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ABSTRACT

The problem of the static deformation of a multilayered half-space
due to strip loading is studied. The transfer matrix approach is used
to find the deformation field at any point of the medium. Both plane strain
and antiplane strain cases are discussed - in detail. Explieit expression
for the displacements and stresses 1in & uniform half-space and a layer
over a half-space are derived. The results for a normal line load and
a shear line load are obtained as a particular case. The.present formulation
1s simple and .is quite convenient for numerical computation.

{\‘__

1.  INTRODUCTION

The behaviour of horizontally multilayered elastie materials under
the action of surface loads is of great interest in geophysies, scil mech-
anics and engineering. Many earthworks, such as fills or pavements, consists
of horizontal layers of materials of different kinds. Kuo (1969) studied
the three-dimensional problem of an inclined static load on a circular
area of the surface of a multilayered isotropic half-space. Singh {1970)
Sclved the corresponding problem for three-dimensional buried sources.

- The two-dimensional plane strain and antiplane strain problems of

the static deformation of a mul tilayered isotropic haif-space by a normal
’ line load and a shear 1line load have been discussed by Garg and Singh
(1985). The corresponding two-dimensional problem of a long displacement
dislocation in a multilayered half-space has been -solved by Singh and
Garg . (1985). Singh (1986), Garg ard Singh {1987}, Pan {(1989) have also
studied the deformation of a semi-infinite medium by surface.loads.

In the present paper, we have formulated the two-dimensional problem
of a normal and shear  static strip-loading acting on the boundary of
a multilayered isotropic half-space. Both plane strain and antiplane
strain problems are solved. It is shown that the integrals giving the
stresses can be evaluated analytically when the medium 1is a uniform half-
space. As a particular case, the.antiplane strain problem of the deformation
of an 1isotropic medium consisting of a single layer lying over a half-
space by "the shear strip-loading is solved.

The present paper may be considered as an improvement of the paper
by Garg and Singh (1985) in the sense that the results of Garg and Singh

{1985) have been derived in the present paper as a particular case. We
have used Fourier exponential transformation as the range of the variable y
on the ‘boundary of the multilayered medium is (-, w), It may also find
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applications in the study of reservoir-induced seismicity in addition
tc other fields mentioned earlier, The technique developed in the present
paper is simple and straightforward. ’

2. BASIC EQUATIONS

The equilibrium equations for zero body forces in carteasian system
(xI, Xss x3) are

ap op ap
11 12 13

- + - + = 0 (2. 1)

a9x, ax2 8 x3

ap ap dp

—.% + axzz + —a_xg}_ s 0 (2.2)
1 2 3

3 Py; ap ® '

31, T3 Py = 0 (2.3)

3 X axz a¥3

where pij is the stress tensor. The stress-strain relations are
1;01‘j = A 951314- Zpeij (2. %)

where eij is the strain tensor, ) am uare Lame's constants ard g is the
cubical dilatation given by ’

3} = e

11+E

Ir (u1.. Uy u3)_ denote the displacement components, the strain-displacement
relations are -

32 u
.1 A 3 ]
®13 % 2 (3"3 + alxii (1, J = 1,2,3) (2.6)

We shall be considering a two-dimensional appf‘oximation in which the dia-
placement components and consequently stresses are irdependent of X, 80
that (8/93x,} = 0. Under this asaumption, the plain strain problem and

the antiplane strain problem are deccupled and, therefore, can be treated -

Separately. In the following, we shall write (x, vy, z) for (x1, Xy x3)
and (u, v, w) for (uyy u,, u3). ' .

3.  ANTIPLANE STRAIN PROBLREM

For the antiplane strain problem, the displacement ccmpdnents are
+of the type ' '

05 * e33 (2. 5.)'

