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RESIDUAL RESPONSE OF A MULTILAYERED HALF--SPACE 70
TWO - DIMENSIONAL SURFACE LOADS

NAT RAM GARG* AND SARVA JIT SINGH*

ABSTRACT

The two-dimensionat problem of the static deformation of a multilayered
haii-space by surtace loads is studied in detall. Both plane strain and antiplane
strain cases are consldered. The Thomson-Haskell matrix method is used to
obtaln the fleld at any point of the medium, Explicit expressions for stresses
ceused by a surface line load on a uniform half-space are derived, The formulation
developed Is quite convenlent for numerlcal computation,

KEY WORDS : Static Deformation, Multilayered Hall-space, Surface Loads, Plane
Strain, Antiplane Strain,

INTRODUCTION

The classical Boussinesqg solution to the problem of a normal static load
on the surface of a semi-infinite elastic medium offers wide applications to
loading problems in geophysics and engineering. This solution has since
been extended to multilayered configurations. Kuo (1969) studied the three
dimensional problem of inclinded static loads on the surfsce of a multilayered
medium. Singh (1970) used the Thomson-Haskell matrix method to study
the static deformation of a multilayered half-space by three dimensional sources,
Recently, Singh and Garg (1985) tackled the corresponding two-dimensional
problem of a long displacement dislocation in a multilayered half-space.

In the present paper, we formulste the two-dimensional problem of the
static deformation of a multilayered half-spece by surface loads. Both plane
strain and antiplane strain cases are considered. The Thomson-Haskell matrix
method {Thomson, 1950; Haskell, 1953) is used to obtain the static field at
any point of the multilayered half-space for given surface loads. The particular
cases of a normal line load and a shear line load are considered in detail. It
is thown that in the case of a uniform half-space the integrals giving the
stresses can be integrated analytically.

* Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India



L

40  Bulletin of the Indian Society of Earthqueke Technology = .- -June 1988

‘2. BASIC EQUATIONS
; . R T XA ) R TERE L o
We shall be considering a two-dimensional approximation in which the
displacement compaments (v, uy, us).ate independent of x;'s0;that - a‘j& =0

Under this assumption, the plane stiein problem (u;=0) and the antiplane
strain problem (us = us = 0) are decoupled and, therefore, Gan be treated

separately. : o .
in the g.apé of the plane strain problem the equilibrium equations for zero
body fosces are © . '
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3. MULTILAYERED HALF-SPACE

We consider a semi-infinite slastic medium made up of p-1 parallél, homo-
geneous, isotropic layers lying over 4 homogeneous, isotropic hall-space.
The layers are numbered serially, the topmost layer being tayer 1. The half
space is designated as layer p. The origin of the cartesian coordinate system
(X1, X3, X3) is placed at the surface with the Xs-axis drawn into the medium.
The nth layer is of thickness dn and has.Lame’ parameters A, ua. It is boun-.
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ded by the intérfac'es Z=2Zn.1 2y (wé wtite vy for xs and z for x;). Evidently,
2o = 0 endz, , = H, where H is the depth of the last interfag'o. '

3.1 Plane Strain

The plane strain problem can be solved in terms of the Airy stress
function U such that

a1y - oy oy’

P2s = o0~ <P = ~oyer Pas = B .(3.1)
V1 iU =0, (3.2)
A  solution of the biharmonic equation {3.2) is of the form
- . - sin ky ‘
U= (Ae™ 4 Bo™ + ckze™ + Dkze™ ) ( )dk. (3.3)
0 cos ky/

where A, B, C, D may bs functions of k., Following Singh and Garg (1985)
we find o

[ o]

