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ABSTRACT

This paper explores the applicability of wavelet transform for the analysis of ground motion
accelerations recorded on rock at Yerba Buena Island and on dredged sandfill at nearby Treasure Island
about 2 km away during the 1989 Loma Prieta Earthquake in California. An interpretation of the results
from this analysis is presented and discussed. The major important feature of this data set is that
liquefaction occurred at the Treasure Island site during the earthquake. The Daubechies 20-coefficient
and Haar Wavelet Transforms are utihzed in this study. Results of the application of the wavelet
transforms can be summarized as follows: most of the energy of the earthquake at the Treasure Island site
is in the frequency range 0.58 - 1.77 Hz and arrives in the time interval between 11 and 15 seconds. For
the Yerba Buena Island site, most of the energy lies within the frequency range 1.15 - 3.53 Hz and arrives
between 8 to 13 seconds. The analysis indicates that there are some large peaks at the highest resolution
in the wavelet transforms at the Treasure Island site which can be attributed to a progressive change in the
stiffness characteristics of soil.

KEYWORDS: Wavelet Transform, Short-Time Fourier Transform, Joint Time-Frequency Analysis, Site
Response, Liquefaction

INTRODUCTION

Ground motions generated by the 1989 California Loma Prieta Earthquake were recorded at two
stations located in the San Francisco Bay, between San Francisco and Qakland, California (Shakal et al.,
1989). One station is focated in Yerba Buena Island while the other station is about 2 km away in
Treasure Island. Treasure Island is a 400 acre land constructed in 1936-37 for activities celebrating the
construction of the Golden Gate and San Francisco-Qakland Bay bridges. It is a man-made island
constructed on loose, dredged sandfill underlain by soft bay mud and other recent and older sediments
resting on bedrock. The structure of Treasure Isiand is essentially an upstream constructed hydraulic fill
with a perimeter rock dike acting as a retaining system for the sands that were pumped or placed inside.
The Yerba Buena Island is, however, a rock outcrop. The strong motion accelerometers at each station
recorded ground motions in the N-S, E-W and up-down directions. The strongest components were in the
E-W direction in which peak accelerations were 0.16g at Treasure Island and 0.06g at Yerba Buena
Island. In the N-S direction the peak accelerations were 0.11g at Treasure Island and 0.03g at Yerba
Buena Island. A notable amplification factor for surface motions recorded at the Treasure Island site
relative to the rock motions at nearby Yerba Buena Island can be idemtified from the peak ground
accelerations. The strong motions recorded at these two stations represent a pair of recordings at nearly
the same location and distance from the fanlt rupture but with considerably different behaviour due to the
effects of local geological conditions. Evidence of soil liquefaction on the Treasure Island site with
numercus large sand boils was reported (Finn et al., 1993).

The emphasis of this paper is on the application of the wavelet transform for the analysis of
accelerograms recorded during earthquakes. The wavelet transform is a relatively new method of signal
analysis that has been gaining widespread use, especially for the analysis of signals with abrupt changes
{Newland, 1993; Rezai and Ventura, 1995). The literature on wavelet transform is extensive, but most of
it is devoted to processing of images or electronic and speech signals (Mallat, 1989; Kronland-Martinet et
al., 1987). The wavelet transform basis functions are complex functions of the same shape that are
concentrated in time and frequency. They are ideal to identify any phases of a signal with different
frequency content and with localized time distribution.
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We will explain the fundamentals of the wavelet transform in a manner suitable for an analyst who is
familiar with the Fourier theory. We start with a review of the Fourier transform from which we give
reasons for the use of the wavelet transform and its applications. Then, the application of the wavelet
transform to the accelerograms recorded at Treasure and Yerba Buena Islands during the 1989 Loma
Prieta earthquake is studied in order to demonstrate the potential of wavelet transform to analyse this type
of strong motion data.

FOURIER TRANSFORM (FT)

The use of the FT concept reflects the philosophy that some aspects of a signal are most conveniently
represented in time domain, whereas there are certain other aspects that are best represented in terms of its

frequency content. The Discrete Fourier Transform (DFT) of a real time function f (t) uniformly
discretized at & points can be defined by:

N-l '
F(kAw)= ALY fnAr)e ek N
n=0
in which F(kA@) are the values of the DFT at the discrete frequencies kAw and i= -1. Af isthe

time increment used to discretize the function. f(nAf) is a discrete sample of f(f) evaluated at
t=nAt. Aw =1fNA? is the frequency increment. 7 and & are integer numbers ranging from 0 to N-1.