~t-
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u = uly,z), Vzw =0 (3.1)

and the non-zero stresses are

_du

du
P12 = M %y P13 7 W 33 (3.2)

We notice that the equilibrium equations (2.2) amd {2.3) are identically
satisfied and (2.1} reduces to

2 2
2 5 . 2 . (3.3
ay az

To solve (3.3), we shall make use of Fourier transform. The Fourier tranaform
of X{y,z) 1is defined as

- @ 1k
Xk, z) : I X (y, ) Y 4y ’ (3.4)
) -
so that
1 R =iky
X(y, z) = Fr S Xk, 2) e dk (3.5}

Taking the Fourier transform of (3.3}, we obtain

z-k)u z 0 (3.6)

Solution of (3.6) 1is

T - eelklz g Ikl (3.7
where E and F may depend upon k.
Hence

x .
« o= L (8 okl 2, g oMkl 7y sty g (3.8)
- o
Equation (3.2) and (3.8) give
= 2L .!"m (-£ o~ lk|2 +F elklz) e-iky]'k| dk (3.9)
P13 Y ' .
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"Equation (3.8) and (3.9) may be written as

[--] . .
u = EL“ fulz) e %Y g (3.10)
Py = mr f T@ e i _ (3.11)

The functions U{z) and T(z) are given by the matrix relation

[1(2)] = [(z(z)] [K] (3.12)
where _

[¥(2)] - =, T™wIT, (K) = [E+F, E-FIT (313
and [----]T denotes the transpose of the matrix [-=---- ]. The matrix
[Z(z)] is given below :

ch¢ - shd ]
[2(z)] z
ushe - uuché¢ ‘(3. 14)
where ¢ = |k| =z, _ (3.1%)

and ch and sh stand for hyperbolic cosine and sine, respectively.

4, PLANE STRAIN PROBLEM

For the plane strain problem, the displacement components are of
the type

u = 0, v = viy,z), W :  wiy,z) (4.1)

ard the non-zero stresses are

1-20 av R :
Pip o % wigy) (ay * Bz) (4-2)
Pz = o [_-% + (1-2a) a—‘;] L (A3)
- [(1_'20).ﬂ - ﬂ] ' ' (4. 4)
p33 - T o-1 ay 3z '
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oL _av L
P23 = u(az + -ay) (4.5)
where
a = Atp (4.6)

A+2u

The equilibrium equation (2.1) is identically satisfied and (2.2) and {2.3)
reduce to

ap ap
22 23 N
3y + 33 = 0 (4.7a)
ap ap
23 33 -
“—-—ay + a2 = 0 {4.7b)

Therefore, there exists an Airy stress function G(y,z) such that

o . 3%a S o . 2% (.8)
22 E: 23 3y a3z 33 N
2 2
(-2 5+ 3 5 S S (4.9)
ay 8z .

We note that the equilibrium equations (4.7 a, b) are identically satisfied.
Fourier transform of (4.9) yields

T =0 (4.10)

General solution of {4.10) 1is

G .= & e"lklz + Be Ikiz +lklz (c ehlklZ +D e|kf.z )

(4.11)
where, A, B, Cand D may be functions of K.

Inverting (4.11) by means of the Fourier inversion theorem, we obtain

@«

S [Ae

-

-k|z

. B olklz -lelz | D elklZyy omtkyg,

+|k|z' (Ce

ceea (U012)
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From (4.8) and (4.12), the stresses are found to be

1
Pos 20

-lkiz lic |z “[x|z

L]

7 [ae +Be -Cc(2<k|z) e

|k|z] o~ iky

+ D (2 +|k]z) e K% dk el (4013)

1 = |
= - f Iﬁe"h‘[_z - melklz ¢ (1 -|k|z) e k!z.

L T
R I 1 Pl O N L I RV e
> . =1 fm[Ae-lk|z. . pellz |z ce~lklz | pelk12)y
33 2y o ‘
Y §? e (W15)

x

The formulae for displacements can be obtained by integrating ‘the stress-
displacement relations. Using (4.8) and neglecting rigid body displacements,
it can be shown that (Sokolnikoff, 1956; section T1).

