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ON TWO INTERACTING CREEPING VERTICAL SURFACE
BREAKING STRIKE-SLIP FAULTS IN THE LITHOSPHERE***

{MRS.) PURABI MUKHERII* AND ARABINDA MUKHOPADHYAY**

ABSTRACT

Two aseismically crecping long vertical surface-breaking parallel strike-stp
faults are taken to be situated in & visco-clastic half-space, representing the

lithosphere-asthenosphere system. Solutions are obtained for the displacements,
stresses and strains, using a technique involving the use of Greea's functions
and integral transforms, for three possible cases—the case of the absence of any
fault creep, the casé in which one fault is creeping and the other is locked and
the case in which both the faults are creeping, taking into account the displace-
ments and stresses present initially, and assuming that the tectonic forces
maintain a constant shear stress far away from the faults. The types of fault
creep for which the displacements, stresses and sirains are finite everywhere
in the model near the faults are identified, and the conditions satisfied by these
types of fault creep are determined in a simple form. Fault creep across a
fault 1s generally found to reduce the rate of accumulation of shear stress near
itself. The effect of aseismic creep across one fault on the shear stress near the
other fauit is found to depend on the distance, dimensions, relative position and
other characteristics of the two faults. Fault creep across one fauit is generally
found to reduce the rate of shear stress accumulation near the other neighbour-
ing fault in the theoretical model considered. Under suitable circumstances,
aseismijc creep across one of the faults is fouad to result in aseismic relcase of
shear stress near both the faults, thus reducing progressively the possibility of a
sudden fault movement, generating an earthquake. The infuence of one creep-
ing fault on another is found to decrease quite rapidly with incrcase in the
distance between the faults. The possible uses of the model in the study of the
interaction between neighbouring strike-slip faults in the lithosphre and in the
estimation of return times of earthquakes is examined.

INTRODUCTION

The problem of earthquake prediction has attached widespread attention

among seismologists in recent years, and the steady accumulation of relevant
seismological data and improvements in the techniques of their analysis and
interpretation, together with the development of relevant theoretical models
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and computer simulation techniques have made it possible to hope that
effective programmes of earthquake prediction may become feasible in the
future. _In this connection, it would be usefu! to have a better undorstanding
of the process of stress accumulation near active seisthic faults, which may
lead to sudden fault movement, generating an earthquake. .

Observations in seismically active regions in recent years indicate that,
during apparently quiet aseismic periods, therc are often slow quasistatic
aseismic surface movements of the order of a few mms per year, resulting
in the accumulation of stress and strain in some cases, which may eventually

lead to a sudden fault movement, generating an earthquake, if the stress -

accumulation reaches sufficiently high levels. The qualitative estimation
of this stress accumulation would be facilitated if it is possible to develop
suitable theoretical models which incorporate the essential features of the
mechanism of stress accumulation in the regions concerned. - Such theoretical
models would enable us to estimate the stress accumulation below the surface
near the fault from the observed aseismic surface movements. In this connec-
tion, observational data also indicate continuous, slow, ascismic fault creep
across some active faults, including the central part of the San Andreas fault
in North America and some other active faults. The effect of this aseismic
fault creep on the accumulation and release of stress' in the regions concerned

is of great-interest in the study of the dynamics of the lithosphere-astheno- -

sphere system in seismically active regions during aseismic periods.

In recent years, some theoretical models of the lithosphere-asthénosphere
system in seismically active regions during aseismic penods have been deve-
loped, with a single locked fanlt or a single creeping fault in the model, by
Nur and Mavko (1974), Rosenman et. al. (1973a, b), Budiansky et. al. '(1976)
Barker (1976), Spence et. al. (1976), Savage et. al. (1978a, b), Rundle et. al,
(1977a, b, cand 1980), Cohen (1978, 1979, 1980a, 1908b, 1984), Mukhopadhyay
et. al. (1978a, b, 1979a, b, c, d and 1980a, b), Lehner et. al. (1981), Koseluk
et. al. (1981), Yang et. al. (1981) and others. However, active seismic fault
systems often consist of several neighbouring faults which may interact when
creep or sudden seismic fault movement occurs across one or more of them.
For example, in the case of the San Andreas fault system in North America,
the Hayward and Calaveras faults are close to and roughly pa.rallel to the
main San Andreas fault. Keeping this in view, the authors of this paper are

