

spndwy




117

ISET Journal of Earthquake Technology, June-December 1999

gfe=d/d ofi=r/T|=pfyT=U
‘Aa[eA TeIAN[Te Jemdueioal v xeau pue uo sapnydure soggms ¢ 314

B/x

spmirdwy

gfz=d[d9fi=r[7‘06=0 1=}y
“Aof[eA [e1Any[e JeMBuUeIoal B Jesu pue uo sapnydure aowpmg § "By

Moo ||



118 Antiplane Deformations near Arbitrarily Shaped Alluvial Valleys

REFERENCES

L.

2.

10.

1L

12.

13.

14,

15.

16.

17.

18,

19.

20.

21

Abramowitz, M. and Stegun, I. A. (1972). “Handbook of Mathematical Functions, with Formulas, Graphs,
and Mathematical Tables”, Dover 0-486-61272-4, New York, U.S A

Cao, H. and Lee, V.W. {1989). “Scattering of Plane SH-waves by Circular Cylindrical Canyons of Various
Depth to Width Ratios”, European Earthquake Engineeering, Vol. 3, pp. 29-37.

Cao, H. and Lee, V.W. (1990). “Scattering of Plane SH-waves by Circular Cylindrical Canyons of Various
Depth to Width Ratios™, Soil Dynamics and Earthquake Engineering, Vol. 9, pp. 141-150.

Datt@, S.K. (1978). “Scattering of Elastic Waves, Mechanics Today”, edited by Nemat-Nasser, Vol. 4, pp.
149-208.

Ding, G. and Dravinski, M. (1996). “Scattering of SH Waves in Multilayered Media with Irregular
Interfaces”, Earthquake Engg. and Struct. Dyn., Vol. 25, pp. 1391-1404.

Dravinski, M. (1983a). “Ground Motion Amplification due to Elastic Inclusions in a Half-space”,
Earthquake Engg. Struct. Dyn., Vol. 11, pp. 313-335.

Dravinski, M. (1983b). “Scattering of Plane Harmonic SH Waves by anpmg Layers of Arbitrary Shape”,
Bull. Seism. Soc. Am., Vol. 73, pp. 1303-1319.

Dravinski, M. and Mossessian, T K. (1987). “Scattering of Plane Harmonic P, SV, and Rayleigh Waves by
Dipping Layers of Arbitrary Shape”, Bulletin of Seism. Soc. Am., Vol. 77, pp. 212-235.

Eshraghi, H. and Dravinski, M. (1989). “Scattering of Planc SH, SV, P and Rayleigh Waves by a Non-
axisymmetric Three-Dimensional Canyon: A Wave Function Expansion Approach”, Earthquake Engg.
Struct. Dyn., Vol. 18, pp. 983-998. |

Fenlon, F. H. (1969). “Calculation of the Acoustic Radiation Field at the Surface of & Finite Cylinder by the
Method of Weighted Residuals™, Proceedings of IEEE, Vol. 57, p. 3.

Gregory, R.D. (1967). “An Expansion Theorem Applicable to Problems of Wave Propagation in an Elastic
Half-space”, Proc. Camb, Philos. Soc., Vol. 63, pp. 1341-1367.

Gregory, R.D. (1970). “The Propagation of Waves in an Elastic Half-space Containing a Circular Cylindrical
Cavity”, Proc. Camb. Philos. Soc., Vol. 67, pp. 689-710.

Harrington, R.F, (1967). “Matrix Methods for Ficld Problems”, Proceedings of IEEE, Vol 55, No. 2, pp.
136-149.

Harrington, R.F. (1968). “Field Computation by Method of Moments”, The MacMillan Company, New
York, US.A.

Khair, K R., Datta, S.K. and Shah, A H. (1989). “Amplification of Obliquely Incident Seismic Waves by
Cylindrical Al]uvnal Valleys of Arbitrary Crogs-sectional Shape. Part I: P and SV Waves”, Bulletin of Seism.
Soc, Am., Vol. 79, pp. 610-630,

Khair, K.R., Datta, S.K. and Shah, A H. (1991). “Amplification of Obliquely Incident Seismic Waves by
Cylindrical Alluvial Valleys of Arbitrary Cross-sectional Shape. Part IT: Incident SH and Raylcigh Waves™,
Bulletin of Seism. Soc. Am., Vol. 81, pp. 346-357.