2py = - -aa—g + 516—- J (p22 + p33) dy S (4.16)
3¢ 1
Hw = T3z Y T2 f (p22 + p33) dz : (4.17)

Equations . (4.12), (4.13), (4.15) - (4. 17} yield

-1 -k k 1 -|%
2uv = 571 -c{ [Ae k(= + pel |z _ iz -lk|z)e [ktz
+D (& +]k|z) olklz ) kY k gk ' (4.19)
' = Klz |, g ¢ LIkl
2uw = ﬁ— -{D[Ae-lkiz - Be z.+ C (5 - 14+k|z)-e7' z
+ D3 -1-|k|2) lklzy kv g (4. 20)

Equations (U4.14), (li_. 15), (4.19) and- (4.20) .may'be uritté_ﬂ as

i
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[+ ]
v = 3 ! rve kY b o (4, 21)
ni
. [--] -
W = 2—1—— I W e'lk.y}k| d s (4. 22)
w - o0
1 ~ ik '
- iKYy . .
Pp3 = R __J; S e |k [k - dk (4.23)
€0 . 2 .
= 11 SN Y 2 g . (4. 24)
p33 2w e .

The function V, W, S, N are given by the matrix relation
[Y (z)] = [Z{=z)] [X] (4,25)

where

(¥(z)] = (v, w, s, N1, [K] = [A+B, A-B, C+D, ¢-D}T (4. 26)

The matrix [Z(z}] 1is given below :

F-—chﬂ) sho -(shd¢ + adch $) ch¢ + abshd
2u 2 2ua 2 uo

-sh¢ ch¢ -[ché + ¢shd -~ (1/a) ché) _sh¢‘+ Pehd-(1/2)sh¢

2u 2u 2 U 2
[2(z)] = _

-sh ¢ ché¢ - (ch¢ + ¢ shé ) sh ¢+ dchd

—chg sh¢ - bichd | ¢ sho

(4,27

5. DEFORMATION OF A MULTISTOREYED. HALF-SPACE BY SURFACE LOADS

We consider a semi-infinite elastic medium made up of p-l parallel
homogeneous isotropic layers lying over a homogeneocus isotropie elastic
half-space. * The layers are numbered serially, the layer at the top being
layer 1 'and the half-space i3 termed as Ilayer p. . We place the origin
of the cartesian coordinate system (x, y, z) at the boundary of the semi-
infinite médium and the z-axis is drawn into the medium. The mth layer is

of thickness dm and is bounded by the interfaces z = Z z, So
that dm =z - z . Lame's parameters of the mth layer are I TR
m ; "m=1 : m m

Obviously z, = 0 arnd zp__1; = H, H being the depth of the last i’nter'f'ace
(Fig. 1). :
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Introducing the aubscript ‘'m! to the quantitiesa :related to the
mth layer, equation (3.12) for the antiplane strain problem and equation
(4.25) for the plane strain problem can both be written in the form

5,201 = {Z (@)K, 2, , sz €z, e

] We assume that the layers are in welded contact. Using the continuity
of the displacementa and stresses across _the interface 2z = zm_.',' it has

been shown by Singh (1970) and Singh and Garg (1985) that the deformation
fields at the boundaries of the consecutive, layers satisfy the relation

(z

(¥ m-1

n i o= lagd [y (z)] (5.2)

where the transfer matrix [am] is given by

o) = (2,02, ) (3020170 = (2,(-4)] [z, )77 (5.3)

The elements of the matrix [am] are giv'en in the Appendix-I.

Making a répeated use of (5.1) and (5.2), we find

(Y, (1 = [M] [K",]. T (5.4)

where _
Ml = (a,) [a,) --——-- a3 [Z (%)) (5.5)

The fleld at any point of the mth layer is obtained from the relation

Y, ()1 = _[le (K1 oz € 2€z, _ _(5.6,)
where

) = lay(zo2)) (a1 === [a .7 [z (0)] 5:7)

amd the'mﬁt.r-i_x [am(zm-z)] is obtained from [‘am] on replacing _tial by

zm-&

‘5.1 Antiplane Strain

For the half-space, 'F_ = 0, since, otherwise, u+ o 88 z+ =
Equation (5.4) now gives h ’

