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- FUNDAMENTAL TIME PERIOD OF FRAMED BUILDINGS

AK. NAGPAL! AND. K.K. NAYAR:

ABSTRACT

A method suitable tor hand calculations or for use with desk top
computers Is presented for the determination of tundamental time period of
framed bulldings. Stiffness matrix and mass matrix are formed with respect
to deflections at a fewer level than the number of storeys. Only one lpvel,
is shown to yield good results. The computation work is practically inde-
pendent of the number of storeys.

Key words : Eramed Building, Fundamental Time Period, Shear Beam,
Base Shear,

INTRODUCTION

IS 1893 Criteria for Earthquake Resigtant Design ¢f Structures permits
(reference 4) the use of seismic coefficient method for the evaluation of
oarthquake loading for buildings which are less than 40 m in height in all
the zones and for those which are greater than 40 m and less than S0 m
in height in zones [tolll. One of the parameters that governs the
magnitude of the base shear is the coefficient C which defines the
flexibility of the structure and is dependent on the fundamental time period,
T, of the structure. A rational method is recommended for the estimation
of T, in the shsence of which an empirical formuta (T = 0.1 n, n = number
of storeys) is given in reference 4. This formula does not take into
account the distribution of stiffness and mass properties along the height
in a rational way.

An accurate method (Clough, King and Wilson, 1864) for determining
the dynamic characteristics takes into account transiational, rotational
and vertical degrees of freedom at joints of a frame- The rotationat and
vertical degrees of freedom may be condensed outto yield the lateral
stiffness matrix of each frame and by stiffness transformation the lateral
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stiffness of; the structure iz obtained. Assuming the maeses to-berlumped
at floor levels an eigenvalue problem of size equal to the number of storays
is formed. For an approximate analysis a frame may be idealised as a
shear beam (Basu and Nagpal, 1980) and Holger's method {Clough and
Penzien, 1975) may be used to obtain the dynamic characteristics. The
computational work in Holzer’s method is proportional to the number of
storeys,

In this paper a method suitable for hand calculations or desk top
computers is presentad. The frame is idedlised as a shear beam. By
forming the stiffness rvitrix ard the' 'muass matiix: with réspect to lateral
displacémerits at a fewer numiiber df 18vels  along' ‘the hufht, the dize of
the problaem is Kept sniall,

METHOD

Under lateral loading a fiame: exhibits shear mode- Behaviourdwwhich
a floor may be visualized as sliding over the floor beteasit. - Fig. 1
shows this behaviour in which the jth fioor has a relative displacement d,
with respect to the (j—1)th floor, when the jth storey has a storey shear
V. The storey shear required to cause a unit sway angle is definad as
the shearing ngndlty of the jth storey. A procedure to cbtain the storey
shearirig ngidity is available (Basu and Nag’pal 1980)
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Fig. 1. Shear Mode Behaviour of Frames

All the frames in a' building are replaced by respective shear beams.
The shearing rigidities of respective storeys of these shkar’ beams are added
to form an equivalent'shear beam. A single equwalent shear beam thus
replaces the entire building.

To reduce the computation work the stiffness and mass matrix of
the equivalent shear beam are formed with respect to lateral deflections
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at a selected nymber of reference levels, the number of such reference
lsvels are féwer than the nuimbsr of floors i a buildihg.

Stiffness Matrix:sLet the poitien of the shear béam: Between (I —1)th and
ith reference levels be designated as the ith segment. A segment spans
across a number of storeys (Fig. 2). Fig. 3 shows an isolated segment (ith)
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Fig. 2 Shear Beam Model
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~ Fig. 8. Force-Displacement Relationship for
a Segment of the Shear Beam
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with a shear V equal to unity init. The relative lateral displacement
between the (i—1)th and ith reference level is given by

A1 = Zhy/sy (1a)

in which hy, s; are height and shearing rigidity respectively of the jth storey
and the summation extends over the number of storeys in the segment,

