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INTRODUCTION

Earthquakes are a source of critical ‘loading condition for structures located’
in the seismically active tegions of the earth. A significant feature of the earthquake
loading is a large measure of uncertainty associated with the earthquake phenomena.
To establish the design seismic loading condition for a structure it is necessary to
anticipate the” number, size and location of future earthquakesin the region surrounding
the site, during the service life of the structure. Further, this assessment should be
coupled with the prediction of structural response, and damage, due to random vibration
induced by ground motion of A given intensity. Both these steps involve uncertainty
at several stages. The problem is compounded by the fact that potentially damaging
$trong motion earthquakes occur after long intervals of time and the available data N
for such events is statistically insufficient. A probabilistic treatment of -earthquake ~
engineering problems, which involves assessment of seismic risk and random vibration
analysis, therefore, provides a rationai and consistent basis for aseismic design. (Housner,
1947;  Rosenblueth, 1951;  Bolotin, 1960; Cornell, 1967; Vanmarcke, 1977; Whitman
and Cornell, 1977; and Kiureghian, 1981), :

Over the past four decades concurrent developments_in the seismic risk analysis
the random vibration -theorys stochastic modelling ‘and simulation and the reliability
based design have led t0_the emergence of a comprehensive probabilistic framework
for practical aseismic des%ln_;his lecture we shall discuss the present status of
such an appreoach. The trestme t'ts divided into three sections :

L. stochastic models of 'earthquake ground motion;
2.  random vibration analysis for elastic and inelastic behaviour; and
3.  probebilistic design for earthquakes.

In Appendix-A we discuss the probabilistic seismic risk analysis. Extensive bibliography
is included,

STOCHASTIC MODELS OF EARTHQUAKE GROUND MOTIONS

Housner (1947) was first to suggest that "acceleration records of ‘earthquake
exhibit characteristics of randomness". If a large number of ground motion records
were available for a particular site, the parameters of a stochastic process model
could be determined directly by statistical analysis. However, this approach is not
possible at the presem time, in any part of the world, due to availability of only
a few strong-mption records. Ry therefore, becomes necessary to use considerable
judgement in comstructing, and validating, stochastic models of ground motion on
the basis of a few available records at the site, or at comparable locations coupled
with seismolegical s geological data, and local site conditions.

Let ZAt), i = [,2,and 3, represent the three components of ground displacement
at a point due to an earthquake. Consistent with general characteristics of strong-
motion earthquakes, each component of the ground acceleration can be expressed as -
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where i = 1,2 and % Ai(t) are slowly varying random functions of time called the

envelope; Y;(t) are a segment of stationary random processesy and T' is the duiibin
of the motion. Thus each component of ground acceleration is a realisation of a
nonstationary random processs The stochastic model represented by (1) may be described
to varying degree of completeness by the joint distributioh functions, the joint moment
or spectral functions and other properties such as level crossing, peaks etc.

We shall first discuss the properties and models of individual components. We
shall confine our discussion to specific aspects relevany to earthquake ground motion.
Three types of basic models, and their minor variations, reflecting mcreas;rg level

of complexity have been used to model earthquake ground acceleration 1 g
(i} White Noise (Housner, 1947; Byrcroft, 1960; Hudson, Housner and Caughey,

1960) ‘
(ii) Stationary Process (Tajimi, 1960; Housner and Jennings, 1964) and

(iii) Nonstationary Process {Bolotin, 1960; Cornell, 19643 Shinozuka and Sato, 1967;
Amin and Ang, 1968; Boore, 1983).

If the short duration of initial rise and exponentially decaying tail are disregarded,
the central strong-motion portion of acceleration records on firm ground can be treated
as a segment of stationary ‘random’ process. Bycroft (1960) has shown that properly
scaled segment of white noise have response spectra similar to the response spectra
of real earthquakes and can, therefore, be used to model the strong-motion portion
of ground acceleration. :

The stationary process model is an lmprovengnt Me white noise as it can .
be shaped to represent the frequency characteristhes, -of the actual ground motions
closely. The model makes it possible to incorperate the effect of local seil conditions
explicitly. A segment of stationary process is, therefore, a more realistic model
of the strong-motion portion of ground acceleration records. Following analytical
expression due to Tajimi (1960} based on the work of Kanai (1957), called Kanai-Tajimi
spectra, has been extensively used to represent the psd of ground acceleration :
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A filtered white noise with psd given by (2) can be generated by the ibllowmg second
brder filter
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Where W(t) is white noise withpsd §,and Z(t} = U(t) + W(x). From an analysis of actu-
al records it is found that Cg =0.6 and w_ =35 correspond closely to the spectral -
properties for firm ground. For a specific site the parameters f_and w_, should

& B
be chosen suitably to represent local site conditions.
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The variance and other spectral parameters for the Kanai-Tajimi spectrum are
given by

2
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In (4) and (5), the cut-off frequency W, =4%w, and &, = 0.6 (Vanmarcke, 1977).
Bolotin (1960) proposed - the following 8xpressifn to re|§resent a comparable auto-
correlation function'for stationary ground acceleration : ’

R(t) - a: e Tl o ar {6)

The nonstationarityin the ground acceleration records arises primarily. thtough
envelope functions A.(1) in (1), These are slowly varying random functions of time.
A simple and adequaté nonstationary model of ground acceleration can be constructed

- by assuming A(t) = Alt) tobe a deterministic function and Yi(t)'a set_of stationary

random processes with specified psd. The model may be constructed either by multi-
plying a segment of filtered white noise by a modulating function (MFWN), or alter-
natively, by multiplying white noise by a modulating function first and then filtering
the product process (FM We filter characteristics and the modulating functions
are identical for the two the difference in their characteristics depends on
the smoothness of A(t). For earthquakes with long quasi-stationary motion both
models yield similar characteristics.

Several functions have been used to model the envelope of the ground acceleration
records. Following expressions are commonly used :

n
Alt) = (Ao + Alt) et H(t); n = 1 o 2 a> 0 (lyengar and lyengar,
1969 vl 7)
-at bt .
Alt) = A{e™ -eTJ)H@W), b>a>0 (Shinozuka and Sato, 1967) (8)
Alt) = A (,t—t—)a H(t), Ostgt
1
= A H(t - tl)’ tistgt, (Jennings et al., 1969) (9)
= Aexpld {t-1,)]H (t-tz). g 1g ty,

A [O5C+d(T -t)2] Ht - ty), taty

where H(t) is heaviside unit step function.
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The envelope functions represented by (9) cover significant features of a complete
range of recorded earthquake ground accelerations. Jennings et al. (1969) have sugges-
ted suitable values for the parameters of the envelope function to model four different
types of earthquake motions (A, B, C and D)} which are considered to be significant
for engineering structures. The values of the parameters are given in Table 1. The
envelope functions defined by (7) and (8) are analytically simpler and are used exten-
sively in theoretical treatments. The nonstationary nature of ground motions has
a significant influence on the tail value of the probability estimgtes, nonlinear resstitie
and soil behaviour. Further, the stationary models are inadequate for small near-field
earthquake ground motions.