The DFT is defined through a summation that covers the entire time duration of the function. Such
transform can be readily applied to stationary signals whose properties do not change abruptly in time.
However, if a signal contains sharp discontinuities (non-stationary signal), its Fourier representation
requires a significant number of frequency components to capture these abrupt changes in time. This
means that any localized discontinuity information is stretched out over the entire time axis as a single
frequency component is always associated with an infinite time duration. As an example, if a function
contains sudden transitions at some points, such as the onc shown in Figure 1(a), we find that its DFT is
composed of a number of peaks closely spaced at some particular frequencies, as shown in Figure 1(b). It
is clear from Figure 1(b) that the predominant frequencies of 1 rad/s, 7 rad/s and 20 rad/s have been
contaminated by the presence of other fictitious peak frequencies generated by the DFT. It is noted that a
long temporal extension of the selected sinusoidal frequencies would significantly improve the prediction
of DFT in terms of the predominant frequencies. It should be noted, however, that earthquake signals are
random in nature and that the temporal extension of the recorded signals may change rapidly in time as a
result of progressive damage throughout a structure or change in the stiffness characteristics of a medum.
Therefore, in this example, the temporal extension of the signals was varied over relatively short time
intervals to study the effect of FT on the signals that are not stationary. In this case, the DFT is not able -
to clearly identify what are the significant frequencies of the signal. Hence, the DFT cannot be efficiently
applied to signals that have short temporal extension and contain sudden transitions at very short time
intervals. Thus, alternate methods of data analysis need to be employed. One of these methods is the
short-time Fourier transform, which is described in the following section.

SHORT-TIME FOURIER TRANSFORM (STFT)

In order to accommodate the sudden variations of frequency components of a function in short time
intervals and to localize the information provided by the FT, the idea of STFT or window Fourier
transform was introduced by Gabor (Gabor, 1946). The STFT looks at f{f) through a window over
which the function is approximately stationary. The window function is generally a real even function
with the characteristics of a low-pass filter. The discrete window Fourier transform of a real discrete-time
function f(nAt) is defined by:

Forer (KA®, b) = Atil F(nA)w(nAr — b)eboXns) @
»n=0

where b is the time shifting parameter and w(pAr) is the window function. Other terms were defined
above.
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Fig. 1 (a) Example of a signal f (nAt) with sharp discontinuities,
(b) Magnitude of FT of the signal, F(kAw)
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Fig. 2 STFT of a signal with sharp discontinuities (a) signal in time domain, (b) location of the
window function, (¢) windowed signal, (d) magnitude of FT of the windowed signal
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The operation indicated by Equation (2) results in a separate Fourier transform for each part of the
function conforming to each location b of the center of the window. The transform is now time-
dependent (based on where the window function is located) and thus establishes a time-frequency
description of f(nAt).

A drawback of the STFT is that the bandwidth of the window function is fixed, which means that it
cannot adapt to the characteristics of f (nAt) at different locations. For the case of a signal with high
frequency components, many cycles are captured by the window. However, for a low frequency signal,
very few cycles are within the window. This indicates that for a window of fixed bandwidth, the
efficiency of the STFT improves at higher frequencies, and declines as the frequency content of f(nAf)
decreases. Thus, it would be more desirable here to have a window whose width adjusts itself with
frequency content of f(nAt).

The advantages and limitations of the STFT can be clearly appreciated when it is applied to the signal
shown in Figure 1. The results of the STFT analysis for two selected window locations are shown in
Figure 2. The purpose here is to demonstrate that if the length of the selected window lies within a part of
the function that is stationary, it can thoroughly detect the dominant frequency of the signal at that
particular window location. Here, we have selected the Gaussian window proposed by Gabor (1946), as
shown in Figure 2(b). Gabor selected the Gaussian window because its FT is concentrated in the low
frequencies and it has the same shape as that of '™ of the function in the time domain. Other window
functions used in practice are generalizations of the Gaussian window function with different frequency
characteristics.