T(0Q) = (141‘21 +, 22) Ep ‘ ‘ ' (5.8)

.
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N
-
When the surface load is prescribed, E can be determined from {5.8).
Let the boundary cendition be of the type
Py3 = fly) at z' =0 : (5.9}
We write
1) = = [T Y g (5.10)
) - ™
f
i where .
— - ®
Fe) = sey) oK gy (5.11)
-0
Equation (3.11) and (5.8) - (5.10) yield
T (k)
E = (5.12)
) ‘ (k| (MEI + M)
The displacement u at any point of the mth layer is obtained from (3.10),
(5.6) and (5.12). _We find
®© - N.. + N
1 (k) 11 12 -iky
u = = [ (=) e dk (5.13)
2n o kl M21 + M22
: The stresses P, and p,l_3 can be obtained from (3.2) and (5.13).
|
L 5.2 Plane Strain
e

Taking Bp :Dp =0, (5.4) yields

5(0}

(H3T- + H32) Ap + (H33 + MBH) Cp . (5. 14)

N(0)

(MM + Mﬂ2) A + (Mll3 +

M. _
p tw) CD (5.15)

| For given surface loads, A and C' are kno-fyf) from-(5.14) and {5.15). Let the
boundary cond'itio_na be of ° the form

= gly) and = hiy) at 'z = O {5.16)

P33

We write

v 89} = o JEG e ok, Fw) = 8y eV ay (5.17)
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S
1 > ik >
Hy) = oz SR e ak, Rk o= Sh(y) &MY gy (5.18)
-0 -]
Equations (4.23), (4.24), (5.14) - (5.18) yield
A - —_— M, + M) ki -T(M
p 9k2|k| 43 u 33 * Myy) |ef3¥ {5.19)
1 - -
c = T [h(M31 + Mo k| = B M« M) k) (5.20) ——
where
= (l“l31 +‘M32) (MHB + Ml-lll) - (M33 + M3H) (ML” + MHZ) (5.21)
The integral expreasions for the displacements at any point of the mth
layer can be found from (U.21), (4.22), (5.6), (5.19) and (5.20). We
obtain
1 o
v : Tr1 _';[(N” ¢ Npo) ({E My + M) ki -h (M33+M3u)lk| h
o (NN, ({F (M, aM) [k| - B M, oM, ) kiby 1 857
137714 31732 B 38+ Ny’ *- ,
-1 -1
@ (klk])” ak e (5022)
1 * -
W T -Im[(nmmzz) ({8 (M“B-»-MM) ki - I_'1(M33+M3u)|k|})
: - -iky A=1,-2
+ Nyl ({E(M31+M32)|k| - T My oMy,) kihle 8 'k ax
«... (5.23)
The stresses for the plane strain problem can be obtained from (4.2) -
(4.5), (5.22) amd (5.23).
6. STRIP LOADING AT THE BOUNDARY z =0
The results obtained in the previous section are of general nature.
We now consider a few particular cases in whieh the surface load is precisely o
defined. -
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6.1 Uniform Normal Pressure

Suppose that a uniform normal pressure P acts over a segment
“8&y<a of the y-axis in the positive direction of the =z-axis (Fig. 2),
This is a plain strain problem and the boundary conditions at z = 0 are

-p |yl < a

= 0,

Pa3 P23 =

0 lyl > a (6. 1)

From (5.16) - (5.18) and (6.1), we find
Bk) =0, Rk = -z (blnka, (6.2)
Equation (5.22), (5.23) and (6.2) give the integral expressions for displace-

ments at any point of the mth layer. We obtain

]

=z £ ~-iky
v z 1 -J'm sin ha [(N”-*N,'e\ (M33+M3N) - (N13+N1u)(M31+M32)] e
"' k? e (6.3)
W - £ ke LON, #N, ) (Mo e ) = (N, eN, ) (M, s ) Je= 1KY
: v 21%Npp) (M3 ek, 23*Noy) (Mg +M5,
' k3 k] el (6.1)