Table 1 Parameters of Alt) in (9) [Jennings et al., 1969]

Type Target Target Spectrum Duration T' ¢t Pt ty a b ¢ d
Magnitude  Intensity (sec.) -
A 28 1.5 (Ei-Centro, 120 4 35 80 2 .,0357 | .938x10'“ :
1940}
8 6-8 El-Centro, 1940 50 & 15 30 2 .0992 1 .5x!0'2
C 55-6 Golden Gate, 12 2 4 - 2 .26%8 - -
D 4.5 - 5.5 Parkfield 1966 10 2 25 353 l.606 2 .237x!0'2

Multi-component ground motion

We have so far discussed the stochastic models of the individual components
of ground acceleration during earthquakes. Since ‘the three components of earthquake
ground motion act simultaneously on a structure it is necessary to construct a stochastic
model which incorporate their joint properties. Also, since the choice of axes along
which components of an earthquake are recorded is arbitrary it is necessary to establish
relations for the transformation of their properties due to the rotation of the covrdinate
system,

Caonsider the three components of ground acceleration defined by (1) along
the axes (I 2 3). Let A.({t) = A{t) be a deterministic function, and Y.(t) a zero-mean,
stationary random process. Then the elements of the covariance matdix of Zi(t‘) are
given by

Kys (D = EZ@Z60] = A A EYi® Yitr)]
1
= AlD A(t+T)R§,i§j(T); bi o= L23. {10

Since the correlation time of theaccelerogramis usually very small, the effect
of changing the coordinate directions on the: covdriance #amttions can be investigated
by considering {10) for t = 0, thatis =~ =

BZWZo = A% BV Vo) an
which can be expressed in the matrix form

Rg50) = A% Rypy - (12)
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Since y-(t) are stationary, the elements of variance matrix RY are constants.
Also, R?? 15 a real, symmetric and positive definite matrix. It is, t*lerefore, possible

to find a canonical transformation matrix P, such that

?}p(t) - P ¥ " (13)
and

s .4 - T e sr — H .
R?p?p = P RYY = diag. (R“, R22’ R33). (14)

where R“ > R22 > R33 are the principal variancesof the matrix R:\'E‘.T.’ and the columns

of P define the three orthogonal principal directions (Penzien and Watabe, 1975).
Further, from (12)

o - 200 4

Rzpzp(t) = A™(t) diag. R, Ryp Rygh {15)

Hence the principal variance of Z are given by Az(t) R. (no sum), i -1,2,3. Note
that variancesare functions of time but the principal diredtions are time-independent®,
Under the assumpotions stated above, it follows that the components of ground motion
are correlated, but it is always possible to find at least one set of three principal direc-
tions along which the components are uncorrelated. The variances along these three
principal directions represent maximum, minimum and intermediate values.

By analysing six different strong motion records Fenzien and %atabe (1975 con-
cluded that :

W the ratios of the minor and intermediate principal variances to major principal
‘variance are of the order of 1/2 and 3/& respectively;

i
(Rii + Rjj) } OI?:;D&\;nd 013 are approximately 0.14, 0.2 and 0,33 respectively.

(ii) the principal values of the cross-correlation coefficients ( Djj' = (R.. - R.j)l

(iii) the major principal axis lies generally in the direction of the epicentre and
the minor principal axis is verticals and :

(iv) the directions of principal axes are reasonably stable over successive time
intervals. It is, therefore, reasonable to assume the same envelope function,
Alt) in the three directions,

A significant conclusion of the above discussion is that the three components
of ground acceleration can be modelled as mutually uncorrelated random processes,
provided they are directed along a set of principal axes with major principal axis directed
towards the expected epicentre, and the minor principal axis directed vertically. Hadjian
(1981) has analysed the correlation properties of the horizontal components of recorded
ground motion to obtain the probability density function of the correlation coefficient.
Recognising that the uncertainties in the value of the correlation coefficient arise due
to two distinct sources- geometric and seismological, Hadjian has synthesised a probability
density function shown in Figure 1. He has suggested that an 'equivalent' rectangular
distribution, may be used for design codes and simulation purposes.

RANDOM VIBRATION DUE TO EARTHQUAKES

_ All structures resting on the ground, or connected to ground based structures,
are subjected to random excitation during earthquakes. The response of such structures

* U different modulation functions, Ai(t)’ are used for each component, the principal
directions will be time-dependent,
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"to earthquakesls, therefore, a random process. A reliability based design, in the framework
of random vibration analysis, provides a rational and consistent basis for aseismic desighn’
of structures. To implement such a design procedure, it.is necessary to establish the
seismic.risk at the site, construct a random process mode! of the ground motion, and
carry out a random vibration anaiysis of the structure, Further, it is necessary to identify
the response parameters of interest, the constraints on these parameters to maintain
the integrity of the system, and the distribution of failure-events' or damage to the
structure. In this section we shall discuss the random vibration analysis of structures
for elastic and inelastic behaviour for a specified ground motion intensity.

We have noted that the ground acceleration at a point on the eartls surface
during an earthquake is a random vector which may be modelled by three non-stationary
random processes representing ground motion along two orthogonal horizontal directions
and a vertical direction. We have also noted that along principal directions, these random
processes are uncorrelated. A structure resting on the ground is, therefore, subjected
to simultaneous action of three components at each point of contact. In earthquake
engineering, it is generally assumed that same motion takes place at all points of contact,

implying that foundation soil is rigid and the excitation is completely defined by a single .

random vector. If the base dimensions of a structure are smalt as compared to the
wavelength of the ground motion, the assumption does not result in significant errer.
However, for long structures, such as, dams, bridges, pipelines, it is necessary to assume
multiple support excitations (Clough and Penzien, 1975Y. We shall confine our discussion
to single support excitation.

We assume that the nonstationary nature of each component of ground accelera-
tion is adequately modelled by a uniformly modulated stationary random process. A
segment of stationary random process is a special case of such a model with a box-car
function as the modulating function, We assume that the ground acceleration is gaussian,
and each component is partially, described by one or more, of the parameters, such
as, peak ground acceleration, r.m.s. value, psd, response spectra.

The civil engineering structures, such as, buildings, chimneys, nuclear power
plants, dams, bridges etc. cover a wide range of shapes and forms. Some structures,
such as, dams and water-tanks involve special effects, such as, fluid structure interaction.
Almost all structures resting on the ground involve soil-structure interaction which
causes the free-field ground motion to be modified. In all cases, an analytical treatment
of random vibration requires an idealized model of the structure and interacting media.
We shall confine our discussion to discrete mode!s exhibiting linear and nonlinear behaviour.
Extension of the results to continuous models. is generally straight forward, if normal
mode method can be-used.