The force k! required to cause unit relative displacement between the
{i—1) th and the ith reference level is, therefore, given by

kt=1/(Zh/s;) (1b)

The lateral stiffness matrix of the shear beam with respect to displace-
ments at reference levels, is obtained by giving a unit displacement at
each levels successively with displacements at other levels restrained and
calculating the lateral forces, at three levels, namely, the level at which
unit displacement is given and the levels sbove and below it

When the ith reference level is given such a unit displacement (Fig. 4)
the resulting forces at the (i—1) th, ith and (i+1) th reference levels are
equal to — k!, k! - ki*1l and — ki*! respectively with the forces at all
the other levels aqual to zero. The stiffness mateix {K] of the shear beam
is, therefore, tridiagonal the elements of which are

K(i,i) =% +km (2a)
(fori == 1tom)

K (ii+1) = — ki* (2b)
{(fori=1tom-—1)

K{i+1,0) = Klii+1) , (2c)
(fori = 1 to m—1)

in which m = number of reference levels. The second term in Eq {(2a)
vanishes fori = m,

Mass Matrix .- The inertia force, Q! of a floor mass in e ith segment
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Fig. 4. Forces Due to a Unit Displacement st the ith
Reference Lavel

(Fig. 5) is given by

Q) = — w2 yym, (3a)
in which y;, m; are lateral deflection and mass at the jth fioor respectively
and o is the natural frequency. ' '

This inertia force is assumed to be replaced by the inertia forces Qi;_,
and Q) at the adjacent reference levels as the reactions of a simply
supported beam of span equal to the length of the segment :.

Qi =—otmy {1 -x/Ly) (3b)

Qi = — o2 myy; xL, . (3¢}
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Fig. 5. A Segment With Floor Masses

in which *; = distance of the jth mass from the (i—1) th reference level
and L; = length of the ith segment.

Assuming further, for free vibrations, the displacements at floor lovels
to be linear between the adjacent reference levels, the lateral displacement
y; is expressed in terms of the displacements. at the reference levels as

vy = y(i—1} + [y(i) — y(i—1)] %/l (4)

in which y(i-- 1), y(i) are lateral displacements at the (i—1})}th and ith
reference levels respectively.

The total inertia forces Q;_;.and Q; at the reference ievels-are obtained

by summing the contribution of ail the “masses in 2 segment, Making use
of Eq. (4) these may be written as

o ==l o 1o ®

L]
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"~ in which
al = Im; (1 —x;/Ly)? (Ba)
bl e By 2/l (1-=xy/Ls) {8b)
¢! = Zmy (x)/Ly)% (6¢)

the summation extending over a number of masses in a segment. The
superscript i for a,b and c refers to the ith segment,

The terms in the square bracket on the right hand side of Eq. ()
form the mass marix of the ith segment. The mass matrix [M] of the
shear beam model is tridiagonal the slements of which are given by

M (I, i) = cl et (78)
(fori=1to m) .

M, i4+1)=bi* (7b)
(fori=1 to m—1) _

M (41, i)= M (i, i+1) (7¢)

(fori=1 to m—1)

The second term in Eq. (7a) vanishes for i=m.
Numerical Examples |
Example 1:—

A 10-storeyed, 3 bay frame (Fig. 6) is considered to illustrate the

Height ol
each story 1im

O S
Im _dim _im |
Fig. 6. Example Frame
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procedure. All the columns in a storey and the beams at a floor level
have the same flexural stiffnesses. The flexural rigidity of each column
in a storey and each beam at floor levels as weil as lumped masses and
storey shearing rigidities are given in Table 1. Twa cases are considered :

(1) two reference levels—at the 5th floor and the 10th floor {2) one
reference level at the 10th floor level,

TABLE 1. Structural Properties of the Example Frame 1.