Kim. J. and Papageorgiou, A S. (1993). “Discrete Wave Number Boundary Element Method for 3-D
Scattering Problems”, Journal of Eng. Mech,, Vol. 119, pp. 603-624.

Lee, V.W. (1977). “On Deformations Near a Circutar Underground Cavity Subjected to Incident Plane SH-
waves”, Proceedings of the Application of Computer Methods in Engineering Conference, Vol. 11, University
of Southern California, Los Angeles, California, U.S.A_, pp. 951-962.

Lee, V.W. (1984). “Three Dimensional Diffraction of Plane P, SV and SH-waves by a Hemispherical
Alluvial Valley”, Soil Dynamics and Earthquake Engineering, Vol. 3, No. 3, pp. 133-144.

Lee, V.W. (1988). “Three Dimensional Diffraction of Elastic Waves by a Spherical Cavity in an Elastic Haif-
Space I: Closed-Form Solutions”, Soil Dyn, and Earthquake Eng., Vol. 7, pp. 149-161.

Lee, V.W. and Cao, H. (1989). “Scattering of Plane SV-waves by Circular Cylindrical Canyons of Various
Depth to Width Ratios”, ASCE Engineering Mechanics Division, Vol. 115, No. 9, pp. 2035-2054.



ISET Journal of Earthquake Technology, June-December 1999 119

22

23

24,

25.

26.

27.

28

29.

30.

3L

32.

33

34,

35.

36.

37

38.

39,

40.

4]1.

42.

43.

Lee, V.W. and Manoogian, M.E. (1995). “Surface Motion above an Arbitrarily Shaped Underground Cavity
for Incident SH-waves”, European Association for Earthquake Engineering, Vol. 8, pp. 3-11.

Lee, V.W. and Sherif, R. (1996). “Diffraction of Circular Canyons by SH-waves in a Wedge Shaped Half-
Space: Analytic Solutions™, ASCE, Eng. Mech. Div., Vol. 122, No. 2, pp. 539-544.

Lee, V.W. and Trifunac, M.D. (1979). “Response of Tunnels to Incident SH-waves”, ASCE Engineering
Mechanics Division, Vol. 105, pp. 643-659. '

Lee, V.W. and Wu, X. (1994a). “Application of the Weighted Residues (moment) Method to Scattering by
2-D Canyons of Arbitrary Shape: I. Incident SH-waves”, Soil Dynamics and Earthquake Eng., Vol. 13, pp.
355-364,

Lee, V.W. and Wu, X. (1994b). “Application of the Weighted Residues (moment) Method to Scattering by 2-
D Canyons of Arbitrary Shape: IL Incident P, SV, and Rayleigh Waves”, Soil Dynamics and Earthquake
Eng., Vol. 13, pp. 365-375.

Liu, S.W., Datta, S K., Borden, M. and Shah, A H. (1991). “Scattering of Obliquely Incident Seismic Waves
by a Cylindrical Valley in a Layered Half-Space™, Earthquake Eng. and Struct. Dyn., Vol. 20, pp. 859-870.
Luco, J.E. and de Barrios, F.C.P. (1995). “Three Dimensional Response of a Layered Cylindrical Valleyin a
Layered Half-Space”, Earthquake Eng. and Struct. Dyn., Vol. 24, pp. 109-125.

Luco, L.E., Wong, HL. and de Barrios, F.C.P. (1990). “Three-Dimensional Response of a Cylindrical
Canyon in a Layered Half-Space”, Earthquake Eng. and Struct. Dyn., Vol. 19, pp. 799-817.

Manoogian, M.E. (1992). “Scattering and Diffraction of Plane SH-Waves by Surface and Subsurface
Topography of Arbitrary Shape”, Ph.D. Dissertation, University of Southern California, U.S.A.

Manoogian, M.E. (1995). “Scattering and Diffraction of SH-Waves by Sub-Surface Topography of Arbitrary
Shape™, Proc. Int.Conf. on Struct. Dyn., Vib. and Noise Control, Vol. 1, pp. 484-489.