T cos ky ) o
ug = _l-V ( )k dk, _ (3.4),
0 —8in ky '
o , -
. sin  ky . ‘
Ug= fw( ) k dk, {3.5)
0 cos ky
o0 _
J‘ cos ky B
Pa= ] S ( ) ks dk, (3.6)
0 —sin ky
w .
I‘ sin  ky
Paa= N ( ) k® dk," ) (3-7)
0 \cos ky
The functions V, W, S, N are given by the matrix relation
[A(D)] = [Z(2)] [K], (3.8)
where . : . :
[A(2)] = [V. W, §,N] , [K] = [A, B, C, D] ‘ (3.9)

and [ --]T denotes the transpose of the matrix [...]. The matrix [Z(z)] is
given in (3.10)
-1 ok m {9 ks 1 1
oM e % [ fﬁ(_{_kz) e - (;-l— kz) aj
l {3.10)
Kz —kxz k5
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with .
“= ;‘:2“; ' | (3.11)
For the nth layer, (3.8) becomes ) -
[An(2)] = [Za (2)] {Ka]. - (3.12)

The elements of the matrix [Zn(z)] ere obtained from the elements of the matrix
[Z(2)] on replacing i by pa 8nd « bY an. Singh and Garg (1986) have shown that
[An (25-1)] = [#x] [An (zn)]. (3.13)
where the elements of the layer matrix [a,] are listed in Appendix |.
The continuity of the displacements ug, U, and that of stresses P, Pss implies

[Aa-1 (20-1)] = [An (Z01)]. _ (3.14)
From (3.13) and (3.14), we obtain

[Ap_1 (20-2)] = (8] [An (z0)] (3.16)
A repeated use of (3.15) vields

[A; (0)] = (U] {Ap(H)]. (3.16)
where

[U] = [a:] [8s] - [8pa]. V' (3.17)

It is clear from (3.3) that, for half-space (layer p), By = Dp = 0. Therefore,

(Kol = [Ap. O, Cp, 01" . (3.18)
From (3.12), (3.16) and (3.18), we find

[VoWa.SoNol" =[E] (4.0, C5.01", (3.18)
where '

[E] = [U] [Zp(H)]. - .. (3.20)
Equation (3.19) gives the following four equations

VomE11 Ap + Eis Cp, | (3.21)

Wo=Es; Ap + Eas Cp, (3.22)

SomEar Ap + Ega Cp, (3.23)

No=Ess Ap + Eia Cy- | (3.24)

For given stresses at the surfsce z=0, S, and N, are known, From (3 23)
and (3. 24) we tind

, An=‘nl (soEu-NeEu)- Cy= 91 (NoEar"SoE'n)- (3-25)
where ‘
Qy=Ess Ei3—Ess Ea. - (3.26)

For given. displacements at the surface z=0, V, and Wo are known, From
(3.21) and (3 22), we obtain

ApmDy " (VoEsy—WoEr), Co=0s  (WoEu—VeEm), = - 821
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where 7
n,=Eu Eu—E“ Esn. (328)
The field at any point of the medium can be easily calculated. As in (3.13),

we have, for zo.3 <2<z, ‘

[Ax (2)]=[2n (zn—2)] [An (20)]. (3.29)

where [ay (Zn—2)] is obtained from [aa] on replacing dy by z, —z. From (3.12),

(3.15) and (3.29), we find {p=2)

[An (2)]=[F] [Ap 0,Cp 0], (3.30)
where

[F1=[2n(2x—2)] {80,1] [8n4s]...[8p.4] [ Zp (H)]. (3.31)
Equation (3.30) is equivalent to the following four equations

V (z)=Fy; Ap+Fy3 Cp. (3.32)
W (z)=Fs; Ap+Fss Cyp, (3.33)
S (2)wFa; Ap+Fay Cp, (3.34)
N (2)=Fu Ap+E4; Cp. (3.36)

For given stresses at the surface z=0, we make use of (3.4)—(3.7), (3.26)
and (3.32) - (3.36) to obtain the stresses and displacements at any point of
the medium. We find (2o _;<z<z)

o0

j' 1 cos ky .
@)= JIFuSoE N HFuNoEn—SE] f ( 7) kde
0 1 \_gin ky (3.36)

o
1
- - in k
us(z) (j) [Fat (So Eua —No Eua) + Fan (No €1 — S0 Ea)] (:o'; k;) k dk,