As the window is placed where there is no sudden transition in the frequency content of the selected
signal, the STFT results in a single dominant peak at 7 rad/sec. However, if the window is placed where
there is a sudden transition in the frequency content of the signal (e.g., transition from sin(?l) to
sin(20¢) and vice versa), the STFT like the FT generates a number of peaks that might not even exist in

f (nAt) , as shown in part (d) of Figure 2. Obviously, to overcome this problem, the length or location of
the window must be adjusted accordingly. It should be noted that the STFT peaks are not concentrated at
their corresponding dominant frequencies mainly because of the short length of the window and that the
peaks were obtained for a single location of the window.

CONTINUOUS-TIME WAVELET TRANSFORM (CTWT)

In order to avoid the inconvenience of a transform having a fixed resoiution in the spatial and
frequency domains, Grossman and Morlet (1974) proposed a new type of signal decomposition based on
dilations. The wavelet transform (WT) can be considered as a further modification of the STFT that
allows nonuniform window functions. The WT can be used to represent a time domain function as a
linear combination of a family of basis functions. All the basis functions are generated by scaling

(dilation or contraction) and shifting of a smgle function, ‘P(t) called mother wavelet. A family of
wavelet bases, ¥, ,,(t) is given by: _
t-b
W)= = 3
v.0- 242 ®

where a is the scaling parameter and b is the shifting variable. The scaled wavelets, ‘¥, , (¢). contain an

energy normalization term, Lffa-,thatkeepsthe energy of the scaled wavelets the same as the energy in
the original mother wavelet. Figure 3(a) shows a typical example of dilated versions of a special type of
mother wavelet developed by Meyer (1986). Note the constant shape of these scaled functions and the
same number of oscillations in each wavelet. The corresponding magnitude of the FT of each of the
wavelets depicted in Figure 3(a) is shown in Figure 3(b). This figure shows that each scaled wavelet can
be viewed as a bandpass filter with a particular frequency bandwidth and a centre frequency, f,. It can
be seen that this oscillating frequency, f, appears at the centre of the frequency band of the mother
wavelet. The frequency bandwidth of each wavelet is a function of the scaling parameter @ . For a small
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value of @, a basis function becomes a stretched wavelet, corresponding to a low frequency function. For
a large value of a, the basis function becomes a contracted version of the prototype wavelet, conforming
to a high frequency function.
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Fig. 3 (a) Example of Meyer’s mother wavelet, ‘¥, , (¢), and two contracted versions of it,
(b) Magnitude of FT of Meyer’s wavelets shown above
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Similar to the STFT, the WT can provide the time-frequency characteristic of a signal. It can be
utilized to reveal estimates of the frequency content of a signal for a particular time interval. [t is a scale-
invariant transform which is inherently able to deal with short duration features (local) and long duration

features (global) of a signal. The CTWT of a time function f (¢), denoted as W (a,b), is defined as the
inner product of f(t) and ¥, , @®):

W(a,b)=—17l—;jf(t}l’.§,b(?) dt (4)

in which ‘P; s (t) is the complex conjugate of ‘¥, , (r) The reconstruction formula is given as:

1) = Clj %T %W(a,b)‘}’,‘b(t ‘b) db ©

a
In order to reconstruct f (t) from its wavelet transform, C,, must not be infinity. This requires that
the FT of W(t), defined as ¥(w), must satisfy the admissibility condition:

+o 2 -
C\,,=21rf%a~,—l—dm <+ (6)

The above admissibility_condition is indeed satisfied whenever ‘P(t) is of finite energy and has a
mean value of zero. Additional details on the wavelet transform are presented by Rioul and Vetterli
(1991) and Vetterli and Herley (1992).

DISCRETE WAVELET TRANSFORM (DWT)

For the DWT, it is possible to discretize the translation and dilation parameters of the continuous
wavelet bases while still being able to perfectly reconstruct a function from its transform. Daubechies
(1988) discretized the time-scale parameters g and b in the following way:

a=a’ b=qalT where a,>1 and T#0 %))
in which p and g belong to the set of integer numbers Z, and T is the sampling period. The scale
parameter a is set as integer power of a fixed parameter q, .

The choice for T is arbitrary since the translation parameter b can be adjusted to fix any value of T'.
For convenience, T is set to one (T = 1). We see from this choice that the shift parameter, b, depends

on the scale parameter af. If the scale, 'l/‘la;;’ , is large, then the size of the translation parameter

increases. This is intuitively correct since a large scale implies that details are not so important, and the
scaled wavelet basis can be translated in larger steps.