The general theory of random vibration of discrete and continuous system,
both fer linear and nonlinear behaviour, is covered in the texts on random vibration
{Lin, 1967; Nigam, 1983). We shall confine our discussion to special aspects associated
with earthquake excitations. Our primary objective will be to determine the design
values of response parameters of interest for specified reliability and ground motion
intensity. )

Discrete Linear Elagtic Systems

A single-degree-of-freedom (sdf} system is the simplest, and the most important,
of discrete linear systems. A large class of structures can be adequately modelled by
an sdf system, and it is well known that analysis of mdf and continuocus systems
cah, in most cases, be reduced to the analysis of a series of sdf systems. We shall
first consider the response of an sdf system to a single component of ground acceleration.
The equation of motion can be expressed as

2

X + 2-5%5( +wix - -m Z(t) L8

L
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where X(t) is the relative displacement, and Z(t) the ground acceleration during an
earthquake. Since the system is at rest when the éarthquake occurs, X{0)}) = X(0) = 0.

The displacement response of an sdf. system to a typical earthquake is shown in
Figure 2. From the figure, and the general theory of the response of sdf systems to
random. excitation (Nigam, 1983), we conclude that for the range of damping values of
interest (0.01 < g < 0.1), the response is a narrow-band, nonstationary random process.
The nonstationary character is. due to sudden start,” and also due to nonstationary
nature of ground acceleration. However, if the ground acceleration is modelled as
a segment of stationiry random process, the response tends-to become stationary for
large times, t>>1/¢ we. {(Caughey and Stumpf, 1961). For example, if § = 0.1 the response

becomes stationary within 2-3 natural periods (T_ = 2n/ méﬁ, where as for { = 0.025,
stationarity is attained after about 10 natural p%riods. The envelope of the response is
a slowly varying function of time and the nonstationary spectral characteristics can
be closely modelled by evolutionary psd. } . '

The second order statistics and other properties of the response, such as,
spectral moments, level crossings, peaks and the maximum value in a specified period,
for the sdf system can be obtained from random vibration theory (Nigam, 1983).
These properties can be used to determine the maximum values of the response parameters,
such*as, Displacement Spectra SD (¢, w ), Velocity Spectra SV (L, w o and Absolute
Acceleration Spectra SA ({,w o). °

Since the ground motion is treated as a random process, the response spectra,
5D, SV and SA, are random variables and we are .interested in their values for specified
reliability levels. This is a classical problem in random process theory and-is closely
related to D-type first-passage problem. The exact solution of this problem Is not
available, but several approximate solutions have been attempted which yield results
of practical interest (Crandall, 1970; Lutes, Chen and Tsuang, 19803 Crandall and Zhu,

Let

XG0 = Xy ey (X)) (17)
The distribution function for SD can be expressed as :

where T, is the first-passage time of D-type barrier |X(t)| = a, p the probability
that the level o will not be exceeded, and T = T'+ TOIZ.

Stationary Ground Acceleration

The ground acceleration during earthquakes is nonstationary. However, statio-
nary models, which are analytically much simpler to treat, give acceptable results for
linear systems under fairly general conditions (Byrcroft, 1960; Rosenbiueth and Bustamente,
1962).  Further, the results for stationary models can be used to take into account
the nonstationary “effects by empirically modifying a few parameters (Vanmarcke, 1977;
Kiureghian, 1983. ‘ ) _

. Let.Z(n, 08t <T be a segment of stationary random process with psd
ﬁiz( W). The response of sdf -system to Z(1) will be initially nonstationary, but

will tend to become stationary for t>>1/5w . Consider the case when X(t) is assumed_
to be stationary. For this case, (18) can be eXpressed as (Crandall, 1970)

}

A

—-——-—L—-—-—-—-
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Fp@) = LM = Le T . (19

where v (a) is called the limiting decay rate, and L s the probability of survival
at t =0. Since the system starts from rest, L0 =l. Le o

SDT:P = & = nT;P U'x(.n H ‘ - ) (20)

: ek
SD = EI[SD] = noM; : “(2h)
SO = Var[sD] = o, AT (22

where @ is obtained by solving (19) for a specified p. 7 is the peak factor for
the response spectra, and 7i and i are the peak factors IJ‘Rts mean and variance.
o x(‘I') is the standard deviation of the displacement at t = T. For stationary response

oM = oy = n§22(wo)[2sz (23)

The distribution of displacernent spectra given by (19) depends won the choice
of limiting decay rate V . - We shall consider two cases corresponding to independent
X-crossing, and two-state Markov Crossing assumptions. Expressi Yor -peak factor,

'l.r‘p; mean and variance of the peak factor represented by T, re also given for

each case.

~

i) Independent X-crossings
v = 2N, exp(-n¥2) A (28)
FSD(TI) = exp (-2 N;T exp (-ﬂZIZ)) 7 (29)
N = [21n (2N, T/in '/ 49
Tip ~ o P EEAN
n{-Inp : .
o ¢ - -—Cl_ (27
o= C ) (29)
2
i = "2 (29
6ct
where :
N o z '—2nT = —'2:' . (30)
A - rd Gyx(® du, i = 031,200 o - (3D)
: o _ : :

© - 2N - 132

*
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C = Cl + ] Cl (33)
1) Two-state Markov Crossings (Vanmarcke, 1969 1977)
| - exp ('/—i- Gen)
v = 2 No 5 s (3#)
exp (-n"/2) - 1 :
where
2 1z 2 1/2
§ = Ua7 /A = kiv/Em ol ~all - (35)
and
5, - . b=y (36)
lexp (YT /2 & n)
Foph) = exp [-2 NoT —= (37)
. Texp (-2 -1
N1, = {2 In( -2NgT/inp [1 - exp (-8 e/ In (2N, T/mP)]) 12 (39)
] = VIR D o« B2 (Kureghian 1980; Smeby and
oe Y2In (2N _T) Kiureghian, 198%) ~ . 39
A SR £ — - 3.2 (40)
-?'(2}1:‘1 N T 13+Q1In N_T
where
max (1.05, 26 N, 0.00 < 8§ < .1
N T = 4 (1.638 %% L o8N T, 0.0 < § < 069
oe o - .
NT, 0.69 < & < 100 ()}

Note that § Oy Bives the average response spectra, and N.0.5 Txr its median value,
. ;0.

A detailed discussion of the independent X-crossing, and two-state Markov crossing

assumptions is given in Vanmarcke (1969) and Nigam (1983).

The distribution of response

spectra based on independent X-crossing, ( 25'), are asymptotically exact for high relia-
bility (high o- level), but are overly conservative for intermediate and low reliability.
Two-state Markov crossing assumption, ( 37 ), which takes into account the effect

of clumpin

‘Pélatively accurate results at all levels. Several other approximations

are available in the literature (Crandall, 1970; Iwan and Mason, 1980), including some
empirical expressions (Shinozuka and Yang, 1971; Lutes, Chen and Tzuang, 1980).

The response of sdf system to a segment of stationary random process is initially
nonstationary. In the preceding treatment we neglected the nonstationary behaviour

of initial response. Corotis, Yanmarcke and Cornell {1972) have shown that this assump-
tion may lead to overly conservative estimatés of design values for intermediate and
low reliability levels. The nonstationary behaviour can be easily incorporated in the
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analysis by taking into account the wtime—dependént nature of response statistics and
a time-dependent limiting decay rate w{t). The distribution function of the displacement
spectra can be expressed as

T
FSD(u,T) = LTI(T) = Lgexp (- i\’(t)dt). (42}

Since the system starts from rest, LQ = L.

