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ABSTRACT

A relisble technique for analyzing the inclastic dynamic response of reinforced concrete
stack-like styetures is presented in this paper. The deformed eonfigwestion of stack is
idenlized as an assemblage of belyt clements and the element mamices are evaluated utilizing
the actusl stress-strain relationships of concrete and reinforcing steel. An adaptive time-step
reduction scheme is suggested for efficient evaluation of the inelastic response. An exampie
earthquake response analysis is presented to demonstrate that the stacks can sustain
significant inelastic deformations without collapse. A significant part of seismic input energy
is dissipated through hysteretic action, and therefore, stacks could be designed for ductile
behavior.

INTRODUTION

Reliable design of stack-like structures, e.g., intake-outlet towers, chimneys, etc.,
located in highly seismic areas requires the determination of their capacity to resist the
dynamic forces induced by intense ground motions. For such intense motions, that may occur
rarely during the life of the stnacture, significant inelastic behaviour (and limited damage) is
generally apticipated and safety of thesc structures is ensured by providing sufficient
ductility. Frequently, however, codes are not explicit about the interaction between design
elastic strength and actual ductility capacity.

Lack of research on the nonmlinear response of reinforced concrete stack-like
structures, ‘and on the collapse threshold for such structures subjected to ground shaking
precludes reliable evaluation of their ductile behaviour. For many years, it has been assumed
that in stack-like structures, it would be difficuit to develop lateral displacement ductility in
excess of two (Newmark and Rosenblueth, 1971, Chopra and Liaw, 1975) because extensive
yielding of onc section may lead to extensive displacements or collapse. Very slepder stacks
may be speciaily vulnerable because of the importance of gravity effects. Therefore, most of
the design standards (ACI 307-79) specify incressed design earthquake force-level for stack-
like structures than those for buildings, besically not to impose large ductility requirements
on such structures.
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Howwer,dynmnicmbiﬁtyufpmpeﬂyddaﬂedmksinlheinehsﬁcmge,wm
after extensive yielding of one section, can not be ruled out because carthquake ground
motion acts for a very short duration and rapidly changes direction several times.
Consequently, the actual earthquake resistance of the stacks may be significantly more than
what is estimated from the existing methods using elastic dynamic analysis. It is, therefore,
necessary to develop a better understanding of the inelastic {ductile) behaviour and actual
seismic resistance of reinforced concrete stacks. )

in earlier investigations on inelastic response of reinforced concrete stacks, a bilinear
elasto-plastic stress-strain relation, with equal yicld strength in tension and compression, was
assumed for the equivalent homogeneous material (Shiau and Yang, 1980). Additionally, the
effects of geometric nonlinearity were not included in the analysis, The prediction of true
collapse threshold of reinforced concrete stack-Tike structures under strong ground metions,
however, requires 2 more rigorous formulation that can ineorporate realistic material behavior
and, the effects of gravity. The objective of this investigation is therefore to develop reliable
techniquies for analyzing the inclastic dynamic responas of reinforced concrete stack-like
structures.

FINITE ELEMENT FORMULATION

System, Discretization and Coordimate System

The system considered consists of a tapered reinforced concrete stack with hollow
circulas cross-section fixed at the base. The stack cross-sections are provided with two rings
of longitudinal reinforcements and cages of circumferential reinforcement placed near both
the inside and outside faces of the section (Fig. 1). It is assumed that the bar sizes and spacing
of circumferential steel, selected in detailing, are appropriate I} to prevent premature
buckling of the longitudinal reinforcement, and 2) to provide sufficient shear resistance so
that the collapse of the stack is due to crushing of concrete in primary stress arising from
axial load and flexure. The stack is analyzed for the singte horizontal component of the free-
field ground acceleration, and therefore, only planer vibrations of the stack are considered in
this investigation. ’