DISCRETE-TIME WAVELET TRANSFORM (DTWT)

In most of practical applications, the function that we wish to transform is not continuous but discrete.
Suitable selection of @, and f, can allow the wavelet series to cover all frequencies of interest. It may

be suggested that a, and f; are chosen to let the central frequencies of the wavelets have octave band
intervals. Let the scale discretization parameter a/ be selected as af = 27, then the central frequencies

of the wavelets are f,? =a f,. The choice of a, =2 for which ‘¥, () constitutes an orthonormal

basis, minimizes redundant information and permits an easy implementation for discrete data sets. Any
arbitrary signal can then be represented exactly as a sum of basis functions weighted by the wavelet
components. Since time dilation by a factor of 2 can be efficiently implemented simply by dropping
every other sample of a discrete-time signal (sub-sampling by a factor of 2), the transform to be applied
here (DTWT) only considers time scaling by powers of 2. An important particular case of the WT is that
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some wavelets ‘¥, () exist such that the family is an orthogonal basis (Chui, 1992 and Daubechies,
1992):

q’p.q(r)'_'_‘[;_—;‘y(z_pt_q) _ ®

Orthogonal wavelets, such as the well-known Daubechies wavelet series, offer fast algorithms and no
redundancy in the decomposition {Daubechies, 1992 and Newland,. 1993).

In order to demonstrate the superiority of the WT over the conventional FT, the signal in Figure 1 is
analysed using the Daubechies 20-coefficient mother wavelet (Daubechies, 1992). This wavelet is a
smooth bandpass function and convenient for filtering a signal at different scales. It is band-limited in

frequency for each scaling parameter p. The frequency bandwidth of ¥, (@) depends on the scaling

parameter p and is bounded by 27/72.5< f <2°/13.9 where f is given in Hz. Figure 4 shows time
and frequgﬁcy-plots of the Daubechies 20-coefficient wavelet. Note that this wavelet at the level shown
“(p=5) is band-limited between 0.22 < f <1.15 Hz. Other levels would give wavelets with the same
shape but different scales, positions and frequency content.

Figure 5 demonstrates the WT coefficients of the signal in Figure 1 at 8 different scales. In this
figure, each step is a representation of one shift for the analysing wavelet and the corresponding wavelet
component for that particular time location. For example, with p =35, there are g =2°=32
components (one component for each shift) or steps. Because of multipie scaling capability, the WT is
able to detect all the frequency components of the signal at different scales (the corresponding frequency
band for each wavelet basis is shown on the right side of the figure). Comparing with the STFT where
only one resolution is used for describing the smail and large size of the features, the WT distribution
gives multiple resolution so that different sizes of details in the analysed signal have been described
effectively from low to high scales.

Since the Daubechies 20-coefficient wavelet is band-limited in frequency, wavelets with a larger
scaling factor p capture the higher frequency components of the signal. The largest value of p will
provide us with the exact locations of the sudden frequency transition points in the signal. These
transition points are captured at the start and the end of sin(20¢) waveform, where there is an abrupt
change in the frequency content of the signat.

1.0
T e
0.0 U U U I_ 0.0 0.0
_ | 05}
40} -0.707
p=0 p=1 p=2

'Fig. 6 Haar wavelet basesatthrcediﬁ'erem scales

In the present study, we used two different sets of discrete orthonormal wavelets: Daubechies 20-
coefficient wavelet (Daubechies, 1992) and Haar wavelet. (Strang, 1989). The analysing Daubechies 20-
coeﬁicwntwaveletwasdnscussedmﬂmprewdmgpamgaphs The Haar wavelet is a compact unsmooth
function. which is better for lower accuracy appreximation and for signals with sharp discontinuities.
Figure 6 shows the time domain representation of Haar basis wavelet at three different scales. We used



ISET Journal of Earthquake Technology, June-December 1999 95

the above wavelets to analyse the strong motion data recorded at Yerba Buena Island and nearby Treasure
Island during the Loma Prieta earthquake in 1989.
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ANALYSIS OF STRONG GROUND MOTION DATA