The limiting decay rate, v {t), is given by the following relations for the independent
X-crossings, and two-state Markov Crossing assumptiofis :

i) independent X-crossings

yit) = 2N (0 exp [-% (?)i:‘(w)zl, ' (43)

(ii) Two-state Markov crossings

1-exp (- 12- 8, a/o, (1)

vr) = 2N (1) =g . (44)
exp [3 (a/0y ()" 3-1
where 0 x(t) is time-dependent standard deviation of the displacement given by
(w) 270t :
m ﬁ- . [ O )
o, ft) = 22" (1 -E2—— [w? + 2(C0_ R wd?
X 2 3 2 d o]
;ow, Wy -
+ L wy sin 2wdt]) wo(83)
T &yl w) -2 0 wt Tdyslw) P
=9 .e %) - —LL o, itg<s< | (46)
2z mo 2z t w o
where
2wt
Ct = {1 -e ) . 47
3 (1 ﬂ() S
| 2_.,1/2 _ Uit
No{t) = 2% (_x—o"('a) = —21,"-— ("8)
2
AT
80 = U~ ) (49
o 2 i

and A i(t), j = 0,1,2 are time-dependent spectral moments given by
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Ao - o.rwj Gyx (@, td w (50)
where
Gxx(w, 1 = | i'-l'(m, t)|2 Gz-z'(m) ) (51)

is the evolutionary spectral density of the displacement. Exact and approximate €<<])
expressions for Aflt), j = 0,1,2, are available in Corotis. Vanmarcke, Cornell (1972)
and Nigam (1983), :

The -displacement spectrum for reliability level Py » can be' obtained by

solving for a the equation, - T

T

FSD(u T = exp [- £ vi{t) dt] (52)

i
L~

where v (t) is given by (#3) or (44),

A solution of {52) to determine SDT'P requires a numerical procedure. Vantnarcke
¥

(1977) has proposed an approximate procedure based on 'equivalent stationary response'
which permits a closed form solution of (52) to a reasonable accuracy. Since the system
starts .from rest, g, (1) increases with time from 0 to 0x{T), and the Aecay rate v (1)

increases more rapidly. The major contribution to the integral in (52}, therefore, comes
from values of time t close to T. Hence, we can define an ‘equivalent stationary
response duration’, Te, such that

fea. : !

{VvWd = Ty VAT ' (53
where Tes T. The ratjo TeIT can be obtained from the relation (Vanmarcke, 1977).
T, oZ (1)

—+ ¥ exp [-2 (?’-(-27-17—2-)— - 1] (54)

which is obtained by approximating the area under v (t)} from G to T, in terms of vw(T)
and v(T/2).

The distribution of displacement spectra, the peak factor N, its mean and
variance can now be obtained from (26) to (51) by replacing T by Te alRi Oy bya X(T).

Simulation studies (Vanmarcke, 1977) show that this procedure yields sufficiently accurate
response spectra.

Nonstationary Ground Acceleration

The no PRRLY. character of earthquake ground acceleration can be modelled
by a random. s With evolutionary spectra. Let the evolutionary psd of the ground
acceleration be expressed as

b5 0 = | AWDITg W) (55)
where A(w,t) is the modulating function and ¢ (w) is the psd of an associated broad-

band random process. A uniformly modulated, or a separable, r ndom process, with
Alw,t) = A(1), is a special case of the evolutionary process.
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The response of an sdf system to an excitation having evolutionary psd §: ziu st)
given by {55), is"also a nonstationary random process with evolutionary psd

NN N TR i 2O (56
where
t .
M@, = L bl ) Al ) e @ T o (57)
— [a]

and h{t) is the impulse response function of the sdf system,

The psd of the response (36) to nonstationary excitatica is of the same form
as the psd of the nonstationary response to stationary excitation treated earlier (51).
The distribution of the response spectra and asscciated response statistics can %_e:ore
.be obtained as before. Markov property of the response of an sdf system to e
excitation (Spanos, [980a; 1980b; Spanos and Lutes, 1980) prowdes an alternative
method to obtain the distribution of the response spectra.

Multi-degree-of-freedom {mdf) systems

A large class of structural/mechanical systems can be modelled as mdf system.
The equations of motion of mdf systems excited by the three components of ground
motion during an earthquake can be expressed as

MX + CX + KX - Fw = -M1Z _ (58

where M, C and K are mass, damping and stiffness matrices respectively; X{t) is
the relative displacement vector; Z = [Z [ 23 Zig'}T is the vector of ground displacement
components, in which Z, and Z, are horizontal .and. Zg“i‘f the vertical component;
and T is the influence matrix such that its kth €elumn I coupfes the degrees
of freedom of the structure to ground motion component Zk(t).

We first consider the case for which M, C and K satisfy the conditions for
the existence of classical normal modes (Nigam, 1983). Let U = [0 l, 1—12’.." u n]T,

be the modal column matrix and Y the vector of normal coordinz!:!‘.ﬁ..&i?etting
X - U Y, - {59
the jth uncoupled modal equation is given by

oT =

. P13, " (60)
i

Yos 20w Y, +w 2Y,
j TG Yy e 2Y,
where r.and . are the damping and natural {requencyj‘ in the |th modes

= [FAD j(2) I'i(3)] 1s the vector of participation factors for mode | Wwith.
clements

]"j(k) s K k = 1,2,3. ' (6}
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The design of a system involves response quantities such as displacement, member
forces, stresses, which can be expressed as a linear combination of nodal displacements.
Let Q1) be a response quantity of interest, and let

— — n .
A = ETX - I ¢x (62
izl

where C T s a constant vector. Then following the standard techniques (Nigam,
1983), the evolutionary psd of Q(t) can be expressed as .

Gl 1) = I L I I ~ ~ ]
QQ k 1 i j Li(k) LJ“) Hi(w,t). Hj(” yt) szzl(ﬂl o) (63)
where. Li(k) = I;(k) T T ﬂ"'i', is. the effective participation facto associated with

mode i ﬁi(w i) is the frequency respanse tunction for mode iy and Gy ;.,_,-I'(U st) is
k, | element of the psd.. '_r'l_utg'ix.:‘ Gz'i' st). - Note that ground motion t!‘orﬁponents
are modelled as evolution' randerm processes:

Under the assumptions stated below (63) reduces to

@ 2w fs modelled as a stationary random vector

Goofw) = E F & ]zl.i(k) L H (w,1) Hj(m,t) ng-il(n o) (64)
As t=e, Q(t) becomes stationary, and
GQQ(m) = § i )):Li(k) Lj(l) H,W H;w szzl(u) (63)
)  Z(t) are unca'reht;':mp’.l directions)
R % € k) H* (i 1) Cor oo (o
GQQ( m’t). = ki j Ll(k) Lj(k) Hi‘m’sﬂ H*j(ﬂ »t) szzkl(w st) {66)

Response to single earthquake component
For a single ‘earthquake component, Z(t), (63) reduces to

)

Gm(__u.t) = Gyylw,t) i i by ﬁi(w,t) ﬁ'j {wy1) (67)

It 20 s modelled as a stationary random process

Gagplwst) =cﬂ“, f f"t!’ﬁi(""'t) He (w,0) (68)
and the spectral moments of Q(t) are

Ano® = s a{“ Goolut dw _ : (69)
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T ome

Lt oo™ 00 fixw.n Gz (70)

=L I
i j 7iTjo

.