6.2 Tangential Load

Let a urdiform load Q per unit area aci over the strip |y|ga of
the boundary in the positive direction of the y-axis. This problem is
again a plain strain problem and the boundary conditions are

B - Iyl <a, 0 (6.5)
= P = V.
23 0 l¥| > a, 33

From (5.16) - (5.18) and (6.5}, we ohtain

HO -2q (ipka,, k) = o0 (6.6)
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" The integral expressions for displacements can be obtained from (5.22),
{5.23) and (6.6), we get -

o

_ Q R . -iky
v = T _{nsm ka [(N13+N1ll) (Mu1+Mu2) - (N”+N12) (M.H3+Ml-lll)]e
-1 -1
Q (k|x|) dk (6.7)
[ ]
w o= S f sinwa [ NLeN. ) (M, aM ) = (NN, ) (M, M, ) ]e 1KY
: TR 232 V1™ 2 21 22 My iy
-1 =2

' k% . (6.8)

6.3 Shear Load
Assume that a uniform load R per unit area is acting over the

strip |y| ¢ & of the surface z = 0 in the positive x-direction (Fig. 3).
This is an antiplane strain problem ard boundary condition at z =0 is

-R ¥l < a
p ’ .
13 0 ly| > a | (6.9
Frcm (5.9), (5.11) and {6.9), we obtain

Tk) = -2 (2lnka, . , (6. 10)

Equations (5.13) and (6.10) yield

® N, .+N .
o= B s stnka (R W ki~ ax (6.11)
T = 21% 22 _

. In this section, we have obtaineintegral expressions, for the dis-
placements for three types of surface loading. The stresses can be obtained
by using the usual stress-diaplacement relations.

7. DEFORMATION OF A UNIFORM HALF-SPACE BY STRIP LOADING
For a half-space, p =1 =and

(Ml = [z(0}] and N = [Z(=2)] : (7.1)



Generation of Displacements ........ + Strip-Loading 13

7.1 Uniform Normal Pressure

In this case, from (4.27) and (7.1):

B 1 1 ]
Fd 0 0 S1a
] 1 1
0 e T (E -1 0
Moo= [2(03] =
c t =1 0
0 0 ) 0 0 (7.2)
L B
N = fZ2(z)] ds given in (4.27) and
f = -1 (7.3)

The integral expressions for the displacements at any point of the uniform
half-space due to normal pressure P at the bourndary z = Q0 are obtained
from {4.27}, (6.3), (6.4), (7.2) and (7.3). We fimd

@
v = T‘L Foa-d, kz) e X% gin ka =in k)r.lf-'.-2 dk (7. 4)
"] 0 [+
- -]
W = -“—P-— S (-& + kz) e7k2 sin ka cos ky k™2 dk (7.5)
Yoo

Using (4.2) - (4.5), the stresses are found to be

. oo
Piq = 2Pé11;2a I e*% simka cosky k™| dk
0
- P(1-20) -1 2az :
B TG tan (———-——2 =5 2) veesd(T.6)
¥y +2t -a
2P . 1-k
p = =2 (K2 K2 g cosky dk
22 n 0 k
- =2p (1 tan~t (=222 ) - az (z° « a° - o)
: T 3 2 2 2

y 4252’ [z2+(a+y)2][z2+(a-y)2]

e (72D
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) e X% gsirka cosky dk

P33 o

‘ 2. 2 2
= =2k [-;- t.a.n-1(—g—¥~——)+-m—z+a -y

T Y2+z -a [z2+(a+y)2] [22+(a-y)2]
e (T.8)
2Pz, -k
Ppy  * =2 I ? sinka sinky dk
2
= 2k +2 ] c (1.9)

[zz + (a+y)2] [z2+ (a-y)2]

The integrals expresaing the stresses have been evaluated with the help
of standard integrals listed in Appendix-II. The closed form expresaions
for the stresses given in (7.7) - (7.9) coincide with the corresponding
expressions given by Sneddon (1951; p. 407).