An important application of recordings of free field strong motion accelerograms from severe
earthquakes is the analysis of the response of the upper few hundred meters of the earth to waves from
these earthquakes. It is weil known that surface geologic characteristics can significantly affect the nature
of strong ground shaking collected at each location. In this case, evidence of soil liquefaction was
widespread on the interior of the Treasure Island with numerous large sand boils following Loma Prieta
earthquake. Figure 7 shows the E-W, N-S and vertical components of acceleration data recorded at
Treasure and Yerba Buena Islands during the main shock event. The effect of soil conditions on the
intensity and characteristics of the ground motion recordings at the two sites is evident from the recorded
accelerograms. The duration of severe strong shaking lasted approximately 5 to 7 seconds for the
horizontal excitation. The mam horizontal motions were in the time range of 10 to 15 seconds for
Treasure Island and 8 to 15 seconds for Yerba Buena Island, then decaying rapidly in time. The E-W
accelerations have larger amplitudes compared to the N-S accelerations mainly because of the direction of
fault rupture. The vertical acceleration was about 10% of the E-W acceleration for the Treasure Island
and about 40% of the corresponding E-W acceleration for the Yerba Buena Island. The Treasure Island
record was amplified, as the soil conditions there are different than the bedrock characteristics of the
Yerba Buena Island.

We can easily recognize the anomalous behaviour of the Treasure Island site between 13 and 15
seconds in the E-W and N-S records. This part of the records seems to be dominated by waves of longer
period compared to the main part. The vertical record at Treasure Island site shows two bursts between
13 and 15 seconds, as shown by the arrows in Figure 6. These anomalous pulses may indicate some
specific characteristics of the soil evolved during that particular time period. The impulse-like phase
between ¢ =14 seconds and 7 = 15 seconds shows a large late energy armrival at this time interval. Such
a behaviour is not identified in the Yerba Buena Isiand records. We therefore conclude that completely

different signals in terms of amplitude and frequency content arrived at the two sites between 8 to 15
seconds.

WAVELET ANALYSIS AND RESULTS

Conventional Fourier analysis of the time domain accelerograms may not reveal the characteristics of
the above-mentioned phenomena thoroughly. Since the events are apparently localized in both time and
frequency, the WT analysis is expected to be suitable to identify the characteristics of the signals. We,
therefore, conducted the wavelet analysis, using the Daubechies 20-coefficient analysing wavelet
described in the previous section, of the acceleration data recorded at Treasure and Yerba Buena Islands.
Figures 8, 9 and 10 show the resuits of the WT for the vertical, E-W and N-S components of Treasure
Island acceleration, respectively. The above figures represent normalized values of wavelet coefficients -

w,. (a:e_le’ |Wp'q]) for different values of p (frequency scale). Each bar is then located at the time of

the centre of an analysing wavelet for each ¢ (time scale). Since the Daubechies 20-coefficient wavelet
is band-fimited in frequency, wavelets with a larger p cover the higher frequency content. Figure 11
shows the reconstructed E-W acceleration of Treasuse Island only from wavelets of one value of p over
all g's. In other words, these accelerations correspond to bandpassed accelerations although the concept
of the WT is entirely different as explained in the previous sections.

As it is observed from the distribution of peak wavelet coefficients at different scales in Figure 8, the
main energy of the vertical motion at Treasure Island site lies in the frequency range of p=71t09 or
about 2.30-7.06 Hz. The wavelet amplitudes in this frequency range decay after 15 seconds and no
significant later arrivals are observed. It is noted that for p =10 or 7.06 < f <3683 Hzand p=6 or
0.88 < f <2.30 Hz, the normalized wavelet coefficients are relatively small indicating that little energy
was concentrated in the frequency range below 2.30 Hz and above 7.06 Hz. The two anomalous phases
indicated by arrows in Figure 7 are captured by the peak wavelet coefficients at scales p =7 and 8. The
small magnitudes of wavelet coefficients around these localized pulses for scales lower than 7 and higher
than 8 indicate that the pulses are concentrated in the frequency range of 2.30-3.53 Hz. 2.30 Hz is the
upper bound for p = 6, while 3.53 Hz is the iower bound for p=9. For the Treasure Island vertical



ISET Journal of Earthquake Technology, June-December 1999 10

wavelet coefficients, there seem to be two separated energy arrivals: one at the very beginning of the
record and the other centred between 13 and 15 seconds. The one at the beginning of the record between

2 to 4 seconds has a frequency concentration between 4.60-7.06 Hz (p =8 and 9), while the later energy
arrival between 13 and 15 seconds lies in the main frequency band of 2.30-3.53 Hz (p =7 and 8) . 460
Hz is the upper bound of the wavelet coefficients at scale p=7. The wavelet coefficients at this scale
do not indicate any high peaks between 2 to 4 seconds meaning that this part of the record contains very
low concentration of frequency components in the range of 0.88-4.60 Hz. As mentioned above, the
wavelet coefficients were, generally, low at scale p =10 or frequencies above 7.06 Hz. - This clearly
implies that there was a significant reduction in the frequency content of the vertical record from the start
of the main motion to about 13 scconds into excitation which would indicate that the soil had
considerably lost its stiffness characteristics in the vertical direction after the first few scconds of the
excitation.