An incremental step-by-step finite element procedure is foliowed for the nonlinear
analysis, in which solution is obtained at closely spaced discrete time steps. The deformed
configuration of the stack is idealized as an assemblage of beam elements (Fig. 2). Sufficient
number of beam elements are used so that the rotations relative to the chord of the deformed
element are small. This allows the idealization of the curved deformed beam element by the
straight chord passing through the current positions of the two end nodes. The stack as &
wholc can undergo large deflection and large rotation but small strain. For each’ beam
eMalocalcoordinalesystanx—ypassingthmughthetwoendnodes,isdeﬁned(Fig. 2).
ﬁeaiainmddmctionofthiscoordimtesystemmconﬁhmusly updated eccording to the
cmnmposiﬁoDsofthetwuendmdﬁ.Thusﬁgidbodymoﬁonsmclimimudmdﬂn
assumption of small displacement theory remains valid when the incremental displacements
ofﬂieele:nmtfmﬂwnmctloadmpmrcfemdtoﬂﬁslomicoordimtc system. Equilibrium
equations for each element are written in the local coordinate system and then transformed to
the fixed global X-¥ cootdinate system by using transformetion mutrices that are contimagusly
updnted.
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Displacement and Strain Fields

The centroidal axis of the beam element has been delected as reference axis in the
finite element formulation (Fig. 2). Axial displacemerit at.the centroidal axis y(x) is
computed from the nodal displacements at beam ends, v, ant u,, using lincar interpolation
functions. Because of cracking and material nonlinearity, nentral axis may not céincide with
the reference axis, and therefore, ari additional incompatible axial degree of freedom, u,, at
the mid point of the element is considered to allow linear varidtion of axial strain along the
reference axis (Chan, 1982). This incompatible degree of feedom is, however, condensed out
ot the element level. This leads to:

%
w=[v, ¥; v.Ji% m
ul
where{
' X, _x, 2
w|—l—z. Va=Ti W L(l L) @

in which L is the length of the element. The transverse displacement of the reference axis is
computed from the nodal displacements in the transverse direction, v, and v,, and rotations €,
and 8, at the beam ends, using standard cubic Hermitian interpolation functions (Bathe and
Bolourchi, 1979), i.e.,

hg!

V2
"o=[¢1 4; & ¢4] ()]

8,

8,

RGN0 RO S
o ORI B OR O I

The axial dispiacement ufx,y) and transverse displacement vfx,y) at any point within the beamn
element are obtained by Euler Bernoulli’s beamn kinematics, i.c.,

weig-y 22 )
vav, ©

where u,, v, are the displacements of the centroidal axis along x and y axes, respectively, The
axial strain, €, at any point is then expressed as:
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Lyl Ay 1 dv |
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In this equation £, and £, are linear and nonlinear components of the strain, respectively.

For evaluating the element matrices the cross-section is discretized into » number of

strips parallel to the neutral axis (Fig. 2). For each strip of concrete, stress at sty instant of
time is computed acconding to the strain at the centroid of the strip using the cyclic stress-
strain relationship of concrete. Similarly, each reinforcing bar is idealized independently and
the stress in each reinforcing bar is computed according to the strain at its centroid using the
cyclic stress-strain curve for reinforcing steel. The stress-strain relations of concrete and
reinforcing sieel used in this study are presented next.

Stress-Strain Relationship of Concrete

The mathematical model for cyclic ‘stress-strain relationship of concrete, used in this
study, is shown in Fig. 3. The envelope of the cyclic stress-strain curves in compression is
represented by the curve obtained by monotonically increasing the load. The envelope curve
consists of a second degree parabola for the ascending branch and » linear softening branch
(Park and Ruitong, 1988). The pamabolic pent is represented by

2 .
fe)] :
£y (6o

where o and e, are concrete stress and strain respectively, o, is the compressive streugth of
concrete, and €,=0.002 is the strain &t maximum stress. The linear softening branch is
defined by an ultimate compressive strain ¢, snd a corresponding stress of 0.20,,. Concrete is
assumed to have no tensile strength.