The problem of the normal line load, say PO, per ufit length applied

at the boundary of the uniform half-space becomes the particular case
of normal strip-loading problem. Taking [p = (PO/Za)] and using the
relation

lim (s.‘m ka

ka )

L
-

(7.9a)
a-=+0

in (7.4) and (7.5), we obtain the closed form expressions for the displace-
ments as given below :

P o
v z -2 7 (1 -2 4kz) e** sin ky k™1 dk
2ny 0 a
P
= 0 o= a1 X —tz
= vy (¢ a ) tan” (T) + y2 . ] {7.10)
P. © .
W s 2—0 I L sz ¥ cosky k™! dk
w o @
P ) 2
= 0 =1 2 2 z
= T [20 log (¥~ + z°) + 5 5] (1.11)

¥y o+ z
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‘The stresses-follow directly from (7.6) - (7.9)

P. (1=2a)

Q 2 :
I;’T'I = o { 2 > 1., (7.12)

¥o vz

-2 P0 zy2 .

D22 = T { 2 2 2] t (713)
(y"+2%)
-2 P 3 ’
0 z

p = [ ], (7.1%)
33 " (y2+22)2

-2 PO yz2
P 5 [ ] (7.15)
23 T (y'?+zz)2

The stresses (7.13) - (7.15) coincide with the corresponding results
of Sneddon (1951; p. 409). We observe that Sneddon (1951) did not obtain
the closed form expression for displacements.

7.2 Tangential Load

From (6.7), (6.8), (7.2) and (7.3), we get

[+-]
v = 9 J (1- gkz) e k2 sinka cosky k2 dk, (7.16)
mTuQ o
® K 2
W = ,"4;&— J (l-a+akz) e*% sinka sinky & “dk (7.17)
' 0

Using 7(14.2) - (4.5}, (7.16) and (7.17), the stresses are fourd to be

wn
Py % %—- (;-Za) J k™! e ¥ sinka sinky dk
. 0

Q ,1- o2 2
= :2—,?(%;-2—“)[ log { {8t¥)” + 2%

(.sl-'-jr)2 + 22

ceena (7.18)
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= :'-':J f (?'ﬁ) 'kz.-sink‘a._ainky'dk
4]

P2z K
=L ;“Q [ log favy 3 -2 i r%x‘!— - 3 1 (7.19)
- _ (a=y)" + Z o [asy) ez .][(i\_-y) +z°]
_ -2Qz - tkz o o
P33 .- = é’ e sinka sin.ky_dk
= [ Ayz 1 (720)

[(asy) ez ditamy) 242’

=29 (1KZy K2 Sinka cosky dk

. ‘ ' S 2
-2Q 1 -1 2az . a (z +a~ -y )
- A L (B2 - ]
o 2 _'-y_2+z{2 -'-a;? : f(aﬂr) +z' ‘[(a-y)é-rz 1
e (T.21)

' Taking - [Q = (Q/2a) ] and proceedins to the linit a —0 in (7. 1'6)'
~and . (7.17), we o tain the defomtion #1614 due to a. tangential 1ine load -
Qy per unit length acting at the bourdary z =.0 1n the posit:lve y-direcl;ion. :

v = -ZTIF J'u(1-_akz5 .e-kz' coﬁ'kr k-1dk
o= -2-“—“ [""‘ log (Y +Z ) - {"'q—"‘al ’ T (T,'zz)
. Sy . :
w z T, J' (1-0, +akz) sinky k dk _
= W [(1—0) tan (y/z) + —L—} ‘ A{7.23).
- : B N y + z -
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The stresses follow directly from (7.18) - {7.21). We get

_ _o 1-20 ¥ .
Pie = v ) IS (7.24)
-2Q 3
0 Y
P, = 7 (7.25)
22 (y2+ 22)2
-2 Q 2
0 Yz
p =z (7.26)
33 m (y2+22)2
2
; 29 —z (7.27)
= T
23 (y2+22)

The stresses p23 and p33 coincide with the corresponding results obtained
by Garg and Singh (1985). They had obtained the atresses Pa3 and P33

only while we have found the closed form expressions for all the displace=-
ments and stresses.