Manoogian, M.E. (1996). “Scattering and Diffraction of SH-Waves by Non-Circular Surface and Sub-
Surface Topography: Application of the Method of Weighted Residuals”, Proc. Southeastern Conf.-Dev.In
Th. And App. Mech., Vol. 18, pp. 66-79.

Manoogian, M.E. {1998a). “Scattering and Diffraction of SH-Waves by an Arbitrarily Shaped Canal , Proc.
12 th Eng. Mech. Conf.-Engineering Mech.: a Force for the 21 st Century, pp. 442-445.

Manoogian, M.E. (1998b). “Surface Motion above an Arbitrarily Shaped Turmel”, Proc. ASCE Geotechnical
Earthquake Eng. and Soil Dyn. III Conf., pp. 754-765.

Manoogian, M.E. and Lee, V.W. (1995). “Scattering of SH-Waves by Arbitrary Surface Topography™, Proc.
Third Int. Conf. on Recent Adv. in Go. Earthquake Eng. Soil Dyn. 5t. Louis, Missoun, U.S.A, pp. 665-670.
Manoogian, M.E. and Lee, V.W. (1996). “Diffraction of SH-Waves by Sub-Surface Inclusions of Arbitrary
Shape”, ASCE, Eng. Mech. Div., Vol. 122, No. 2, pp. 122-129.

Moeen-Vaziri, N. and Trifunac, M D. (1988a). “Scattering and Diffraction of Plane SH Waves by Two-Di
mensional Homogeneities: Part I”, Soil Dynamics and Earthquake Eng., Vol. 7, pp. 179-188.
Moeen-Vazir, N. and Trifunac, M.D. (1988b). “Scattering and Diffraction of Plane P and SV Waves by
Two-Dimensional Homogeneities: Part IF”, Soil Dynamics and Earthquake Eng., Vol. 7, pp. 189-200.
Mossessian, T.K. and Dravinski, M. (1990a). “Amplification of Elastic Waves by a Three Dimensional
Valley, Part I: Steady State Response”, Earthquake Eng. and Struct. Dyn., Vol. 19, pp. 667-680.

Mossessian, T.K. and Dravinski, M. (1990b). “ Amplification of ElasticWaves by a Three Dimensional
Valley. Part I ; Transient Response”, Earthquake Eng. and Struct. Dyn., Vol. 19, pp. 681-691.

Pao, Y.H. and Mow, C.C. (1973). “Diffraction of Elastic Waves and Dynamic Stress Concentrations”,
Crane, Russak and Company, Inc., New York, U.S.A.

Papageorgiou, A. S. and Kim, J. (1993). “Propagation and Amplification of Seismic Waves in 2-D Valleys
Excited by Obliquely Incident P- and SV- Waves”, Earthquake Eng. and Struct. Dyn , Vol. 22, pp. 167-182.
Reinoso, E., Wrobel, L.C. and Power, H. (1997). “Two-Dimensional Scattering of P, SV, and Rayleigh

Waves: Preliminary Results for the Valicy of Mexico”, Earthquake Eng. and Struct. Dyn., Vol. 26, pp. 595-
610,



120 Antiplane Deformations near Arbitrarily Shaped Alluvial Valleys

44. Sabina, F.J. and Willis, J.R. (1975). “Scattering of SH Waves by a Rough Half-Space of Arbitrary Shape”,
Geophys. J. Royal Astr. Soc., Vol. 42, pp. 685-703.

45. Sanchez-Sesma, F.J. (1983). “Diffraction of Elastic Waves by Three Dimensional Irregularities”, Bull.
Seism. Soc. Am., Vol. 73, pp. 1621-1636.

46. Sanchez Sesma, F.J. (1987). “Site Effects on Strong Ground Motion”, Soil Dyn. and Earthquake Eng., Vol.
6, pp. 124-132.

47. Sanchez-Sesma, F.J. and Campillo, M. (1991). “lefractlon of P, SV, and Rayleigh Waves by Topographic
Features: A Boundary Integral Formulation”, Bulietin of Seism. Soc. Am., Vol. 81, pp. 2234-2253.

