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ABSTRACT

Strains and stresses within the earth constitute important precur-
sors of earthquake. Therefore, the determination of the static defor-
mation of the earth around surface faults is important for any scheme
for the prediction of earthquake. Ben-Menahem and Singh (1976a)
derived explicit expressions for the deformation of a homogeneous
sphere due to an internal dislocation of arbitrary orientation and depth.
Singh (1970} formulated the problem of the static deformation of a
multilayered modei of the earth in terms of layer marrices, This for-
mulation is now being widely used to compute the residual strain,
stress and tilt fields in half-space earth madels. . Singh and Garg (1985)
applied the method of layer matrices to solve the two-dimensional
problem of a long displacement dislocation in a multilayered haif space.

It is reasonable to consider the postseismic crustal movements
o be controlled by a quasi-static process of the relaxation of stress
changes producedby the sudden appearance of a fault in a viscoelastic
medium.  The correspondence ptinciple of linear viscoelasticity has
been used to obtain the quasi-static solutions from the solutions of
the corresponding elastic problems (Singh and Rosenman 1974, Singh
and Singh 198%a).

STATIC DEFORMATION OF A SINGLE-LAYERED HALF-SPACE

The residual displacement, strain and tilt fields associated with an earthquake
are diagnostic of the source mechanism. Geodetic observations indicate that strain
accumulation is a continuing phenomenon in seismic belts. It 1s natural, therefore,
to asscciate earthquakes with a sudden release of strain energy accompanying an
abrupt change in strength over a surface.

Steketee (1958) represented a fault as a displacement dislocation surface
in an elastic hatf-space. The basic assumption in this procedure is that the displace-
ment following an earthquake can be modelled by the corresponding fields of a
dislocation sheet with displacement discontinuity matching the observed slip. Chinnery
(1961, 1963) used Steketee's results in calculating the displacement and stress
field in the vicinity of a vertical rectangular strike-slip faulit. Maruyama (1964)
calculated all the sets of Green's functions necessary for caiculating the displace-
ment and stress field around faults in a semi-infinite medium, Following Steketee
(1958) and Maruyama (196%),. the elasticity theory of dislocations has been widely
used to calculate the static deformation of a uniform elastic half-space (See e.g.,
Savage (1980), Rybicki (1986)),

Observations of far-field residual strains caused by the Alaskan earthquake
of March 28, 1964 gave a fillip to theoretical studies related to: the static defor-
mation of the earth. Although seismologists had been familiar for many years
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with the phenomenon of permanent deformation in the vicinity of earthquake faults,
the existence of such strains at teleseismic distance was quite doubtful prior to
the above date. Press (1965) computed and contoured the residual displacement,
strain and tilt fields for vertical, rectangular strike-slip and dip-slip faults. Using
these results, Press showed for the first time, that the distance fields from major
earthquake are large enough to be detected by ern instruments. In particular,
he accounted for the order of magnitude ( ~10™°) of strain steps recorded from
the great Alaskan earthquake at teleseismic distances.

Ben-Menahem and Singh (1963b) obtained a formal solution for the static
deformation rield due to an arbitrary multipolar source in a uniform haif-space.
Since any extended scurce can be decomposed into a series of multipolar components,
the solution found by Ben-Menahem and Singh (1968b) can be used to calculate,
in principle, the displacement field associated with an arbitrary finite source.
This  solution is expressed in terms of source coefficients i , j and k_, which
have been explicity given for a double couple source. Explicii" expres?u’ons for
the surface displacements in a layer over half-space configuration have been obtained
by Ben-Menahem and Singh (1968b) for arbitrary source location in the layer of
the substratum.

STATIC DEFORMATION OF A MULTILAYERED HALF-SPACE

Singh (1970, 1971) applied the method of layer matrices to solve the problem
of the static deformation of a multilayered elastic half-space by buried sources.
The point source is represented as a discontinuity, at the source level, in the .z-
dependent coefficients of the displacement and the stress integrands. It has been
shown that the elements of these source matrices are

Spheriodal Field
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where u is the rigidity, k the bulk medulus and
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The coefficients i _, j and k characterize: the source. The values
of these source coefficifhts fBr the six elementary sources of Steketee (1958)
have been given by Ben-Menahem and Singh (1968b),

Two representations of two-dimensional seismic sources causing plane strain
deformation are given by Singh and Garg (1986}, In the first representation, the
Airy stress function corresponding to various sources in an isotropic homogeneous
infinite medium is obtained. Knowing the stress function, the field due to the
source in a layered medium can be obtained by solving the corresponding boundary-
value problem, In the second approach, the source are represented in terms of
the jumps at the source level in the Fourier integral representation of the displace-
ments and stresses due to the source in an isotropic homogeneous infinite medium.