';rymg to develop theoretical models of mteractmg faults in the chqsphere-
“asthenosphere system and one such theoretical model is presented in this

paper. It may be noted that such theoretical models, of the lithosphere-

‘asthenosphere system with interacting faults have not generally been deve-
Joped, except the theoretical models developed by: Mukhopadhyay et. al.
(1978a, 1979c). However, these two theoretical models: were oncerned with
_ -interaction between two strike-slip faults which undergo “sgdden ‘seismic
. ‘movements and become locked subsequently. In this paper, we consider two

mmactlng crecping surface-breaking strike-slip faults in a simple model of
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the hthosphere-asthenosphere systerh.

FORMULATION

We consider a simple model of the lithosphere-asthenosphere system .
consisting of a visco-elastic half-space with its material of the Maxwell type.
We consider two long, vertical and interacting strike-slip faults F, and F, in
the half-space across which creep occurs under suitable conditions. We take
the faults to be surface-breaking, so that the fault reaches the free surface.
We introduce rectangular cartesian coordinates (¥,, ¥, ¥,) with the free
surface as the plane y, = 0 and the y,-axis pointing into the half-space We
take the y,-axis to be parallel to the planes of the faults. Then we can assume

_ that the displacements, stresses and strains will be independent of y,.

We take the plaﬁes of the faul‘t's F,, F, to be gn;en byy,=0andy, =D

respectively. We take D, and D, to be the depths of the lower edges of the

faults below the free surface (s =0).

Flg. 1 shows the section of the. model by the plalie » = 0. For the Jong
faults, since the displacoments, stresses and strains are independent of ,, we

y
- ) 0 o i N Y:’ .
D, : Fy F2 :
R %2
| |
| I
| |
B | |
ki v,
Y3
Fig. 1. (Section of the model by the plane y, — 0). .

find that the displacement component along the y,.axis and the stress compo-
nents =,, and r,, associated with it are independent of the other components
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of displacement and stress. For this model, assuming that the material of the
half-space is lincarly visco-elastic, and of the Maxwell type, the displacement
component 1, and the stress-components 7., T, associated with tho strike-slip
fault movement are connected by the stress-strain relations:

(3+5@) T
1,18y @& @
Jrlyple _ ot
and (n ta af) 18 = 3idy,

(—o<y<wo,%20,t30
where p is the effective rigidity, and » is the effective viscosity,
We consider the model during aseismic periods leaving out the rolatively
small periods (if any) following sudden fault movements, when seismic distur-
bances are present in the model. For the slow, ascismic, quasi-static displace-

ments we consider, the inertial forces are very small and are neglected. Hence
the rolevant strésses satisfy the relation . -

? d
TN (v + o, () =0 @

(_w<yl<°°ly|>on‘>o)

From (1) and (2), we find that

g -
5 (Vu,) = 0 &
which is satisfled if
At the free surface y, = 0, we have the boundary condition
1 11'=00n y'=0 . (4)

Wo assume that the tectonic forces maintain a constant shear stress 7.,
far away from the faults, while the stresses near the fault may change with
time, due to fault movements (including fault creep). We then have the
conditions

?,,—*Oasy,»co(fot—00<y,<uoo,t2.0) (5)
and '

T2 ¥ Teo 83 | ¥y | 2 00 (for y, 2 0, t>=0) (6)
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DISPLACEMENTS AND STRESSES IN THE ABSENCE OF FAULT
MOVEMENT

In the absence of any movement across the faults, the displacements
and stresses are continuous throughout the model. In this case, we measure
the time ¢ from any instant after which the relations (1)—(6) become valid for
the model. Let (u,),, (T12)o: (Ta2)y Which may be functions of (y,, y,} be the
values of (i), (7,y), (11,) 8t £ =< 0. (1)o: (F1ados (%13)y @lso satisfy the rela-
tions (1)—(6).

To calculate u,, 7, 7,, for £ > 0, we take Laplace transforms of the
relations (1)—(6) with respect to £. This gives a boundary value problem
for uy, 714, 7,3 (the Laplace transforms of ¥y, Tipe 714 With respect to ¢).