Yanmarcke {(1972) has shown that. significant contributions to the spectral moments
in (70), usually come from the terms for which 1 = j, particularly*when modal frequencies
are well separated and damping is low. Following his treatment, (70) can be exptessed
as ‘ . :

Z L Lj AL | D

= aray 1 2 . 2
(4 =G5 I| A 0l ‘H*i” "

S

in which Aiit is a function of frequency ratio Y - wj/wi and the equivalent damping
values &, .- o o a

]t . . “
8Y T (T +C.7) (-1 - uv(h, -T V(& <C. ) .
T o I, ms T N g il 72
BYT LG + 357 - A L= Y- Gy ) + =Y
A\t‘jt is plotted in Figure 3 as a fun&tion of Y for different ‘pairsl of :it and T jt” It

is seen that A. . vanishes when ¥.is éither very small or very Jarge,-and is sharply
pesked for smailalues of damping at Y= 1.~ N

Substitution of (71} in f“)fzh:i:iﬁtég'fatim over all frequencies gives '

:;%m'q(t) igl o 12h ) H ’ o
whérg ) o

& = 0 I ) Ay | - .- o
and % m;iim s the. rnth spectrzl moment of-modal coordinate yi(F); For m = 0.

5l

o2 - - z 242 et T
UQ(F) s lo’Q(t) = Gi.t L%y {t). B (75

" Clearly the contribution of cross-terms (i' £.1) in {73) and (75) will be insignificant
if @ = 1, which happens when i)} modal frequencies are well separated; ii) damping
is smifll; and iii) time t is sufficiently large. Under these conditions' :

\ ) ;24 _ . . |

The spectral parameters of Q(t), that is, QQ(t) and GQ(t) required for determining

the characteristics, such as, level-crossing, peak, first-passage time, peak-response
factor can be determined as follows. Equation (71) can be written as -
_ i . o2 2 '

GQQ(w,t) = f chQi(w,t) E f Gy (w) | Hi@ | L .6, (77

+
!
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Let,
- GQ.Q_(w sTdw oT 1262 P
[ i¥i B i 1 yi :

Pi = f’{} . T)d o = i ] = {78)
L e Q

and let 'ﬂi(t) and Gi(t) be the spectral parameters of Qi(t). Clearly Zp; = I, and
o C i
it can be shown that (Vanmarcke, 1977)

(0 2)1/2 (79)

8 A z;:pi g

(t)

5q L-zp @fag /1632 W (80)

The maximum value of | Q(t)|, ogtgT, and associated probability p;, its
expected value and variance can be expressed as

. Qm;T;p LS ' (ﬂ_ ' 81
BQ,) = og (M o (82
var[Q 1 = 3 oé(T) o (33)

where n-T‘ﬁ’ﬁ and 1 are--—gggn’by (26) to (41} for X-crossing and Markoy crossing assump-
: G

- thons respectively.

Stationary Response

" If the response is assumed to be stationary, the relations for the nonstationary
response presented above get modified by setting : :

.

- Hlw ,t) = . Hlw) ¥t (34)
Ly = T3
. GQQ:fiB;t) = GQQ(w 3 and

xm’Q(t)

X Q" n partlcularch('l') = UQ'

Discrete Inelsiic System |

So far we have considered systéms modelled by linear, elastic force-detormation
relationship. It 1s well known that Béth steel and concrete structures have a large
reserve of strength beyond the elastic” range (Housner, 1956, 195%; Nigam, 19703
Sues et al.,, 1983}, In the design of structures to resist earthquakes, inelastic behaviour
is of special interest due to reduction in the intensity shaking caused by dissipation
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of energy through hysteresis, A structure can be designed to.remain elastic during
more frequent small earthquakes, and allowed to undergo inelastic deformation, without
collapse, during infrequent large earthquakes. This basic approach to aseismic design
is incorporated in most codes. The random vibration analysis of inelastic systems
is, therefore, of considerable interest.

The force-deformation relationships for inelastic behaviour are both nonlinear
and hysteretic. Commonly used models of inelastic behaviour are shown in Px §.
Wen (1976, 1980), Baber and Wen (1981) have proposed models of inelastic b %ir
which, besides nonlinear hysteretic behaviour, incorporate degradation of stiffness
and/or strength. The mathematical difficulties in a nonlinear random vibration analysis
of inelastic behaviour are considerable (Nigam, 1983). Approximate methods, such
as, equivalent linearization (Caughey, 1960, 1963); Gaussian closure technique (lyengar
and Dash, 1978) and Markov vector formulation (Wen, 1976) have been used to obtain
the response statistics of such systems. Numerical integration of the equation of
motion to real or simulated, ground has received considerable attention for the study
of inelastic behaviour due to analytical difficulties, and has formed the basis of validating
approximate methods. R

Karnopp and Scharton {1965), developed a simple procedure for random vibration
analysis of elasto-plastic sdf systems to determine statistics of accumulated plastic
deformation and its application to low cycle fatigue. Vanmarcke (1969, 1977} improved
upon this method and extended it to bilinear systems {Vanmarcke and Venizians, 1973).
We shall discuss this procedure in the sequel. '

Figure 4(b) shows the force deformation behaviour of an -elasto-plastic system.
Before and after each plastic exquepion, the system behaves as a linear elastic sdf
system oscillating about the im te past permanent set, X . The efftdtion of
motion of an sdf elasto-plastic (EP) system can be expressed as P

mX + cX + g (X, X) = -mZ (85) -

where restoring force function g(X, X) is given by ,

(X, %)

- X . < - = '”:L;h!;'
k(X xpn), X Xpn| X, o | X xpnl X, and X= 0 (sfa)

h

g, ek, WX-x [ = X, ad X0 T (s

pn

(8¢a) holds during elastic-state after the nth inelastic excursion and, (36b) holds
when the system is in the inelastic state.

The elasto-plastic system can be replaced by an associated linear sdf system..

on the basis of the following simplifying assumptions ¢

b

i) the elasto-plastic system spends a small fractioh of the total in the ineiastic
state} and

in the inelastic deformation is ‘instantaneous' after which the system becomes
linearly elastic about a shifted equilibrium state.