7-3 Anti Plane Strain Problem

In this case

1 0
M = [z{0)} = (7.28)
‘ . 0 -y

and N = [2(z})) is given in (3.14).

From (3.14), (6.11) and (7:28), we obtain

Wos B 7 %% ginka cosky k2 dk (7.29)
o

Equations (3.2) and (7.29) give the stresses for the antipldane straih pro-
blem. We get
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o
. Py, = SR 7 KT e sinky KT dk
‘ 5 2
-R \a+y) + 2
= - log (a+y) > * 22 (7.30)
{a-y)” + 2
oo
p = 2R e¥Z sinka cosky k= dk
13 n 0 ‘
- =R -1 2az '
s 7 tan I 2 o 3 ] {(7.31)
y +z" ~ 8

Taking R = {R./2a) and proceeding to the limit a——0 in (7.29)-
(7.31), we obtaf)n the deformation field caused by a shear line load R4,

per unit length, acting at the boundary z =0 in the positive x-direction.

H -]
e ™ 6" eKZ cosky k™| dK
-R :
) 0 2 2 '
= e log (y° + 27) | (7.32)
-R
- 0
p12 = T [ y2 . z|2 ] (7-33)
and
-R
- 0 z
p13 - " [ yz R z2 ] (7~ 3"‘)

The expression for the stress p,, is th\e' same as obtained by Garg amd
‘ 13 18 ¢ ‘

Singh (1985). Here, we have obtained the éntire deformation field corres-
ponding to the antiplane strain problem. ‘ :

8. A LAYER OF THICKNESS d LYING OVER A HALP-SPACE

In this .section, ‘we - consider ‘the ahtiplane_ atrain problém only
(Fig. 4). In this case :

v
>
4-_.‘\_. —
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Moo= [a, @]z, @] 18.1)

N, = (a, (d-2)] [z, (@)1  for 0<z<d (8.2)
N, = [22 (z)] for z §d . (8.3)

The displacement u at any point of the layer is obtained from (6.11),
(8.1) and (8.2). Expressing the hyperbolic functions in terms of exponen-

7 tial functions and expanding the denominator in a power series, we find
o ; -]
) sinka -lk|=z n -|k| (2nd+z} -|k|(2nd-2)
u = ——-—"p1 Ew by [e + nZ=1 ¢ {e + e }
e TV gy
2R “sink K Kk ® k (2nd+z)  ~k(2nd-2)
. B posinkacosky pkz, g e Y2, e” "2 dk
Wy g k n =1
cea (B W)
where
u1 - ua
, c =, TSN (8.5
i ‘ My * M
The non-zero stresses p12 and _p13 are found to be
@™ . : @ o _
Pyt - 2R sinka sinky [ -kz 5+ cP (eK (2nd+z) ~k(2nd 2}y 1 ax
m k
0 nsl
.o e 2 = 2 2
; . _R_ (a+y}” + =z~ -
‘ . - 2Rn [ log (a+ )2 + z2 + 5 {log ((a+y)2 + {2nd 2)2 3
! fla-y)” + z nzl {a=y)* + {2nd-z)
2 2 . .
+ log (lasy)l ¢ (Zrdez) _ .. (8.6)

(a—y)z *. (21’1d+z)2
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0 k nel

=R -1, 282 - . -1, 2 (2nd - 3)

= = [tan” (5=22—=) - ¢ ¢"{tan"’ ¢ - )
" y2422-a? n =l v2-a2 ¢ (2nd-2)2
- tan-l ( ézﬁ (2nd + Z) )}]

v2-a2 » (2miez)2 ceen (8.7)

in which the integrals have been evaluated by using the Appendix II.
Taking R = (R./2a) and then using (7.9a), the displacement and the
stresses cgused %y a shear line load R., per 'unit length, acting at
the boundary z = O of the semi-infinite ‘elastic medium in the positive
x-direction are found to be