The boundary value problem can be solved easily, as explained in the
Appendix, and on inverting the Laplace transforms we have

oo Vol
W e Yy ) = (1), + T—;ly—’

Tis (Vo Var 1) = (), €Xp (—wt/m) + Te(l—exp (—utf)) M

T1s (Yo Yy 1) = (Tyy)g €Xp (—pifw)

So that the shear strain

o B
n- Vs

Tool

= (€130 T

where (e,,), is the value of ¢, at ¢ — 0.

It is casily verified by direct substitution, that the solution (7} satisfy
(1}—(6).

From these solutions, we find that if the shear stress v,, near the faults
tending to cause strike-slip movement, is less than v, at 7 — 0, there would
be a continutous accumulation of the shear stress 7, near the fault for > 0,
Ultimately as ¢ — o0, t;4 > 7, in the neighbourhood of the faults. However,
if the characteristics of the faults be such that there is a sudden movement
Or creep across one of the faults, say Fy, when the shear stress Ty3 hear the
fault F, reaches a critical value Te < Tow, 4 SUdden fault movement or faule
"eep across Fy would occur after a finite length of time. We consider here

"« case-in which fault crecp commence across one of the faults say F,,
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when ©,, reaches the value ©, < 7, near F, at time ¢t = T,.

DISPLACEMENTS AND STRESSES AFTER THE COMMENCEMENT
OF FAULT CREEP ACROSS ONE FAULT - '

If fault creep commences across F, while Fy remmins locked, the rela-
tions (1)—(6) are satisfied in this case also. In addition, we have the
following condition across F, (y, = 0, 0 < n< D) :

[l =G L) O<n<Dun=0 ®

where 1 =¢—-1

] = Lt [w] — Lt [u]

Y040 Yar+i=-0

is the relative displacement across F, corresponding to the fault creep and -
Ui(tl) = 0 fOI‘ tz < 0

lie. £< T, Wenote that [u,] = 0 for # < T;.
The velocity of creep ,

dfot [u)] = V:(tl)'.ﬁ(ys)-
where V(t,) = d/d, Uy(t).

We assume that 7y, v, are continuous everywhere in the model, while
u, is taken to be continuous everywhere except for the discontinuity across F,.

To determine u,, 7, t,, which satisfy (I) — (6) and (8), we assume
that u,(#)) and £,(y,) are continuous and try to find solutions for wuy, 1y, Tuy
in the form,

u = (), + (1)),

Tyg = (Tra)r -+ (71;}1
\ iy = (Tagh T+ (T1a)s
where (1))y, (39, (t1), are continuows everywhere in the model, é'é,ti'sfi'
(1)—(6) and have the values (#)0s (T1)es (¥3)y 8t £ = 0, ‘while (M)e (Fis)s
{Tiy); are zero-for ¢ < T, satisfy (1)—(5), and the following condition which
replaces (6): '

«

(Tll)z"03QIYgl‘*°b o . (9)

()’. ? 0. t' 2“1'1)
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The solutions for (u), (Taghs (ta5)y are for the same as solutions (7) for
Iy, Tis Tiy Since they satisfy exactly the same conditions.

On substituting #, = ¢ — T;, we find that (4,),, (vp.)e (*13); Which are

functions of (#,, 3, ;) satisfy the following relations, obtained from ( D—(5),
(9) and (8):

(1,13 8%(uy)
(Lo -1

o1 2y,
1.12 Y uy) (1a)
2410 _ Uiy |
(n‘+ [ 2ty )(T“)‘ T )
é%; (*1); + a—i" (t3)y =0 (2a)
V() =0 (3a)
[(1a), (2a), (32) being valid for 0 < y, < 0,3, = 0,1 > 0]
(Tigh =0ony, =0 (4a)
(oo <y, <o, 1, = 0)
(T1a)s > 0 88 yy > 0 (5a)
(o0 <ys <0, t; > 0)
(Fighs > 0 88 y3 >0 (62)
20n<0)
[(#1)a] = Ui(t,) fi(y) across F, B
(y|=0-0‘<~.ys-<-,Dpr1s.O) E
with Uy0) = 0 r (7a)
]
and C(M)e (Tande (Tig)a = Ofor s, <0 J

To obtain solutions for (u);, (t1g)y {715)y for ¢, »0, we take Laplace
transforms of (1a)-7(a) with respect to ¢,.