Thqchcmﬂodmg-mlondmgmlmumnedwbem If the maximum
ﬁnpoudstmmmﬂeuluadms,,ﬂnsbpeoﬁhembndmqumdmgpﬁhuequl
to the initial tangent modulus of elasticity E_. If the maximum imposed compressive strain in
concrete is greater than ¢, the slope of the unloading-reloading path is equal to E.F,, where
F, is given by (Blakely and Park, 1973} :

et )

€ty

F =08- )]
in which e, is the maximum compressive strain attained. The reduction factor F, takes into

mmﬂndegmdmonofmfheufmboﬂ:m!ondmsmdrdodmgmfmmng
values of maximum strain.

Stress-strain Relationship of Steel
The stress-sirain relations of ninforcing steel, used in this study, is assumed as a
(Fig. 3). Stress-strain relation of reinforcing steel is assumed to be same in both tension and

1
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compression. The slope of the unloading-reldading branch is same as the initial elastic
modulus of steel. The reinforcing steel is assumed to fail when the strain in any direction
cxceeds the ultimate strain €,. The complete stress-strain behaviour is defined by four
parameters: initial modulus of elutlclty E,, strain hardening modulus E,,, vield stress o,
and ulumate strain e,

Equations of Motion

Knowing the solution at time ¢, the incremental equihbnan equations of motion at
time ¢ + At are obtained from the principle of virtual work. Let Ax and Ae be the increments
in stress and strain, respectively, from time 1 to 7+ A¢. Expressing the strain increment As
as a sum of linear and nonlinear components of strain (Ag, + At ), the linearized equations
ofmotionarg{Batlw, 1982) :

T |Ag, E 84, dV* + [o8Ae, dV’ = z j—{a,m v,w]p{ }dV‘
s e e . (10)

T

where the summation sign indicates sum over all the ¢lements. In equation (10), E, is the
tangent modulus of elasticity for uniaxial state of stress of the infinitzsimal volume element at
time £; i3, and ¥5, are the total accelerations of the volume element at time ++At in the
local x and y directions, respecuvely, §Au and §Av are the corresponding virtual
displacements; 5 Ae is the virtual strain; p is the mass density of the stack material; g is the
acceleration due to gravity; and n, and n, are the direction cosines of the local x axis with
respect to global X and Y axes.

. The incremental displacement field within the beam element is expressed as a
function of the nodal displacement increments using the displacement interpolation functions
[equations (1) and (3)). Substituting the displacement and strain interpolation’ functions,
equation (10) can be expressed in terms of the nodal displacement increments:

Z(k ), Avy +Z(k'),Av, =Z Rl 28 o ) (1)

where m, is the clement mass matrix, (k,), is the element elastic stiffness matrix after
eliminating the incompetible axial degree of freedom u, by static condensation, and (k,), is
&welemmﬁgmemmﬂnessmam&dldeﬁmdmmeelmlocdoootdmaymu
time . In this equation, Avy is vector of incremental displacements at the element nodal
degrees of freedom; ¥{!%) is the vector of total sccelerations at the clement nodal degrees of
freedom; and rf is the equivalent nodal load vector at time ¢ due to gravity. In evaluating the
clement matrices, numerical integration over the length of the elément is performed by Gauss
quadrature, and over the cross-section at each (Giauss point by layer integration.