R ™
5 s =% 7kl cosky [eKP. p P ((ek(2ds2) | k(2md-zhyg
Ty, o nel
=R o :
=z -2-1-7% [log (y2+zz) « ¢ c" {log (y2+ (2nd+z)2)+‘los (yzgtam-z)e)}]
; e s
(8.8
A R X . !
2 v y2+z2 n=l _ y2+(2r\d+z)2 ‘ y2+(2nd -‘2)2
. T e (8.9)
0 Zz n 2nd + 2 . -2 .-z
P z —— [ wmgmte— + § O (g - .
13 T 'y2+ 22 ns y2+(2 nd+z)2 -y2+ (an‘-z)a
vees (8,10)

The stresses in (B8.9) and (8.10) coincide with -the corresponding results
obtained by Garg and Singh (1989). Here, these stresses have been obtai- -

ned by using transfer matrix approach while Garg amd Singh (1989) obtained
them directly. The advantage of our method 12 that it can also be used

when there is more than one layer lying over the half-space.

= = ; ..
Pig _% I sinka cosky [ _e-kz . I ch {e-k(zm-z) __e-lc(and-u-z)}]dk
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9. DISCUSSION

In Section 6, we have obtained the deformation field at any point
of the multilayered medium caused by normal and shear strip-loading.

Tnese results are in the form of integrals over the variable k. These
integrals can be evaluated by using the method suggested by Jovanovich
et al, (1974). The closed form expresaions for a uniform half-space

given in Section 7 and for a layer over a half-space given in Section 8
can be used as a check over the numerical computation. The quasi-static
deformation of a uniform half-space and a single layer lying over a half-
Space can be obtained by thc. simple and straightward procedure given
by Garg and Singh (1989) ard Singh and Singh (1989).
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APPENDIX - I

(1) Plane Problem

,VO 0 0 -1 7

0 2 (1-a) 4]
(z(o1r' - 0 2 -~ 0
2ux 0 0 - J

Elements of the transfer matrix [am] are {(omitting the subscript m);

(1) = (33) = chik|d « |k|d sh |k| d

(12) z -(#3) = afk[d chlkid + (1-a)sh [k|d
(13) . -2Lu = lafkld chlkfe + (2-q)sh |k|d]
(14) s -(23) = [-alk|d/ 2p] shik|d

{21) = -(348) = -alkld chlkld + (1-@)sh|k|d
(22) = (4u) = chlkld - qlk|d shik]e

2y = ﬁ falkld chlkld + (a-2) shlk|d ]

(31 = -2ua [[kld ehfk|d + shlk|a)

(32) = -(41) = -2palkld shikld

(42) = 2ua [|kld chlkfd - shlk|d]

{2) Antiplane Problem

-1
¢h Gudm) ol sh Mdm)

fa 1 =
Tugsh0 ) ch (dd )
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APPENDIX - 1X
[ ]
1. Ik'1 ez cosky dk = - -21- log (y2 + zz-)
0 .
- -] - -
2. S k! e'kz sinky dk s tan ! (y/z)
0
[ -]
3. S ekz cosky dk = z / (y2 + 22)
0
o
u. £ e™% sinky ak =y /(322D
0
QO
5. ! ke™¥% 45p kydi = 2yz / (y2 + 292
0
o
6. S ke cosky dk = (zz-y‘?) / (y2+22}2
0
. - 2 ayz
T. f e airka sirkydk = 3 5 57 5
o [2° + (a+y)€) [2° + (a=y)“]
' 2 2 2
8. F e™% sinka cosky dk = 3 a (z e 5”)' 3
0 [z" + (a+y)°) [2° + (a-y)€)
©  _1 : 2 2
9. J k 1e I“:!i.ri:-a sirky dik = % log (as + zz.,
0 . (a~y)® + z
e i .
10. 5k~ 'e¥*? sinka cosky di =3 tan' [(2a2) / (y2422-ad)]
0 .
In relation 10, it is assumed that y2+zz; az. However, if y2+z-2< a.2.

We must add (W/2) to the right side ([Gradshteyn and Ryzhik, 1980, p. 492).
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