48. Sanchez-Sesma, F.J., Chavez-Garcia, F.J. and Bravo, M.A. (1988). “Scismic Response of a Class of Alluvial
Valleys for Incident SH Waves”, Bulletin of Seism. Soc. Am., Vol. 78, pp. 83-95.

49. Sanchez -Sesma, F.J. and Luzon, F. (1995). “Seismic Response of Three-Dimensional Valleys for Incident
P, S, and Rayleigh Waves”, Bulletin Seism. Soc. Am., Vol. 85, pp. 269-284.

50, Sanchez-Sesma, F.J., Ramos-Martinez, J. and Campillo, M. (1993). “AnInd:mctBomdmyElen‘thcthod
Applied to Slmu]ate the Seismic Response of Alluvial Valleys for Incident P, S and Rayleigh Waves”,
Earthquake Eng. and Struct. Dyn,, Vol. 22, pp. 279-295.

51. Shah, A.H., Wong, K.C. and Datta, SK. (1982). “Diffraction of Plane SH-Waves in a Half- Space "
Earthquake Eng. and Struct. Dyn., Vol. 10, pp. 510-528.

52. Sherif, R. and Lee, V.W. (1997). “Diffraction around a Circular Alluvial Valley in a Wedge-Shaped- Mcdlum
due to Plane SH-Waves”, Eur. Association for Earthquake Eng., Vol. 10, pp. 21-28.

53. Todorovska, ML and Lee, V.W. (1991). “Surface Motion of Shailow Circular Alluvial Valieys for Incident
Plane SH-Waves: Analytical Solutions”, Soil Dynamics and Earthquake Engineering, Vol. 10, pp. 192-200..

54 Trifunac, M.D. (1971). “Surface Motion of a Semi-Cylindrical Alluvial Valley for Incident Plane SH-
Waves:”, Bulletin of Seism. Soc. Am., Vol. 61, pp. 1755-1770.

55. Trifunac, M.D. (1973). “Scattering of Plane SH-Waves by a Semi-Cylindrical Canyon™, Earthquake Eng. and
Struct. Dyn, Vol. 1, pp. 267-281.

56. Wong, H.L. (1979). “Diffraction of P, SV, and Rayleigh Waves by Surface Topographies”, Report CE 70-
05, Dept. of Civil Engineering, University of Southern California, U.S.A.

57. Wong, HL. (1982). “Effect of Surface Topography on the Diffraction of P, SV, and Rayleigh Waves”,
Bulletin of Seism. Soc. Am., Vol. 72, pp. 1167-1183.

58. Wong, H.L. and Trifunac, M.D. (1974a). “Surfacc Motion of a Semi-Elliptical Alluvial Valley for Incident
Plane Waves”; Bulletin Seism. Soc. Am., Vol. 64, pp. 1389-1408.

59. Wong, H.L. and Trifunac, M.D. (1974b). “Scattering of Plane SH-Waves by a Semi-Elliptical Canyon™,
Earthquake Eng. and Struct. Dyn., Vol. 3, pp. 157-169.

60. Wong, H L., Trifunac, M.D. and Westermo, B. (1977). “Effects of Surface and Sub-Surface Irregularities on

- the Amphtude of Monochromatic Waves”, Bulletin of Seism. Soc. Am., Vol. 67, pp. 353-368.

61. Yuan, X. and Liao, Z. (1994). “Scattering of Plane SH Waves by a Cylindrical Canyon of Circular-Arc
Cross-Section”, Soil Dyn. and Earthquake Eng., Vol. 13, pp. 407-412.

62. Yuan, X. and Liao, Z. (1995). “Scattering of Planc SH Waves by a Cylindrical Alluvial Valley of Circular-
Arc Cross-Section”, Earthquake Eng. and Struct. Dyn., Vol. 24, pp. 1303-1313.

63. Yuan, X. and Men, F. (1992). “Scattering of Plane SH Waves by a Semi-Cylindrical Hill”, Earthquake Eng.
and Struct. Dyn. Vol. 21, pp. 1091-1098.