The equilibriurm equation of the entire structure is obtained by the standard direct
stiffnzss agsembly process. Before the element matrices are assembled, they are transformed
to fixed global coordinate system using the updated transformation matrices. The assembled,
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linearized, incremental equations of equilibrium, including the damping term, for planar
vibrations of stack subjected to ground motion éiy at time ++4r, where Ar is the increment in
time, arc;

(Kn ).rAVa + (K‘), AV, = —Ml(lxtii']HN + “?HN )+ Rrl - Fr - Cl‘.'HA.r (12)

in which M, is the structure mass matrix, (K,), is the structure elastic stiffness matrix and
(K,), is the structure geometric stiffness matrix, all defined in a fixed global coordinate
system for known equilibrium configuration at time #;, ¥,,; and ¥,,, are the vectors of
relative velocity and acceleration, respectively, at time r+Az; 1y is the vector of ones and zeros
identifying the degrees of freedom in the direction of ground acceleration [iig].ar s RY is the
equivalent nodal load vector due to gravity for the entire structure at time ¢ ; and C, is the
structure damping matrix. In this formulation, an instantaneous Rayleigh damping matrix is
used to give the specified damping in the first two modes throughout the time history
analysis, i.e.,

C,=aM, +5(K,), (13)

The coefficients, g, and &,, are computed from the tangent frequencies in the first two modes.
It may be noted that the mass matrices of the clements in their local coordinate axes remain
constant but the transformation matrices from local to global coordinates change due to
change in geometry of the structure. Therefore, the global mass matrix changes with time.

Equation (12) can be solved by time integration procedure for the incmemental
displacements, velocities and accelerations. However, the values obtained for displacements,
velocities and accelerations at time #+Ar by adding these increments to known values of
displacements, velocities and accelerations, respectively, at time /, may not satisfy the exact
equations of equilibrium at time ~+Ar. Therefore, iterations are performed within each time
step so that equilibrium is satisfied at time +Ar.

Response Quantities

Once the nodal displacement increments are known, strain increment at any point
within the element is obtained from the strain displacement relations [equation (7)]. The
incremental strains are added to the strains 2t time ! to obtain the current state of strain. From
these strains, stresses are calculated from appropriate stress-strain curves. Bending moment,
T, at each Gauss point is computed by taking moment of the forces in the concrete iayers and
reinforcing steel bars about the centroidal axis of the section as:

N, N,
M=[yodd=3 v, 4,04+ v, 4,0, (4
4 =l =

where A, is the area of concrete layer i; y,, is the distance of concrete layer i from the
centroidal axis of the section; o, is the stress in concrete at the centroid of concrete layer i,
4y is the area of steel bar j; Yy is the distance of the center of the steel bar j from the
centroidal axis of the section; and a is stress in steel bar j. N, and ¥, are the total number
of concrete layers and steel bars, respectively. Equivalent moments at the two ends of an
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mmwwmmmmmtﬁﬂmw&wam
poh!hmpﬂdbydﬁngmefawhmhm-ﬂmwu:

. N
P=jua=§a,o,+24,o, (15)
A =l
Aﬂﬁuhmeﬁmkﬁmuhmd&uﬁh&dhmm

Selsmic Encegy Computaiion
The sbeolute energy formulation (Uang and Bertero, 1990) has been used to derive the
energy balance equation:

E=E +E+E, (16)
mmmwm%mofm(lﬁmwwmmh
correctness of the solution. The total seismic input energy, E,, in equation (16) is computed
as

E =[(#7) M, dv, an
in which ¥ is the total acccleration vector at time ¢ , snd v, is a vector defined by 1,v,,
where v, is the grownd displacement at time 1, and 1y is the vector of ones and zeros
mmmammumammmﬁnmm
hﬁgbthﬂddehe@ﬁim(lﬁ)wﬁemlﬁndcw.&,

E, =[P M de (s
The second term represents the damping energy, E,,

E{‘;*lrcléld 19

The third term represents the total deformation energy, E,,, inchuding both recoversble elastic
energy, E,, and the non-recoverable hysteretic energy, E,:

E=E+B,= [ -RIY v @
expression of total deformation energy.
The recoverable clastic encrgy, E,, at any instant of time is estimated by
Y (Gl P
E, ZVI‘ " @n

where © is the stress at the infinitesimal volume clement at time 1 o, is the initial stress due
1o self weight of stack; and E, is the modulus of elasticity of material st time ¢. This estimate
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ofneownbhduﬁcmgyinthemofiniﬁdmisvﬂidwbmdnmodulusof
clasticity in unloading does not change with time, Since slope of the unloading branch of
mmmwmnmm%,u-bmmmumm
mwhenomuesmhilmethmeq. Additionally, the contribution of the gravity
eﬁeaaintherewvmbhmgyismhnmdﬂncfomnmdedmwdudﬂededvingﬂn
muimhﬁcmvmﬂedaﬁcw, E,, in the present study. The estimates of
hylueﬁcmgydiuipaﬁou,E,:E,—E,,thaefmwiﬂnﬂhawﬁgﬁﬁmmhecm
movuabkduﬁcwisnegligibleinmpaﬁnnbdummmbhbyﬂeﬂic
coergy after the strong excitation phase of the ground motion.

SOLUTION PROCEDURE

Direct Time Integration With Equilibrium Iteration

_Thelimarimdequﬂionofmotimulimeﬁu[equaﬂon(u)]issolvedbydimtim
mmmw.wmmmmmunhmmmvemm
uﬂmlaﬁomﬁmﬁmfb&&mhewmmofﬂwdispm

! 1 . 1 , b Y . Y

AV, = ——. ———, =, =" -4 -

= arp Av, va, 2 V,; Av, MAV, ﬂv,+Ar[l 2 ¥, 22)
where B=1/4 and ¥ =1/2. Bocauss of the linearization of the exact oquation of motion,
i 'miulﬁmmpuﬁlmdwiﬂﬁumhﬁmmﬂngNemenphmn'sm.

Thcmmningeqmﬁouforﬂne(klhtiﬁmﬁonﬁﬂﬁnaﬁmenephmad\e.lmy

(K5 + &, ) +;lz-§M, + L€ v =MLk, +RE -

AB
M [—L-Av'——l-—\" -(l—-l)i]—C[-LA{v‘-(l-m +ar1-Ly,) ®
tmzﬁ [] m fl ZB ] :A‘B ] B ¢ FAM 2B [}
where
Av) = Avi 1 (24

mwtmm&mmemm{m&edimham(v,+Avﬁ).
Mmanddampingmmieuuﬂwbegimingofa&mcswpmkeptmmnforalld:e
Aﬂueachilu:ﬁmmesolmimischeckedfurmnmwewithmpeotmpmibed
mmmmmummmuw
m.hfolhwhgmui&ﬁanuedhﬂnms&dy%lﬁz):

AR/ "+ AP Syt
!IA'FLIl(f.;; ,lj-‘:v{*' (s !F‘r_ol;'r?v“‘r (€ @29
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where AF#! is the unbalanced effective force vector after (/+1)st iteration, and | |, denotes
Euclidean vector norm. The convergence limits f,, and d,; are taken as 10+ and 107,
respectively, and the energy tolerance, e, is taken as 107, i.c., the product of £, and d,,;.

Adaptive Reduction of Time Step

In nonlincar earthquake analysis of reinforced concrete stacks, main sources of
nonlinearity are cracking of concrete, yielding of reinforcing steel and nonlinear stress-strain
curve of concrete with strain softening at higher strain. Large time steps in the numerical
integration scheme sometimes lead to instability of the solution. Therefore, to ensure
convergence to right solution, a typical reinforced concrete stack (Fig. 1) is analyzed
repeatedly for S69E component of Taft earthquake (1952), acaled up to a peak acceleration of
1.8g, with reducing time steps of integration. It was observed that a very small time-step, i.e.,
0.0005 sec., needs to be used in numerical integration scheme for this stack to achieve
convergence of all response guantitics.

The envelope values for lateral displacements, shear forces and bending moments
along the height of the stack, obtained with integration time steps of 0.0005 sec., are
presented in Fig. 4. However, using such a smail time-step throughout the ground excitation
record requires prohibitive computational efforts. Therefore, an adaptive time-step reduction
procedure is proposed in which a large time-step is used initially, and whenever
displacements or forces change rapidly, time-step is adaptively reduced.