The problem of the static deformation of a multilayered half-space by two-
dimensional source has been formulated by Singh (1985), Singh and Garg (1985)
and Garg (1986). In this two-dimensional case, the plafte strain problem and the
antiplane strain problem are decoupled and, therefore, can be treated separately,

Singh {1986) studied the problem of the axiatly-symmetric deformation of
a transversely isotropic multilayered half-space by surface loads in terms of layer
matrices, It has been shown that the general problem splits into two independent
problems, cailed the torsional problem and the plane problem. The torsional problem
is- solved by integrating the equation of equilibrium directly. The plane problem
is solved by expressing the stresses in terms of the generalized Love's strain potential,
The particular cases of a torque and a vertical force are considered in detail.

Garg and Singh (1985) studied the two-dimensional problem of the static
deformation of a muitilayered isotropic half-space by surface loads in detail, the
Thomscn-Haskell matrix method is used to obtain the stress field at any point
of the medium. The partiular cases of a normal line load and a shear line load
are considered. Explicit expressions for stresses caused by these loads on a uniform
half-space are derived. - The corresponding problem of the static deformation of
a transversely isotropic multilayered half-space has been discussed by Garg and
Singh (1987).

STATIC DEFORMATION OF A SPHERICAL EARTH MODEL

The infinite space static Green's function, also known as the somigliana
iensor, is given by

-+ -

-+ -
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where U is the rigidity, 0 the Poisson ratioc and [ the unit tensor. Ben-Menahem,
and Singh (1968a) obtained the eigenvector expansion of the Somigliana tensor
in cylindrical and spherical coordinates, The authors also obtained the Green's
tensor for a uniform sphere with zero surface tractions. This tensor was then
used, in conjunction with the Volterra relation, to evaluate the static field generated
in- a uniform ‘elastic sphere by a shear dislocation. It was found that the static
tield in & sphere associated with the Legendre polynomial of the first degree poses
some problems. In this case, one has to invoke the principles of conservation of
the angular momentum and the centre of mass of the sphere, to evaluate the field,
These conservation principles imply

- - -

frxudv = 0 - fu dv = 0.

v v



116 Static and Quasi-Static Deformation of the Earth

It was pointed out by the authors that the field due to an arbitrary shear
dislocation can be exptessed as a linear combinaotion of the fields due to-a vertical
strike-slip fault, a vertical dip-slip fault and a 45 dip-slip fault. -

The explicit expressions for the displacement field generated in a uniform
sphere by a shear disiocation obtained by Ben-Menahem and Singh (1968a) form
the basis for the numerical results reported by Singh and Ben-Menahem (1969),
BenMenahem et al. (1969), Ben-Menahem and Singh {1970) and Ben-Menahem et al.
(1970).  Singh and Ben-Menahem (1969) computed the residual displacement and
strain fields at the surface of a non-gravitating, homogeneous, isotropic, elastic
sphere resulting from faulting inside the sphere. The field was exhibited through
the use of equi-displacement and equi-strain lines. It was found that for nearly
horizontai and nearly vertical faults, the field due to a dip-slip socurce shows a
strong dependence on the dip angle. Ben-Mehahem et al. (1970) numerically inte-
grated the results for a ppint source over the fault area to obtain the field due
to a finite source in a sphere. The computation of the double integrals was done
by a successive use of the Simpson's rule, first in one coordinate, then in the second.

Wason and Singh (1972) used the Thomson-Haskell matrix device to solve
the problem of the static deformation of a multistoreyed spherical earth model
by buried sources. The point source is represented as a discontinuity in the motion-

stress vector across the spherical surface passing through the source (Wason and
Singh, 1971), :

Israel et al. (1973) gave a scheme for calculating the residual field in a gravi-
tating, radially inhomogeneous mode! of the earth caused by a buried dislocation
source. The equations of equilibrium can be’ cbtained from the equations of the
free oscillations of the earth by setting the frequency equal to zero. The problem
of evaluating the residual displacement field splits into two independent problems.
The first problem deals with the spheroidal field and is represented by six radial

functions. The second problem deals with the toroidal field and is represented
by two radial functions.

QUASI-STATIC DEFORMATION OF A VISCO-ELASTIC HALF-SPACE

One approach to improve admittedly inaccurate models for the behaviour
of the earth following a seismic event is to try to incorporate the effects of inelastic
processes. If the effects of viscosity are taken into account, then energy supplied
o a system via a sudden slip alongan earthquake fault can be partially stored within
the system and released at subsequent times, giving rise to such relatively siowly
varying phenomena as creep and relaxation.