This gives a boundary value problem which can be solved by using a
suitably modified form of a Green’s functjon technique developed by Maruyama

(1966), as explained in the Appendix.

On inverting the Laplace transforms, we obtain solutions for (#,)y, (v14)ss
(vypafor e, = 0.
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Finally we have, for £t = Ty, 3,50
Uy = (4 + ()
Tia = (T + (Fygdes
Tis = (T + (F10s

where
(#1)2 = () + T‘:’t. 1
(T = (F1p)o €XP{— pt/1) + T (1 — exp(— pt/n))
(F19); = (F1a)o XP (— tfn)

and

U,(r,)

(u)y = H(t — T))- - Yu(re ¥y

(e = B = T x (1 [ 7 enp (78T d)
X é1 (Vo Vo)
(Figh = Ht — T x (2% I: Vi(®) exp (— pin {t, — ) d‘r)

X gy (Va2 Vo)
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(10

(n

(12)

(13

(14

where, 1, = ¢ — T,, H(t ~ T) is the Heaviside fuaction, so that H(s — 7,) =0

fort<Tand H{t —T) =1fort>T,,

D Fa s
Y1 (Ve 39) = L Ji(xg) [(xs BT LT + s + W F J’a'] dx, (15)

— 3
¢ (Yp ) = 8\]1,1 fl( A [{E);: — ';?): ¥ };,’:s}n
(%3 + 33 — ¥t
t i(x: + y:)‘ + W' g
and

4,“ (y" .) - qul =J 2f; .) [{(x (-x-s y—;)iy")}'y;”}t

()Y j
feamn e

0 #0)

(16)

an




Strike-Slip Faults in the Lithosphere 171

Hence ¢,y = %‘, the shear strain is given by
3

v = (e + 54 0= TR 00 90 @

1n (12)~(17), we note that U,(r,) and V,(s,) vanish for #, < 0.

These results for ¢ > T,, y, # O romain valid aslong as F, remains
locked,

The integrals for ¢,,, ¢, and ¢4 can be calculated in closed form if {y,)

is a polynomial. In particular, if the relative displacement due to creep is
independent of depth, we have

Ays) = constant
= K (say),
0 < 5 < Dy).

We find casily that, in this case,

(s 3y = X l:tan-l (D—’ ;.' Y ') -+ tan-! (D-———";: ¥ )] ]
Dy — ¥ Dy +y
—Y Y

v 30 = K|S+ oremere) |

We note that, ¢,, and ¢, (and hence r,, and v,,) have singularities at (y, =0,
Yy =D,), which is the lower edge of the fault. Singularities of shear stress
of this type have been obtained earlier for static models of locked faults in
elastic materials by Chinnery (1961, 1963), Maruyama (1966), Rybicki (1971)
and others.

To investigate the conditions under which the displacements and - stresses
are bounded everywhere in the model including the edge of the fault, we
consider the integrals for {¢,,, .y, ¢y given by (12), (13), (14). Integrating
these integrals by parts assuming that f{3,) and f'(y,) are continuous in
0 < y, < D,, 50 that integration by parts is valid, we find after some calcy-
lation that the displacements and stresses will be bounded near the edge of
the fault and else where in the model if the following sufficient conditions
are all satisfied simultaneously (as explained in the Appendix):
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(i) f(»,) and f’(3,) are continuous in 0 < y, < D, 1

(i) £"(3,) is cither continuous in 0 < y, < D,, or has a finite
number of points of finite discontinuity in 0 < y, < D,, i

(iii) either f,(y,) is finite and continuous at y, =0 and =
¥y = D1, or there exist constants m and », both < 1, -
such that (yy)™ £,”(¥;) = 0 or to a finite limit as y,~>0+0
and (D, — ) /" () 0 or to a finite limit as y, >

9 (clr)

‘Dl b
(iV) f],(D;) =90, f 1‘(01) =0 =f 1'(,0)' o ;‘b
These conditions imply that the magnitude of the relative displacement across
the fault varies smoothly with- depth and approaches zero with sufficient
rapidity as )
The integrals in (12), (13)and (14) can be evaluated in closed form if
Ji(yy) is a polynomial satisfying the four conditions (cl) given above., We
find that, the simplest polynomial of this type (of the lowest degree in y,)
 would be
Iyt | 2,0
fl(ya) =1 _D—:"- Bfi‘
It is easily verified that fi(y,) satisfies (i)-(iv).
In this case, .
3 2
al = v {125 + 25} ...20)
and the creep velocity ¥V (#) f:()’a)
= vt {13 + 251 -