Let X'W(t) = X(t) - X o’ denote the relative displacement of an ‘associated

linear sdf system', in which the elastic segments of elasto-plastic system are joined

‘together. The equation of motion of the associated system is given by

mX' + cX + kKX* = -m2Z (87)

o

i

b

|
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A sample function of the time-history of X'(t); and its behaviour in the phase-plane
are shown in Figure 7. It must be noted that besides shifting the equilibrium-state
to the permarent-set after each inelastic excursion, the time scale of associated system

is also changed by joining the elastic segments. Thus if, T is the duration of X(1),
the duration of X'(t},

n

™ = T - ifl Atpi (88)

where n is the number of inelastic excursions, and At ; is the time spent during
the ith excursion, P

The subsequent treatment is based on the Plausible assumption that the response
statistics of . the elastic behaviour of EP system and associated linear elastic system
are not significantly different, and the system response during inelastic excursions
can be determined on the basis of foilowing physical arguments

During an elastic excursion, the kinetic energy of the mass at the beginning of
the excursion is dissipated through plastic work, and the system returns to elastic-
state with the initial conditions X'(t} = 0,

Thus

8 = Lmn?| (89)

i
Y =
X{t) Xy

where § is the plastic displacement during an inelastic excursion. Setting

i T

g, kX,

L6l = L~ (x»? (90)

2 = X

- 2 W Xy %ﬁ&l 4 :

For random excitation, § is random and its expected value is given by
o=
elg) - —L s %2 gk x = x ) g (o1)
2 wy Xy -0 Y

_. For practical aseismic design, it is realistic to assume that inelastic excursion
will be infrequent. If so, the response can be_assumed to be stationary at the entry
to the next excursion, and, therefore, E [X X'] = 0. The conditional probability in
{91) becomes the probability of X' alone, and

EL§]] = : ol (92)
2 W X
o Ty

Assuming Txs ’-’é‘“@“’*inﬂ O =04/ wi for broad-band excitation,

9 %2 Ox

E_[,ﬁl] = - P S (93)
2 X '
Y 2 ny
where '
n = X/o

y y ~X*
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The response of an sdf system is a narrow-band random process for which excursions
above a level tend to occur in 'clumps' particularly if the level is not too high and’
the damping is small in each clump, there may be several successive elastic -_ﬂr.sion's
during - which energy is dissipated, followed by relatively long elastic regime, As an
approximation the cluster of excursions in a clump may be treated as a point in time
at which plastic jumps, D., take place. The number of clumps can be treated as
a Poisson process 1o define the following response parameters of practical interest

Plastic Drift
: N(T

o= LD (%)
1=

-Total Energy Dissipated Due 1o Yielding

N(T) ,
DA(T) = LN R s 7 )]
izl ‘
Ductility Ratio .
v = -'xl— [ max fDM1 « 1 - ;E—m +« I (96)
y  0stsT y
where N(t} is a Poisson process with mean arrival rate, i
BNCL TN WW‘ o -
2Ny (X)) 5 '
e = E_WTL e {97)

s

and  E[M l] is the expected clump-size. The tenﬁy for an is expected to be less

in elasto-plastic systems, as compared to correspondh&'elastic systems due ‘to energy
dissipation during each inelastic excursion.

Total Energy Dissipated

Let the excitation be a gaussian random, process. We assume that the response
of the elasto-plastic system is also gaussian. Under this assumption, X/ gy is a
standard gaussian random variable, and therefore )'(21 a);( has y° - distribution with

one-degree-of -freedom, with mean and varianqe?eg;l to | and- 2 respectively. 3imce,.
X l )

| & and, therefore, | Dil are proportional to we have
‘ a . o .
ElDll = 2"2,( E [ xzz 1 = 5% (98)
y % y - 7 -
0,2 .2 a2
Var [[D)]] = (52— Var X1 - 2 ()’ (99)
Y ok y

Assuming IDil in (95) to be mutually independent, identically distributed and also inde-
pendent of N(s), we have (Parzen, 1962)
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EDAM] = EINM] EljD,|]
g 2
X + 9 x2
T e Trxs s 2N ) 5
Y ‘ Y
- w - % -nys2 (100)
= A e el
y
Var [DAM] = E IN(D] Varl|D,|1+ var N E2 []D, ]
w 2 -N 2/2
- 3 e ckz e ¥ (101)
le

Total plastic drift

The total plastic deformation D{t) defined by (94) has a zero-mean, as each inelastic
excursion Di is equally likely to be positive or negative with mean and variance

equal 1o 0 and 252 respectively. Hence

E(DXT)] = V. TED] = o (102)
CoUVERED] = v TVar D) + EPID] = 2(v_mé2 (103)
) a
I S R A LN (104)
—Wv;f-’.l,) e 'y
Ductility ratio

To establish the distribution of ductility ratio, v, defined by (9¢), it is necessary
to establish the distribution of pesk inelastic deformation X m the maximum value

of D(t) in the interval O<t <T. Vanmarcke (1977) has shown that the distribution
function of xpm can be approximated as

Fy f(a) = exp [- (exp ( v.T -1 exp(-a/s) (105)
pm

The distribution of ductility ratio follows from (96).

In the above discussion we have treated the random vibration of elasto-plastic
sdf  system fer-iblreguent excursions. Karnopp and Scharton (1965), have also given

approximate results for frequent excursions taking into account the effect of ¢lumping
and nonstationary behaviour in excursions.

Gazetas (1976), Irschik (1986), Ziegler (1987) have extended the procedure due
to Karnopp and Scharton (1965) to mdf systems, including the effects of nonstationary
excitation. '
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PROBABILITY DESIGN FOR EARTHQUAKES

Aseismic design encompasses choice of design parameters to avoid, or limit, 'damage’
to a system due to earthquakes during its service-life. The term ‘damage' s used
in a generic sense to denote any 'unfavourable behaviour' such as, loss of life, structural
collapse, cost of repair or interruption of services, discomfort to occupants etc. Due
to a large measure of uncertainty contributed by several sources, a probabilistic formula«
tion provides a consistent and realisti¢c basis for aseismic desigh. In aseismic design
it is convenient to partition the total risk into two steps :

i} determination of conditional distribution of damage to a system due to an
ensemble of ground-motions representing design earthquake(s) in terms of
one, or more, given site-intensity parameters; and :

i) determination of the distribution of site-intensity parameters (seismic inputs)
at the site during the service-life of the system.

The total risk is the combined effect of the different ways in which the system
may respond to a given event, and all possible seismic events that: may occur during
its service-life. It is computed by a convolution of the conditional distribution of
system response for given seismic input, with the distribution of seismic input. A
general expression for the total risk can be written (Whitman and Cornell, 1977).

all

where D. denotes the event that the damcge state of the system is i, and Y, denotes
the seismic input at ‘'level' j3 and P | Y.] is the conditional probabflity that
the damage state of the system is D, gi'ven khat seismic input Y. has occurred.

If the damage and seismic input represer{t continuous variables, (106) kan be expressed
as

Fpd = PIDsd) = SRy y(dl y)p i) dy. (107

I the seismic input is specified in terms of more than one site-intensity parameters,
say by anm-dimensional vector Y, total risk can be written as

FD(d) = Irn'“'"'rFD] q.(d| v pY(')'i) dy. (108)

In the preceding section, we have derived the distributions of structural response
for elastic and inelastic behaviours. These are conditional distributions for given seismic
input. The damage to a structure during a seismic event, or a sequence of seismic
events, can be expressed as a stochastic, and under certain conditions and approximations,
as a deterministic function of response parameters. lts conditional distribution can be
determined from the distribution of response parameters using the theory of random
functions.  The distribution of site-intensity parameters can be established through
a determination of seismic risk treated in Appendix-A., We, therefore, have the necessary
framework for evaluating total risky or choosing design parameters, or design intensities
for a specified total risk, if the functional relationship between damage and response
parameters is established.