In contrast, the wavelet coefficients of the E-W and N-S components of Treasure Island indicate that
the main energy armival was restricted between 11 to 15 seconds and that the wavelet amplitudes have
relatively small magnitudes before 11 seconds and after 15 seconds. The input energy for the E-W and
N-S components of Treasure Island was mainly concentrated in the frequency range of p=5to7 or
about 0.576-1.77 Hz (for higher and lower frequency resolutions, the wavelet coefficients diminish to
relatively small amplitudes). It is noted that for p =4 or 0.11 < f <0.576 Hz, the normalized wavelet
coefficients are relatively small indicating that very little energy was concentrated in the frequency range
below 0.576 Hz. The wavelet peaks in this frequency range (p = 4) are mainly concentrated between 15
and 25 seconds indicating a very low frequency characteristic of Treasure Island record after 15 seconds
(after the occurrence of last impulse-like phase). It is noted that the frequency band of Treasure Island
record after 15 saconds is mainly concentrated between 0.22-0.44 Hz. A comparison between Figures 8,
9 and 10 indicates that both the energy arrival and frequency band of wavelet coefficients for the vertical
and horizontal (E-W and N-S) components of Treasure Island site are significantly different.

The WT can also provide us with further information regarding the characteristics of the last short-
impulse energy arrival at Treasure Island site. Figure 9 shows that the last anomalous phase seen in the
E-W record between 14 and 15 seconds has a high wavelet coefficient for p =5, This indicates that the
main energy of this impulsc-like phase is concentrated in the frequency band of 0.576-1.15 Hz. It 1s
noted that the wavelet amplitudes are relatively small between 14 and 15 seconds for p=6to10. The
wavelet coefficients at scales p =9 and 10 represent a peak concentrated around 15 seconds indicating
a significant transition in the frequency content of the signal at this time. Beyond this point, after 15
seconds, the behaviour of the signal is dominated by waves of very low-frequency content and low energy
potential mainly at scales p =3 and 4 in the frequency range of 0.055 - 0.44 Hz (no significant wavelet
coefficient is observed between 15 to 30 seconds for frequency bands above 0.44 Hz). The spikes
observed at the highest Daubechies 20-coefficient wavelet scaling parameter, p =10, are representatives
of abrupt changes in the frequency content of the signals. There are two distinct spikes observed at this
high resolution at the Treasure Island site in both the E-W and N-8 directions. The first spike in the E-W
direction is seen around 13 seconds while the second spike is near the 15 seconds. In the N-S direction,
the first peak is observed around 14 seconds while the second spike is located at the exact same time as in
the E-W direction. The first two spikes could be interpreted as the first major change in the frequency
content of the soil at the Treasure Island site which occurred with approximately 1 second time lag in the
E-W and N-S directions. The second spikes. occurred at the same time in both directions, are the
representatives of the most severe abrupt change in the frequency content of the signals where the overall
characteristics of the soil were altered by the earthquake. At about 15 seconds into the recorded motion,
the soil in Treasure Island site liquefied, which resulted in a drastic change in frequency content of the
signal at this point. The fact that there is not any apparent peak at the highest resolution of the wavelets
beyond 15 seconds indicates that the frequency content of the soil was not affected by the eanhquake
beyond this point and the change in the overall behaviour of the soil was permanent.