[P = med o= o1,

The integrals in (15)—(17) are evaluated in closed form and we obtain
the displacement, stresses and strains given by (10)-(14) where we now have’
the following expressions for yg % 0 ;

&

$ulw 2s) = [l—-sy 2-"0 4P 33’: 5_},__!]

o (252) + w2 1
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3 2 3 6
____[ _‘13)’3. %15-+ N + J’a)’a]

- [ (252) s 2]
[ 2035 lon 1O + 321
+ 0[5 @, + 20— x| lom [0 + 70* + Y
+ (282 ) low 047 + 99— 5, -2
N

Y
—_— 24}' l.m—] (&)
* Y

I:(D —'J’s)' (Da —2y,) + 3.": 63’&'.7:]

L)
1

(D1—xy)
' + (D=1

[(Dl + 13 (P1—2yy) + 33": + 6y, J’a]
___T_.

X

Dyt a0 4
XpE+ D, + 3 T B3 o 77 D,

- ﬁl:il [37; (P1- y) + 3nt] loge [(D1—ry)* + »n'

' 2
. Rt _y)’.")++y log, [(D; + 1t + )

+ -D%. *—»") logs (o4 + ¥a") , 22

$a1 (Vs Vs 34’11
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=[ 6?: + 6)’: 6)"] tan-1 (Dl"J's)

P
5y Sys 9.’_1'] - 21_"_'_&)
-["b?*ﬁr-*oc i G

L35 )

D=y (D +2J’;) 3)’!' 6_.‘_’._;
[ Dy ' ]yai + (D=3

- [(Dl + J’.)' (Dy—2y,) + 31’1 + 65,* "a] AT {bl —y

4}‘; 12.1’ 'J’ ]
' s + Vs

~ ) ‘f,;.‘z’" 10gs [(D3 =" + 341

Bie 0 P9 + 3y LW,

M log, [(D; + y* + 3]

2(D

— 38 tog, 0t + 30

Yy (' =3y,")
+ —-L-D1 2 —l*ry’, ¥ y: L «(23)
In particular, if
ut) = ¥ity,

where ¥, is a constant, so that, across F,
tal = ¥ (1- 25+ 25) m

for 0y <Dy,yty 20(30.,15T)
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and (] =0 for ¢, <0 (i.e. t T),
we obtain from (10)-(14), for

t> T, »n+#0,

= o O 7 + %22 rent | He—T) 284,00 30

0 g |
€1y = '8_"';: = (en)o (yp J’,) + 17‘1'““ + H(t'_T:I.)

LY

V tl $11 (3, ¥a)
T1g = (Ta)o €XP (—utfm) + va [1-—exp (—pt/y)

+ H(t— Tl) [!"CXP (=uty)] $1(Ve ¥s)

and Tis = (T33)o €Xp (—pet/n) + H (1—~T) 7’2—:‘

[1—exp (—pty/0)] dailyy o)

where {4, ¢1y. ¢y are given by (17), (18) and (19). Here the velocity of
creep across F, is

Vifhiw 0O <y, < D))
The results (10)—(24) remain valid for ¢ > T, as long as F, remains locked.

DISPLACEMENTS AND STRESSES AFTER COMMENCEMENT OF
CREEP ACROSS THE SECOND FAULT

If fault creep commences across the second fault F, also att = T,
(T, = Ty = 0), we have the followmg conditions across F, and F, for
t 2T,

(@) [w] = u(ty) fi(yy) H(t,) across F,
(0 ya < Dl- yl = 0)

(b) [} = uy(ts) fi(vs) H(t,) across F,
(0 yg = D:s\ Yy = D)

(3)

| VR
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() =0fort, < 0, '
ty(t,) = Ofort, < 0.

and [u,] is the discontinuity in u, across Fy, i.e.