(3.37)
m .
' 1
Pu2) =£ (Fr (S0 B = No Eu) -+ Fun (No Noy — S0 Eu)] (_f,‘;‘s t;) Kk,
(3.38)

o]
' ' 1
Paal2) i [Fu (S0 By No ) + Fas (No Ens — S0 Eul] (gi;; t;) ke dk,
(3.39)
where {1, is defined in (3.26),

For given displacements at surface z = 0, we hake :use of (3.4) — (3.7),
(3.27) end (3.32) — (3.36) to obtain the stresses and displacements. We
obtain (za_, < z < 2) _ _
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ry j' : -1 fcos.  ky
ug(z) = [Eu (Vo_ Es 'f__wo Eis) + Fuy (Wo E;; — Vo 'Eyy)} "'"'( ) k dk
GG T e T ; \—sin ky
' o0 ' ) - {3-40)
- ) o 1 /sin ky
Ug(2) = j[ Fa ( Vo Eza — Wo Ei3) + Fys (Wo Eyy — Vo Ey: )] —'( ) k dk
T s Q,\cos ky ..
© . L (3-41)
‘ : ‘1, ‘cos kyy .
Pus(z) = J' [Fs1 ( Vo Eas — Wo Eg) - Fag( Wo Eyz—Vo Eq1 )] — ( L ) k? dk
(+] £, \—sin ky :
i , @™ , _ . . (3.42)
s J‘ o o 1 , sin ky
Pun(2) = Fua(Ve Eue — Wo Eun). + Fur ( Woliy — Vet )] = i ok,
.. 0 s\ COS Ky

B - (3.43)
:".. where Q, is defined in (3.28) o
32 ‘Antiplane Strain

TI_:lo antiplane strain problem can be‘solved directly. For zero body force,
fhe displacement u; is harmonic. Therefore, we may assume
‘ o S ‘

j - w7 sinky A
= J(Ae 4 Be ) ( ) dk, ' (3.44)
0 o . cos ky :
in which A and B may be functiplrgn_pf K. Using (2.6) and (3.44), we have
: . . © . - "; . N L . . o
J‘ - vz [ Sinky
Pra=t J(—Ae = +Be ) ) k dk. . (3.46)
: _ 0 . cos ky o ] ] .
Equations (3.44) and (3,45) may be written as : s
Ce e}
J’ sin ky J‘ sin ky ,
Uy u( ) dk, pas = 'r( ) k dk, (3.48)
. 0 \cosky /' - 0 \gosky /. . - Cn
. where ’ | -
| N :\ (Z (2)] A 7
= (Z » ' ' 3.4
MECCIN e
| —k& R e ' : ' ; "
1Z(2)]= [ 8 ° ] (3 48)
‘ i ~kr xz -
—ue pe - .

Following Singh and Garg (1985)," we obtain

[T:Ln_xs[anl[TJlm - L 3ae)

* un
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where ' .
. ch (kdn) ——tin1 Sh(kdn)
¢ [ag)] = . ‘ (3.60)
-=tp Sh(kdys) ch(kdn)
Proceeding as m the case of the plane strain problem and taking By = 0,
we find _
Uo = Eu Ay, . (3.61)
To = En Ap, {3.62)
where '
| [E] = [a1] [as] ... [8p1] [Zp (H)]. (3.63)

For given stress on the surface, A, is known from (3 52). In contrast,
for given displacement on the surface, Ap is known from (3.51).

The field at any point of the medium can be found as before. For
given stress at z = 0, we obtain'

©
— ‘P /sin ky
u () = f ( ) \cos ky) .(3'54)
0 _ L
o0
F .
Pua (2) = f T (22) (Z':s T:, )k ak, (3.56)
. 0 )
where [F] is defind as in (3.31). For given displacement at z = 0, we get
0
= Fu) sin Ky .
ur (z) = f U, (G2 (m o ) o (3.56)
0 :
. . w F ) k '
Pus (2) = f Uo (22) (::‘s o ) kok, 3.67)°
0

4. SPECIFIED SURFACE LOADS
4.1. Plane Strain
Normal line load

Let a normal line load P per unit length be applied at the origin to the
surface z = 0 in the positive direction of the z—axis. The boundary
conditions at z = 0 are '