In this adaptive time-step reduction procedure, the time step is haived when strain
increment in any strip, or in a reinforcing ber, at any of the Gaunss points exceeds twenty-five
percent of the yield strain of reinforcing steel, or when the incremental moment at any Gauss
point exceeds five percent of the moment capacity st that section. The limit on the atrain
increment ensures a smooth change in equilibrium configuration. The limit on the
incremental moment restricts rapid change in forces dve to closing of cracks or unioading in
any step. Apart from these two limits, the time-step is halved if convergence is not achieved
after four iterations for equilitrium in a time-step. Whenever the normal time-step is“reduced,
the next incremental time-step is adjusted to complete the normal time-step so that the
subsequent integration could be continued with normal time-step. The response results
obtained using @ normal time-step of 0.02 second with adaptive time-step reduction,. and
those that are obtained with & constant time-step of 0.0005 second, have been compared in
Fig. 4. The response results in these two cases are in excellent match, whereas the
computauonnleﬂ'onreqmmdmmepmposedmethoduomeiahthofthunqmud with the
constant time-step of 0.0005 sec.

NONLINEAR RESPONSE, : NUMERICAL EXAMPLE
The developed procedure is utilized to obtain the noalinear earthquake response of a
typical, linearly tapered, reinforced concrete stack (Fig. 1). The mass density of the stack
shell is assumed as 3000 N-s%/m* to give the axial force ratio P40, =0.2 at the basc,
whemPisﬂwaxialfmceutbase,Agistlwareaofcmsssectionuhase.md Oy is the
maxitmum compressive stress of concrete. The maximum compressive stress, o, and the
ultimate compressive strain, €, of concrete are taken as 13.33 MPa and 0.005, respectively.

12
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The parameters defining the stress-strain curve of reinforcing steel are teken as: o, =380
MPa, E, =2x10° MPa, £, =E,/200,and g, =0.

The stack is discretized into 20 equal beam elements and in each element, three Gauss
points are considered for numerical integration along the length of the clement. At each gauss
point the cross section is divided into 72 strips (Bify. 2). Two hundred individual reinforcing
bars are considered in each of the two longitudinal reinforcing stesl layers to give the
reinforcing steel area equal to 0.5 percent.of the area of concrete. The normal time-step of
integration is taken as Ar=0.02 second, which is about 1/220 of the fundamental time period
of the initial unloaded structure, with adaptive reduction of time-step as méntioned earlier. An
instantaneous damping matrix is used to give three percent damping in the first two modes. A
single horizontal component of Taft ground motion (S69E), scaled-up to 1.8g peak ground
acceleration, is used in this study. Although this highty intense ground motion is very
unlikely to occur anywhere, the same is used here to ensure that the stack goes into
considerable inelastic range.

The stack is analyzed for the scaled up Taft ground motion assuming both material
and geometric nonlinearities, and the response results are compared with those obtained from
linear elastic analysis for the same ground motion. In the linear eiastic analysis, the modulus
of elasticity of concrete and that of steel are taken as the initial values in their corresponding
stress-strain curves.

The results of the computer analysis consist of the response histories of dispiacements
at nodal points and shear forces, bending moments and axial forces at the Gauss points along
the height of the stack. Additionally, the time histories of total input energy, total dissipated
energy, damping energy and hysteretic energy for the stack are obtained. Only a small portion
of the response results is presented in Figs. 5 and 6 for the exampie stack. Envelope vaiues of
lateral displacements, shear forces and bending moments along the height from linear and
nonlinear anaiyses are presented in Fig. 5, and various energy time histories are presented in
Fig. 6. The displacement envelopes obtained from the two analyses are almost simitar upto
the height where maximum yielding occurs in the nonlinear case. Above this level,
displacements in the nonlinear case arc more apparently because of large rotation at the point
of maximum yielding. As anticipated, maximum bending moment and shear forcs over the
height are much less in the nonlinear case because maximum bending moment permitted in
nonlinear case is the strength of the structure in bending. The actual bending strength of the
section along the height of the stack, computed from the yield stress of steel and muximum
compressive stress of concrete, is also shown in Fig. § that also demonstrates thit the section
capacity has been reached at the point-of maximum yielding.