[l = Lt ) — Lt (w)
M>D+0  y,>D-—0
O<y<Db)

For t » T, we try to find solutions for u,, 7,4, 744 in the form

Uy = () + () + (U

Tis = (Tyd1 + (Fusds + (Tag)s (26)
and T = (Fra)r + (T1ghs + (Tighs j
where (1), (T13)1, (7i3h 8re continuous everywhere in the model and satisfy
the relation (1)—(6); (¥)gs (T1s)ss (T3s)y vanish .for t, < 0, satisfy (1)—(5)

and (9) for ¢, = 0, and are continuous everywhere in the model except for
the discontinuity of (u,), across F,, where we have,

[dd] = (1) File) H(2,) }
(27)

G =t—T)0K< <D,y =0,

(), (T1adss (11)y Vanmish for ¢, < 0, ie, 7 < T, satisfy (1)—(5) and the
condition

(T1a)g >0 as | y, >0 (yp=20) (28)

while (u,), is continuous everywhere in the model except across F,, where
we have

[(2,)5] = uy(ty) H(ty) fa(ya)

Pa=D,0<y; < Dy (29)
and (74,), (v15); are continuous everywhere in the model. We note that the
solutions for (), (vi). (7;5), Will again be given by (11), and the solutions
for (#,)y, (Tas)a, (Tag), Will be given by (12)-(24) as before, in appropriate cases.

For (t)s: (T1a)s (1a)y, 0D writing

y!,=y2 - D:

#MV,(ﬁﬁ,,-g
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t’=t-T,,
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we find that they satisfy the following conditions for ¢, = 0, obtained from

(5), (28) and (29)

3’(":)3
( [‘ 5)( Ti)s = FTA BJ’,'
l 1 2

S o s = s

t, By,
7 (ot o (= O
Vi(u,)y = 0
[(1b), (2b), (3b) are valid for y,' 3 0, — © < Yy < 0, 3 = 0]
(t)s=0o0n p' =0
(T >0 a8 ) + 0 (— 0 < p < ®)
(tya >0 as |y | > 00y =0)

and [(u))s] = t5(t3)f3(ry') across F,

(yi, = 0! 0 = ys’ QD’, 1y = 0)

(1b)

(2b):
(3by
(4b)
(5%)

(6Y)

O

while (1)), is continuous everywhere except across F,, u,(0) = 0, and (u,),,

(*19)s (T19)s vanish for 1, < 0.

The conditions satisfied by (1)s, (T1a)ss (7:3); 2re exactly similar to the
conditions (la)(6a) and (8a) satisfled by (ty;)y (Tagdss (v15)x With ¥;, ¥y, B,
Vit), fi(ys) replaced by yy', v5', £, Vi(ta), fo(¥y). Proceeding cxactly as

before, we obtain corresponding to the. results (12)(14),

@)y = Ht — T 40 0 3)

(k= He - 1) (5 [ v exp (2=

X $u’ (s 1)

(30)

(31,
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(e = He = T (5 [ vt exp {— & (1, — 0} de) x
z 21: o 'q 9

én' (W 3) (32
(7' #0 e y, # D)

where b=t —To ¥ =»n—>D, a' =

Vit = d—‘f., Vata)

and ¢,,’, .1's &y, are obtained from {1, ¢y, bg1 ON replacing y,, vy, D1, fi(x3)

in gy 315 $51 BY W' ¥4y Dy, Sy(%5) respectively, where ¢y ¢1y oy are given
by (15)-(24) in the appropriate cases: Thus, finally, we have for ¢t > T,

Vs 7 0,
u = () + ()2 + ()
T2 = (ta) + (1dy + (Tigds (33)
Tra = (F1a)y T (Taads + (T1)s

where
1 (Fide (Fash are given by (11),
()2 (Tra)e (Tass are given by (12)-(14)
and .
()5 (19 (Tasha are given by (30)~(32)

Hence we have, fort » T,

Tool

€13 = (e19)0 + Y + H(t — T:)‘ulz'(;—l‘) $11(¥es ¥5)

+ H(t — Ty) 2,;‘) bu' O’ 5) (34)

=t —-T,ty=t T3 ¥/ =y — D,y =y)

For boundedness of displacements and stresses everywhere in the medium
for 1, = 0 (i.e. ¢+ = T), both fi(y;) and f,(y,") have to satisfy the four condi-
tions (cl) stated earlier for f,(y;), where, for f;'(y;'), we replace (Va, ¥, D;} by
(s ¥3's Dy) in these conditions.