The reconstructed accelerations at each wavelet scale, shown in Figure 11, clearly simulate the last
peak energy arrival at the Treasure Island between 13 and 15 seconds at wavelet scale p=5. The

reconstructed accelerations at scales p =7 to 4 show a progressive drop in the frequency content of the
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record from about 11 seconds to 15 seconds. This is provided by a shift to the right in the acceleration
peaks at cach scale.
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Fig. 12 Magnitude of windowed FT for the E-W component of Treasure Island

Taking into account the results of wavelet analysis, the Fourier theory was employed to study the
changes in the fundamental frequency of the Treasure Island E-W acceleration component. As mentioned
above, in order to have a reliable estimate of the frequency content of a signal, the effects of sudden
discontinuities on the frequency domain analysis of the signals should be minimized. This could be
achieved using the results from the wavelet analysis. Therefore, the peak frequencies were estimated
based on the windowed FT analysis of the recorded E-W acceleration. Figure 12 shows the results of FT
analysis of Treasure Island E-W acceleration record for three different window locations and for the
whole record. As shown in Figure 12, for the early part of the record (between 0 and 12 seconds) the
dominant frequencies are around 0.8 Hz and 1.8 Hz. As the window is placed between 13 and 15
seconds, the dominant frequencies reduce to 0.5 Hz and 1.5 Hz. After 15 seconds into the strong motion
shaking, the dominant frequencies were reduced significantly to around 0.25 Hz and 0.7 Hz. This
progressive reduction in the frequency content of Treasure Island E-W acceleration was also noted by the
wavelet analysis. It is noted that the FT of the entire record mainly reflected the dominant frequencies
between 13 and 15 seconds, as the total energy of the earthquake was significantly concentrated in this
time window.

For Yerba Buena Island, the distribution of peak wavelet coefficients for the E-W component of the
accelerogram, Figure 13 exhibits the main concentration of energy between 8 to 13 seconds of the record.
The frequency content of the record in this interval is concentrated at scales p=6,7 and 8 between

1.15-3.53 Hz. For high wavelet scale parameters (» = 9 and 10), the peak cocfficients of WT decrease
to relatively small values after 15 seconds. At scale 10, however, there are some modest wavelet peaks
between 11 and 15 seconds indicating the presence of abrupt changes or high frequency components in
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the signal between 11 and 15 seconds; before 11 and after 15 seconds, the wavelet coefficients are
relatively small.
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Fig. 13 Absolute magnitude of coefficients for the Daubechies 20-coefficient wavelet analysis of
the Yerba Buena Island E-W acceleration, with bars at the centre of the corresponding
analysing wavelet in time g for each frequency range p (thin line represents the

recorded E-W acceleration for comparison purposes)
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In order to achieve higher accuracy in determining sudden frequency shifts in the signals, both
Treasure Island and Yerba Buena Island records were analysed using Haar wavelet. The results of the
Haar wavelet transform for both records at the finest scale, p =10, in comparison with Daubechies 20-
coefficient wavelet transform are shown in Figure 14. There are some noticeable peaks at this scale in
Treasure Island and Yerba Buena Island records. The Haar wavelet is more sensitive in detecting the
variation of frequency content of the signals as we observe more pronounced spikes (larger wavelet
coefficients) in both records. Most of the wavelet peaks have similar temporal domains for both
Daubechies 20-coefficient and Haar wavelets. Similar to the resuits from the Daubechies 20-coefficient
wavelet analysis, the one last large peak in the Treasure Island record near 15 seconds could be attributed
to the major transition in the frequency content of the signal when the soil underwent a drastic change. At
about 15 seconds into the recorded motion, the soil in Treasure Istand site liquefied, which resulted in a
severe change in the frequency content of the signal at this point with no other changes beyond this point.

CONCLUSIONS

Wavelet transforms can be very useful to identify any phases in a signal which are localized in both
time and frequency. The present wavelet analysis reveals the properties of an anomalous impulse-like
late energy phase m Treasure Island accelerogram. The phase is found to be between 13 and 15 seconds,
and with a frequency range of 0.22-0.44 Hz. The orthonormal wavelet coefficients also give information
about sudden frequency changes in the records. In this case, it has been possible to identify anomalies in
the records associated with soil liquefaction by analysing the two records and detecting the change in the
dynamic behaviour of signals which occur when there is an abrupt change in the frequency. Considering
the time lag between the two records, some of the peaks are associated with the inherent abrupt changes
in the frequency content of ground motion. The one peak at 15 seconds, however, could be attributed to
the most abrupt change in the frequency content of the Treasure Island signal.

Since there are rapid developments being made in studies of wavelet transforms, the present
Daubechies 20-coefficient or Haar wavelets are not the ultimate tools to establish time-scale planes for
seismological data. The Haar wavelet is usually more suitable for detecting edges in a signal. The use of
an appropriate analysing wavelet for seismic data is a key to making data analysis successful. The present
wavelet transforms demonstrate a great potential for the study of interesting features hidden in strong
motion data.
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