Pas = 0, ps3s = — P 8{y), . (4.1)
where 3(y) denotes the Dirac delta function. We use the representation
o0
1
3y) = ~ f cos ky dk, (4.2)

0
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From (3.6) and (3.7). we find that

So=0,No = S

and that the lower solution must be taken,

The displacements and stresges are given by (3.26), (3.36)-(3.39)
and (4.3)

{4.3)

oD

-2 [(BERE) B w
o
o0

we == (-:: ) e (4.5)
3 |
o

Pea(2) ___ﬂ_Pf (-—%-%F_—:: EE’: ) sin ky dk, (4.6).
0

Pu(z) == f (%%%:: E: ) cos ky dk, 4.7)

Shear line load

Suppose that a sheaf line load Q per unit iength is appiled at the origin
to the surface z = 0 in the positive direction of the y — axis. The boun-

dary conditions atz = 0 are

Pss = 0, Ps = — Q 3(¥). (4.8)

Using (3.6), (3.7) and (4.2), we note that
—Q
So= TI’-' Nn = 0- (4 9)

and that the upper solution must bhe taken.

The displacements and stresses at any point of the medium are found to

Fi1 Ess—F13 Eu cos ky
as—T 4.
( Esx Eas—Esz En) k- dk (4.10)

( F'], E‘g——‘F’a E‘l ) Sinkyd‘ . (4.1 1)

Esy Ess—Ess Eqx k 9

®

+
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[+

_ —~Q Fu_Eli'_—_F_u Ea
Pu(t)= —~ f ( En E..—E&'E) cos ky dk, (412)
)
Q T/ Fu Ea—Fas E
_ —Q | { FuEa—Futa ; .
b= b[ ( ra gu—tu Eﬂ) sin ky dk, (4.13)

Uniform normal load

Let 8 uniform normal load p per unit area act over the segment
—l=s y ==l of the y—axis in the positive direction of the z—axis. The
boundary conditions at z=0 are

o {-—po Iyl <,
Pua=0, Pan= : 4.14
" » 0 Iyl > 1, (414
We may write
T/ sin w
P = *ﬂ’f (ﬂﬂi_) cos ky dk. (4.15)
™

From (3.6), (3.7), (4.14) and (4.15), we find that

—2Do (sink ki )
™ k’ ]

and that the lower solution must be taken.

So=0. Np = (4.16)

The displacements and stresges at any point of the medium are found
to be

0
—2po [ { Fus En— i
ww = [ (ISR )N sl @)
2 T Fs1 Egs—F
p ~Fg E sin ki
us(2) = —220 f( Fu E::—E:iT:') o coskydk, (4.18)

«

_ —2Pe f Fz1 Ess—Fsy Es1 ) sin ki .
Puld)= = (Eu e ie E“) LK inky d, (419
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©
o _z_Eo'f Far Ess—Fes Eay ) sin ki s
Pas(z)= — 3 ( Es1 Egs-- Eas By ) k- cos kydk. (4.20)

4.2. Antiplane Strain

Let the boundary condition at z=0 be

pia=-—R{y). , (4.21)

Using (3.46), (4.2) and (4.21), we find that |
—R
Ty o

o~ K, (4.22)

and that the lower solution must be taken. From (3.54), (3.55) and

(4.22). the displacement and stress at any point of the medium are found
to be -

=]

—R F cos k
b @) == (E—:) S ok, (4.23)
)
R [ (F
Pan () =0 [ (E—:)cos ky dk. (4.24)
0

6. UNIFORM HALF-SPACE

In the case of a uniform half-space (p=1), we shall find the stresses
at any point of the medium for given surface loads.

5.1 Plan Strain

For Plane strain problem

! =1 1 1

2 2u 2ap ‘ Zap.

- = 1 —1 11_44,14

[E] = [z(0)] o % o (~—1 om -1 (6.1)

1 —1 -1 —1

—1 —1 . 0 0

and

[FT = [Z(z)]. (5.2)

where [Z(2)] is defined in (3.10) and we have written i for ¢, and « for
2y .