Column Beam flexural Lumped Shearing
- Floor/Storey  flexural rigidity mass in rigidity in
No. rigidity in tonne m? tonne tonne
in tonne m# sect/m
1 3.88x104 1.82x 104 3.40 1.156x105
2 1.76 X104 1.21 X104 574 3.04 x10¢
3 1.756x10¢ 1.21 %104 3.40 3.10x10¢
4 1.75x 104 1.21 X104 3.40 3.10x104
5 1.75x104 1.21 x 104 3.40 3.36x 104
6 971102 6.00x 102 3.40 1.80x 104
7 9.71x10 6.00x103 3.40 1.60x10¢
8 9.71x10° 6.00x103 3.40 1.60x 104
9 8971 %10 6.00x10s 3.40 1.60x104
10 971x10s 6 00x103 1.70 2.01x104

For case (1) the stiffness matrix (in tonne/m) and the mass matrix
{in tonne sect/m) are calculated to be

K 3588 —1131 ]
TL—1131 1134
11.92 2.7
M =
2721 6790
The fundamental frequency is obiained by solving the following eigen
value problem.
3598 -1131 {¢(1)} [11 92 2.721] {95(1)} g
=l (8)
—1131 1131 #{2) 2721 5790 ${2)
in which ¢ (1) ¢ and (2) are the eigen vector components at levels 1 and 2
respectively.
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Eq. (8) vields a fundamental frequency equal to 8 83 rad/sec (time
period=0.71 secs).
For case (2) the stiffness and mass with respect to the 10th fioor are

777 tonnes/m and 11.6 tonne sec!/m respectively. A fundamental
frequency equal to 8.22 rad/sec (time period = 0.764 secs) is obtained

directly in this case as \[ K/M,

Table 2 gives the time period as obtained from the present method,
exact value based on the frame program and the value using the empirical
formula (ref : 4). The values of the coefficient C based on these time
periods as read from the graph in ref. 4 are also included in the table.
Since the base shear is directly proportional to C the errors in C and the base
shear are the same. Itis seen that the C value obtained from the present
method for both the cases is in excellent agresment with that based on the
frame program. The value based on the empirical formula is about 22
percent in error,

TABLE 2. Comparison of Time Period and Coefficient C
for Example Frame 1.

Maethod Time Period C

Seconds
Frame program 0.723 0.68
Present method (case 1) 0,710 0.68
Present method (case 2) 0.764 0.66
Ref. 4 1.0 0.63
Example 2 —

A 8-storeyed 2-bay frame is shown in Fig. 7 wherein the flexural
stiffresses of members are also given, The frame has a lumped mass
equal to 2.76 tonne sect/m each at floors 1 to 7 and 2 tonne sect/m at
the 8th fioor. Again two cases are considered : (1) two reference levels-
at the 4th floor and the 8th flooy (2) one reference level at the 8th floos,
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Fig. 7. Example Franie 2
The time periods and the C values ate given in Table 3. For this

TABLE 3. Comparison of Time Period and Coefficient C
for Example Frame 2. '

Method Time Period D C
: seconds : '
Trgmé brdéfam 052 N 0 80
Present method (case 1) 0.50 . -0.80
Present method (case 2) 051 080

Ref. 4 0.80 0.63
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exampie also it is seen that the present method yields time periods and C
values which are in excellent agreement with those obtained from the
frame program. The C value based on the empirical formula is about 21
percent in error,

CONCLUSIONS

A method suitable for hand calculations/desk top computers has been
presented for the evaluation of the fundamental time period of framed
buildings. The method is practically independent of the number of
storeys.

Notations

The following symbols are used in the paper:—

C = a coefficient defining the flexibility of the structure,

m == number of levels w.rt, which mass and stiffnass matrices are
formed,

[K] = stiffness matrix,

QM = i'nettia force at the jth floor,

s; = shearing rigidity of the jth storey,

T = time period,

X distance of the jth floor mass from the (i—I)th connection level,
y; = lateral displacement of the jth floor mass,

i

y (i) == lateral displacement at the ith reference level,
@ = natural frequency.
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