Damage to a Structure due to Earthquakes

The damage to a structure due to earthquakes may be treated under two broad
classes :

i) instantaneous damage, which results when at an instan; of time one, of more,
response parameters cross the safe operating domain for the first time.
This is the classical first passage problem; and
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ii} cumulative damage , which accumulates during and over several seismic
events, and the *failure’ occurs when damage function exceeds a specified
limit.

As mentioned earlier, the damage is generally a stochastic function of the response,
However, under certain conditions it may be treated as a deterministic function of
response. We shall consider the latter case first.

Deterministic Damage-Response Relationship

. We have seen that response of a structure due to an earthquake depends on the
given value of site-intensity. If the damage is deterministically related to the response,
it will still be a random function of the site-intensity. Let the damage measure, D,
be a moneotonic function of the site-intensity, Y, that is

df

D = £(Y); a-)-;>0 for ¥ y, and Dzo (109)
Inverting {109
Y - gy, (110
Let D max be the maximum value of D in time tnterval t. Then the distribution of "
DPrnax ‘ ‘f
@ i
Fp/. dt) = 'piD . <d] = Py <gld)], iy
. D'rnax and . max max .
= (g (@, t).
EYmax g i
From (A.21), o
FY  @o = explcd alg @ ® P21 (12
max
and
. -8 /b,
PDG) > dl = | - exp [-CT G (gld) t o,

R -8 /b,

for the range of probabilities of practical interest in design.

. K the damage is proportional to Y, that is D - aY, where a is constant, as
in the case of sspsated peak response of high frequency sdf systems {Cornell, 1971)

-8/b
D > a1 = cBowm 2, (113

It must be noted that the in the above derivation it has been assumed that there has
been no detericration due to previous lower intensity loads and the events are independent.
If this condition remains true, that is either previous damage does not influence the

response signiﬁcantly, or the system is restored through repair, the cumulative total
damage, TD, can be expressed as
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N(t) N{t)
™ = I D B I fY), (114}
ji=1 ! j=1 ]

where N(t) is a Poisson process. For D - aY,

¥1p = E[TD] - 3Jtay, (115)

orp = Var[TD] = StafElvd, (116
The characteristic function of TD is given by
Mrp(8) = exp [0t (M(6) - 1]~ _ (117)

where M (8) is characteristic function of D.. If Vt is not small, TD will be approxi-
mately ntpmaliy distributed. A Markov model' can be used if the incremental damage
is stochastically dependent on the total damage todate (Vanmarcke, 1969).

A simple example where damage is directly related to peak ground motion occurs
ih nuclear power plants which sustain economic loss whenever accelerometer scramming
control shuts down the plant if peak ground acceleration exceeds a threshold level.
if damage due to each shut down is, d', the total expected damage in time t 1is

- 8/b
ETD] - a3t cay 2, (118)

from (A.21).

Stochastic Damage-Response Relationship

Due to random nature of earthquake ground motion, the response is a random
process and the damage is therefore a stochastic funciion of system response. The
conditional. distribution of system response is obtained through random vibration analysis.
The damage can be generally related to the peak response of the system. In the prece-
ding section we have derived the approximate expressions for the distribution, and
second order statistics, of the peak response of sdf and mdf systems. These are
conditional distributions for given seismic input. The total risk, or design based on
specified total risk, can be obtained by substituting these in (107) or (108).

CONCLUSION

In this lecture we have discussed several aspects of the probabilistic approach
to earthquake engineering. We have demonstrated that uncertainties inherent at various
stages in the process of aseismic design can be treated in a probabilistic framework.
We have noted that our ability to construct realistic stochastic models is critical for
the success of this approach, and paucity of available data in several seismically active
regions of the world a major limitation. However, by supplementing the available
seismic data with engineering judgement aseismic designs can be implemented meaning-
fully in a probabilistic framework. 'As the data accumulates in future the reliability
of designs will improve.

’).
W
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APPENDIX A : SEISMOLOGY AND SEISMIC RISK

The occurrence of earthquakes, both temperal and spacial, involves a large measure
of uncertainty. The muitiple reflections, refractions and dispersions of seismic waves
at irregular boundaries in the course of their travel to a site compound the level of
uncertainty even further. This results in a high level of variability in the estimates
of ground motion intensity at a site during the service life of structure and is the
major contributor to total seismic risk which is determined by -embedding the random
vibration amalysis into the seismic risk analysis. In this appendix we present a broad
outline of the approach to seismic risk analysis and the principal results needed for
our limited purpose. Idriss (1978), has Biven an excellent review - or various approaches,
definitions deveioped from time .to time relating to earthquake ground motion.

A.l  Seismology

It is convenient to divide the study. of seismicity under two broad headings @
() local_seismicity, which deals with the probabilities of earthquakes occurring in
a given portion of earth’s crust; and (i} regional seismicity, which deals with
the probabilities of earthquakes of given intensities shaking a given region of earthk
surface (Newmark and Rosenblueth, 1971). The study of local seismicity basically
involves knowledge of the Beotectonic features and seismic history at micro- and macro-
levels.  Regional selsmicity studies combine this information with the transmission
of seismic waves, local geological information and statistical data on intensities of
past earthquakes to establish estimates of seismic risk, The historical data for a site
is seldom sufficient to permit direct statistical estimate of seismic risk.  Seismic
risk is, therefore, assessed through deductive probabilistic models using the available
data. The Bayesian approach, which makes it possible to systematically supplement
quantitative data with qualitative information is ideally suited for seismicity investiga-
tions (Esteva, 1969), :

Some defipitions and formulae

Magnitude (M) is a Mmeagwe of the size of the earthquake in terms of the energy
released. There are several definitions ot magnitude (Idriss, 1978). The original defini-
tion due to Richter (1958) defines magnitude as the common logarithm of the trace
amplitude, in microns, or a standard seismograph located 100 km from the epicentre.
Intensity () is a measure of earthquake’s local destructiveness. It is measured on
a subjective scale, such as, the modified Mercalli (MM) scale. Focus or Hypocentre
is the point in the earth’ crust where the first seismic. waves originate. icentre is
the vertical projection of the focus on the earth surface. The location of a site in
relation to an earthquake may be ‘specified by the focal distance {R); or by epicengral
distance (X) "and focal depth (H}. Clearly

Lo if2

R = x?iH3 (A1)

Peak ground acceleration (A ), peak ground velocity (V ), and peak ground displace-
ment (D ), are respectively thé peak values of the abscfute value of the ordinates
in the glgbund acceleration, velocity and displacement records at a site. An empirical

relationship betwee‘n_.thglpeak ground motion parameters (Ag, \/’g or Dg} and the

magnitude and fotst distance, called attenuation relations, can be expressed in the
tollowing general form (Esteva and Rosenblueth, 1964; Idriss, 1978).

b_M b : ) . .
Y = b el R I, S , (A.2)
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where Y may denote, Ag’ Vs or DS; and bl’ b2 and b3 are constants which

depends on the quantity represented by Y. Esteva and Rosenblueth suggests that,
for southern California, the average values of the constants (b,, b,, b,) may be chosen
as (2000, 0.8, 2), (16, 1.0, L.7) and (7, 1.2, 1.6), if Y denotbs Rg. g o Dy in units

of centimeters and seconds, and R is measured in kms. It may be remarked that available
data shows a large scatter around the mean curve represented by {(A.2) (Esteva, 1970).
We shall discuss this aspect later.