L]
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Normal line load
We make use of (3.10), (4.6)-(4.7), (5.1) and (5.2) to obtain the

" stresses. Wa find

Prr ks
%l ke sinkydk

0

—2P yz?
- ¥ | 63
o
Pas (2) = . J (1-+kz2) e cos ky dk
0

Bk ©4)

Fdr the evaluation of the integrals, the standard integrals listed in Appendix
11 have been used. The stresses obtained here coincide with the corres-
ponding results of Sneddon (1951; p, 409).

Shear line load
Making use of (3.10), (4. 12)*—(4 13), (5 1), (5.2) and Appendix 11,

we find

.
Pas(z)= ——f(1—-kz) e : cos ky dk

_20[(‘;:1#)2] - ©)

Pas(2)=——— f k o sin kydk

.-zo[ (‘l’+2’l" ] | | (6.6)

Uniform normsl load
" Form (3.10), (4.19)—(4.20), (6.1), (6.2) and Appendix !l, we find

o]
— —kz
pas(z) = %‘3’ f o sinkl sin ky dk

0 _

= Ml T yz* 1.
© L [23+(4+y) [22+[1—y)3) ]

(6.7)
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-]
Pualz) = ‘:-zﬂﬂ’ (1—4]:1‘) ™= sin ki cos ky dk

0
- —2p -1 2z 1z (z8+18—y2)
w 1N (z=+v--—l- )+ T+ ()1 B+ |
(y*'+2z2 =) {6.8)
5.2. Antiplane Strain |
For antiplane strain problem,
q-rzon-[_| ']
[E] = [Z(0)]= [-—p. a b ‘ (6.9)
and |
fF] = [Z(2)] (5.10)

is given by (3.48). Using (3.48), (4.24), (5.9) and (5.10), we obtain

~R —kz
P1a(2) == Tfe cos ky dk
0

-2 (k)

6. DISCUSSION

In Section 4, we have derived the displacements and stresses at any
point of the medium caused by normal and shearloads acting on the
surfece of a multilayered semi-infinite medium. These results are in the
form of integrals over the variable k. These integrals can be evaluated
by using the method suggested by Jovanovich et al, (1874). The closed
form expressions for a uniform half—space given in Section & can be
used as a check over the numerical computation,
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APPENDIX |

The slemaents of the matrix [a,] are :
(11) = (33) = ch (kdp) 1 azkdys sh (kda)
(12) =—(43) =upkdy ch {kdpn) 4 (1 —ean) sh (kds) -
(13) ={—1/23a) [aakdy ch (kdg) +(2—ays) sh (kda)}

s
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{14) = —(23) = '2':: kdy sh (kds)

(21) = —(34) = agkdn ch(kdy) + (1—un) sh(kdn)
(22) = (44) = ch(kdn) — ankdn sh(kdn) o
(24) = (1/2un} [ankdy chkdy) — (2-~an) sh(kdy)]
(31} = ~2qy py [kdy chfkdn) + sh(kdy)]

(32) = — (A1) = —2ay ppkdn sh(kdn)

(42) = 20y py [kd, chikdy) — sh(kdy)]

APPENDIX-I
fz> 0)
—kz z
(1) ] cos kydk = FTE
~kx 2‘/1
(2) ke ¢ginkydk = Yy

ke zl_ vi
ke cos ky dk EEL

: ) . 2l yz
e sin ki sin ky dk = [+ (1+y)T] [2F(O—y)1]

~
F -9
St

V(2 la-yr)
- [+ (14y)%] [Z’-r(l—v)’]

e D)

o *Z gin kI cos ky dk=

-~
[+;]
—

©
1

(8) f K'e. " sin ki cos ky dk =} tan"(z,+2‘:,z_|.)

In relation (6) it is assumed that y* + z2 == 2. If, However, y* + 21 < |t
we must add =/2 to the right-hand sid (Gradshteyn and Ryzhik, 1980,
. p. 492).
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