The seismit: input energy dissipation in the nonlinear analysis is accounted for by both
viscous damping mechanisms, and the hysteretic action. The time histories of total input
energy, total dissipated energy, damping energy and hysteretic energy for the nonlincar case
have been shown in Fig. 6. As it is demonstrated, a significant part of seismic input energy is
dissipated through hysteretic action.

In order 10 understand why the stack remains stable even after significant yielding of
one cross-section, the displaced shapes of the stack at different instants of time (when
maximumn top displacement occurs) have been plotted in Fig. 7 along with ground
displacement at each instant. It is demonstrated in this Figure that the stack does not move in

14
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a single direction to total collapse due to reversal of the direction of ground motion.
Specifically, when the maximum top displacement i§ reached, direction of the ground
displacement reverses amd ‘the stack is forced to move in the opposite direction, thus
preventing collapse. It can therefore be concluded that for this example stack and ground
motion, even after significant yielding of one section, displacements and self weight are not

large enough to cause failure due to gravity effects because earthquake forces are of short
duration and reversible in nature. '

CONCLUSIONS

A reliable and efficient technique for analyzing the ineiastic response of reinforced
concrete stack-like structures has been presented. The finite element formulation presented in
this paper is based on the actual stress-strain relationships for concrete and reinforcing steel.
The overall efficiency of the analysis procedure lies in using the adaptive reduction of
integration time-step in the numetical scheme.

It has been demonstrated that a reinforced-concrete stack can sustain a severely strong
earthquake without total collapse if it is permitted to undergo inelastic deformations. The
stack remains stable even after significant yielding of one section as carthquake forces are for
short duration and reversible in nature. Because a significant part of seismic input energy can
be dissipated by hysteretic action, the stack can be designed for the ductile response.

APPENDIX 1: NOTATIONS
a time-dependent coefficient of mass matrix in Rayleigh damping matrix
b, time-dependent coefficient of stiffness matrix in Rayleigh damping matrix
C,  structure damping matrix at time ¢
E, deformation coergy
E,  modulus of elasticity of concrete
E)  hysteretic energy dissipation
E, seismic input enexgy
E,  kinetic energy
E,  recoverable elastic energy
E;,  modulus of elasticity of reinforcing steel
Eg,  straining hardening modulus of reinforcing steel
E,  tangent elastic modulus of material
E,  damping energy
F, modulus of elasticity factor for concrete
F, internal resisting force vector at time ¢
k,  element clastic stiffness matrix
k, clement geometric stiffness mutrix
K, structure stiffness matrix at time ¢
L length of beam element
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clement mass matrix

structure mass matrix -

bending moment at Gauss point ;

axial force on & section i

equivalent nodal load vector due 't%;’gﬁ‘vity in an element
equivalent nodal load vector due to gravity

incremental time step

displacement in the local x direction'at any point on the beam element
displacement in the Jocal x direction at any paint on the reference axis
displacement in the local y direction

¢lement nodal displacement vector

global displacement vector

global velocity vector

global acceleration vector

incremental displacement vector from time £ 1o ¢ + Ar
incremental velocity vector from time ¢ to ¢ + At
incremental acceleration vector from time £ to £ + At
parameter in direct time integration

strain in concrete E

strain in concrete at maximum compressive stress

linear component of the strain

nonlinear component of the strain

ultimate strain of reinforcing steel

incremental strain

parameter in direct time integration

stress at any point on the element

stress in concrete

maximum compressive stress in concrete

yield stress of reinforcing steel

incremental stress
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