Duration (Tg) is the length in time of significant shaking at a site during an
earthquake. Sevéral definitions Have been proposed for Tg (ldriss, 1978). The defini-
tions based on Husidplot (Husid, 1969) are being adcs:ed increasingly. We shall
express the relation between the duration, magnitude and focal distance in the form

CZM
‘l'g = Cl e + C3 R, . (A.3)
Where T_ is in seconds, R is in kms, and the average values of the constants (Cl,C

. i
C‘3) are (0,02, 0.7%, 0.3) (Esteva and Rosenblueth, 1964}

The r.m.s. value (9=) of the groand acceleration can be expresspd in terms of
the peak median value of AE in the following form (Vanmarcke, 1977}

-~ 4,48,
oy - R @in el R (A

where A  is the median value of A ,and § = 2.1 w_ for the Kanai-Tajimi pad with

we & ws and Cs,= 0.6. Through (A.2), (A.fs 08 gets related to M and R.

The half slipped length (S) of fault can be expressed in terms of magnitude in
the following form. .

S = el M -m)% (A.5)

" where m_ is the lower limit on earthquakes of engineering interest, and a 1 and a, are
constants.

A.2 Seismic Risk Analysis

The seismic risk at a site is usually expressed in terms of the probability of
site 'intensity' exceeding a certain value in a given period of time. The term ‘intensity’
is used here in a generic sense to denote any one, or a function of several, ground
motion parameters (Kiureghian 1981). To determine the seismic risk at a site it is
necessary to construct the stochastic models of the source parameters, both temporal
and spacial, and the travel path. A seismic source is characterised by its geometry,
tempora! characteristics and' size of the seismic events. The geometric shape of the
source on the surface of the earth can be idealized as a point, line or area based on
the knowledge of the® spacial distribution of past earthquakes and known geotectonic
features. The spacial distribution of earthquakes can generally be assumed to be homo-
geneous in a sowce, and if necessary a source may be subdivided into homogeneous
sources, The focal depth of earthquakes is usually assumed to be constant. However,

if local depth data is available, a distribution can be fitted (Basu, 1977; Basu and .

Nigam, 1977). The occurrence of earthquakes in time, at a source is generally assumed to
be Poisson, so that
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(v)" exp(-v 1)
n:!

Ppy(nst) (A.6)

where P, (nt) denotes the probability of occurrence of n earthquakes of magnitude
greater than say m_, during the time interval t, and v = u(m ) is the expected
rate of occurrence of such earthquakes. A Poisson model assumes s‘iationamyand inde-
pendence of successive events. Both assumptions are not fully substantiated by data
and- evolutionary models of earthquake occurrence, specially if fore-and after- shocks
are included. However, the model is considered adequate for the service life of most
structures (Knopoff, 1964; Limnitz, 1966).

The probabilitf density function of the magnitude of earthquakes may be expressed
as

: {A.7)

PM(m) = exp [8(m - mo)], m 2 m

where m , is the threshold magnitude below which the events are not of engineering
interest ardd B(1.5 - 2.3) is a constant for the source.

It is clear that the variable M and R in (A.2) are random variables, and there-
fore, the site intensity Y, is also a random variable. The distribution of M is given
by (A.7} and the distribution of R can be derived for a given source-geometry, assumed
spacial distribution of epicentres and focal depth. For example, for a line-source
of length 1, uniform distribution of epicentres along the line and constant focal depth,
it can be shown (Cornell, 1967) that

2r

PR(I') = :jm- sd <o < ro, : : (A.8)

where d and r_ are indicated in Figure A-1 . Assuming that R and M are inde-
pendent random 9ariables, W cen be shown from the theory of functions of random
variables that (Cornell, 1968)

: c - Ssz
Py = Plyzy] = I-Fly) = TGy y ¥ 2 oy (A.9)
where
bez
c z exp (b2 mo)(bl) - {A.10)
G _ | 2 sec'l(roldz
- . gV OJ’ (cosu) du
(A.1])
b3
v = 8 B i, (A.12)
)
and
by
y' = b, exp (b2 mo) d 7, . (A.13)

Note that parameter G depends on the geometry of the source and can be similarly
derived for the area source. For points source
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G = (r)"( l +V )

Equation (A.9) gives the praobability that the site inténsity, Y, wili exceed the
value, y, given that an event of magnitude M3 m o has occurred on the source.

‘Since the occurrence of such events at a source is assumed to be Poisson with arrival
ratewit is clear that the events with site-intensity Y 2 y are 'special events' with
arrival rate Py. and

P ve"

Pysli) = —'{T— exp (P Pt) n = 01,2 (A.54)

where N* (1) is the.counting process of special events, (Y 2y), at the site.

Let Y'Lt) denote the maximum value of the intensity .over a  t-year period.
Since

P[Y(t) Syj = P [Zero special-events in the time interval, t],
m .

va(t)(” = Ph,(.:t), z  exp [—Py' vt} (A.15
Let
(t)
Ym z Ym |t .1

be the annual maximum intensity. Then
PN;.(O,I) .= Fym(y) = exp [-Py v : (A.16)

Substituting for Py from {A.9) in (A.1¢)

Fyly) = exp[-vCGy } Yerw (A.17)
m
-8 /b,
=1-vCGy y Y 2oy,
-Blb2 ,
if CGy << 1, for probabilities of interest in design. The anhua! return period
(Ty) is given by ‘
‘' wbz
= L - L (A.18)
Ty = .i-li(iyi = ¥cag Y ’ .
m
where O w/'l . The T-year intensity (y,) is cbtained from (A.18)
o B/
yy = (Bcemn 3 (A.19)

It may be noted that (A.17) represents Type-li asymptotic extreme value distribution
of largest values.
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The above results have been derived for a single source. If a site may experience
shaking by more than one scurce, the above results can be easily extended, if the
sources are assumed to be independent. Consider m such sources. [t is clear that
PY,(t) g y] is the probability that the maximum value from each source is less than

or equal to y, that is

m

{y,t) = n oy (¥, )
5 oo a1 N 0
m -8 ./2bz.
= exp[-,ll %GGy T 9 yay w{A.20)
)=

where FY 1:ﬁy,t) is the distribution of the maximum, in time t, for the jth source, and
m

y' is the largest y. If constants B, b., i = 1,2,3 are the same for each source,
€ j it 7
(A.20) reduces to

-3/b2
FYW(y. 1) = expl-CVGy t], : (A.21)
where,
- P
VG = j=1‘ﬁ G (A.22)

Equations (A.2l), (A.22) indicate that each source contributes approximately in an
additive way to the risk. The design intensity for a specified probability (yt-p)’ the
]

return period for a specified intensity, and T-year intensity can be obtained from
(A.20) or (A.21) for multiple sgueoe situation.
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