The quasi-static approximation to the behaviour of the system is a useful
preliminary step in the attempt to improve the model, so long as one is not trying
to calculate short-lived phenomena such as seismic waves. In quasi-static processes,
the stress equilibrium exists at every point at each instant of time. Therefore,
the inertial term in the equation of motion can be disregarded. The quasi-static
behaviour of the system is thus determined by the equation of equilibrium and
the equations relating stress, strain and displacement, subject to boundary or initial
conditions, A standard, technique in the solution of such a problem “is the use
of the Laplace transform to eliminate any explicit time dependence. Upon com-
paring the resulting set of equations for an isotropic, linearly viscoelastic medium
with the corresponding set for an isotropic, elastic medium, one sees that they
are formally identical with the exception that the bulk modulus k and the shear
modulus U characterizing the elastic case are replace by a "transform bulk modulus"
k* and a "transform shear modulus” H * in the linearly viscoelastic case. The

e "‘_:’,""ﬁ?"-‘.“-’?‘d‘."w"ﬁm‘%?‘
B :




Static and Quasi-Static Deformation of the Earth 117

corresponding principle is the resuiting conclusion that we can obtainthe Laplace
transformed viscoelastic solution from the corresponding transformed elastic solution
on replacing the elastic modulii k and ¥ with the transform. modulii k* and u*,
respectively.

Singh and Rosenman (1974) obtained explicit  expressions for the surface
displacements induced by a point source and a vertical rectangular finite source.
It is shown that, for a vertical dip-slip source, surface displacements for viscoelastic
case are identical with the corresponding elastic results. In the case of a vertical

striké-slip fault, detailed numerical results are obtained for both a point source
,‘_ and a finite rectangular source., It is found that the results for the viscoelastic
models differ significantly from the corresponding elastic results,

Using the results of Singh and Rosenman (1974), Rosenman and Singh (1973a, b)
derived expressions for quasi-static surface strains, tilts and stresses resulting
from . a ftinite, rectangular, vertical, strike-slip fault in a Maxwellian viscoelastic
half-space. The variation with time and epicentral distance is studied. Detailed
numerical calculations reveal significant differences between the viscoelastic and
the elastic results. It is found that all nonvanishing stress components at the
free-surface die exponentially with time. This is in contrast to the behaviour
of the displacements and strains, which, in general, do not vanish for large times.

Garg and Singh (1988) used the corresponding principie to obtain theoretical
expressions for the quasi-elastic surface displacement and shear stress caused
by a long strike-slip dislocation in an elastic layer overlying a Maxwell viscoelastic
half-space. Variation of the surface displacement and shear stress with horizontal
distance is studied for various times and vertical extents of the fault. It is seen
that, for large vertical extents of the fauit, the quasi-static response differs Signi-
ficantly from the corresponding elastic response. Garg and Singh {1989) obtained
analytic expressions for the quasi-static stresses caused by a two-dimensaional
shear line load acting on the boundary of a semi-infinite’ medium consisting of
a homogeneous elastic layer lying over a Maxwell viscoelastic hali-space,

Singh and Singh (1989a, b) obtained expressions for the quasi-static displacements,
strains and stresses as convolution integrals for an arbitrary shear dislocation or
an explosive source situated in-an isotropic homogeneous half-space which is linear
viscoelastic of the most general kind, In the expressions for the displacements,
strains and stresses the elastic moduli U and kK occur in various combinations.
In particular, in the expressions for strains, the foliowing combinations occur ,

l:" i 2 u
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Singh and Singh (E989b) have shown that the quasi-static viscoelastic strains
can be obtained from the corresponding static elastic strains on replacing Q by
the auxiliary functions Q.(t). The values of the auxiliary functions Q.(1),  for
the Kelvin material and the Maxwell material are given below. In deriving these
values, it has been assumed that the source time function is §(1).
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KELVIN MODEL

The constitutive equation for a Kelvin material is -

T = 9g® + q; (3e.I'3t),

where T is the stress, e is the strain and the parameters q, and q, characterize
the material. We assume that the material is atastic in dilatatl%)n and Kelvin
viscoelastic in distortion.. The auxiliary functions are found to be

3K2q
Q,(® = zq b 2'q1° - th
Q) - $18m - 23':11 exp( - 3k2+:f° B,
Q,(t) - 7121— exp (- 6kq1q° 1),
QO = 200 - & ep quz % g

MAXWELL MODEL

The constitute equation for a Maxwell material is -

Tep (3W3Y) = g (3,7 3).

We assume that the material is elastic in dilatation and Maxwell viscoelastic in

distortion. We find

Qv = alp, 6(0+ 2q; a exp (-3k a )],
Qz(t) = q ol 6(1) - 3k aexp (~3ka 1)),
Q,(t) = 28 [p) §(1) + q; B exp (-6k BY)],
Qh(t) = 2,8 [ &(t) - 6k Bexp (-6k Bt)],
where
o = Okp ez B = (6kp, +qph
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