In particular, if we have, for t > T, the conditions of discontinuity of u,
across F, and F, given by (25), where

=
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u(t) = Vity and uyt) = V1,

where V;, V, are constants, we have, for # > T}, y4 # 0, 3 # D

¢ Vi, H({t — T '
R e e

+ Mﬂz;—ﬂ ', 1)

ol , Vil
e (e + o+ EHHE = T) 40 30

Vil Hit —T) . ., .
+%“‘—Q¢u(y“}’|)

i = (Tiado OXP (—14/1) + Teol — exp (—pt/m))

| - (39)
+ D3 H(t — TX1 — exp (~uty/1)) $up 70
+ 52 He — T ~ exp (= i) b0 %)
and :
Tip = (Tudo €3 (= wt/n) + Y2 H(t — T,(1- exp—(uty/ W) dua(os 70
T HE = T~ e (= ) 'O )
(fl=t—-T1,l,=‘-t—Tm‘y|'=y|_Dby;'=y) 4

If creep commences simultaneously across F, and F, the solutions remain
valid, with T, = T} s0 that #, = ¢,, and u,, 7y, 7,y for ¢ = Ty(= T,) are then
given by (33).

If the fault creep across F, or F, (or both) stops after some time ¢say
t = T3), the resuits remain valid, if we take u,(#;) or u,(ty) = 0for ¢ » Tyin
the appropriate cases. The results also remain valid if the fault Creep across
F, or F, starts, stops after some time, and starts again, provided we takeithe
appropriate forms of Vy(t,) or V(t;). In such cases, we assume, however,
that the dependence of the fault creep on the depth y, does not change, so
that fi(y,) and fy(y;) remain the same. We also note that the solutions (33
(35) are actually valid for all # > 0, since (#,),, (*10)s (T1s)s vanish for t < T,
and (4;)s, (T1a), (719)s vanish for t < 7,. We note that, in the solutions (10)
and (33), (), (Ty)ye (7ie)y can be interpreted as the displacements and
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stresses associated with the displacements and stresses present initialiy at t=0
and the shear stress 1., maintained by tectonic forces far away from the fault,
while (1,)5, (T19)sr (T1y)a Tepresent the displacements and stresses due to fault
creep across Fy and (i), (Tu)y (Tya)s tepresent those due to fault creep
across F,.

We also note that, to obtain (u,)s, (Tyg)s (T1a)s in the neighbourhood of
F,, we make y, > 0 + 0 and y, = 0 — 0 to obtain the limiting values on the
right and left of F, in Fig. 1. Similarly, to obtain (u),, (v10)y (T;e), in the
neighbourhood of Fy, we make y,+ D + 0 and y,—> D — 0 to get the
limiting values of the right and left of F, in Fig. 1.

DISCUSSION OF THE RESULTS AND CONCLUSIONS

To study in greater detail the changes of the displacements stresses and
strains in the model near the faults with time, and specially the influence of
fault creep, we compule the changes of the surface displacement ¥, and
surface shear strain ¢,, near the faults, as well as the shear stress t,, near the
faults, tending to. cause strike-slip movement, for relevant values of the model
parameters pu, %, Dy, D,, D, v, aad for relevant types of creep velocitics
across the faults. Keeping in view the case of shallow strike-slip faults in the
lithosphere, we take values for 1 in the range (3 to 4)x 10 dynes/cm?, while
Dy, Dy, D are taken to have values in the range 5 to 20 kms. We have carried
out computations for some simple types of fault creep, satisfying the condi-
tions (c1) for the boundedness of displacements, stresses and strains for all
finite (¥ ¥, 1) so that the creep displacements across F, and F,, commencing
attimes t = T, and t = Ty(T, > Iy > 0) have the following form:

fth] = Vit iOW

across F,,
and

[) = VoS30
across Fy,
where V,, V, are constants, representing the creep velocities on the free surface
¥s = 0, and fi(»,), fy(¥s) are polynomials, satisfying the conditions (c1) for
- boundedness of displacements, stresses and strains. In-particular we consider
‘the case in which

3p,d | 29,0

i) =1-— 3:7 + E%

fwo=1-5+ 2
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‘For ¥, and V,, we consider values in the range to 5 cms/year,- which is
- the range of observed creep velocities on the surface across creeping strike-
slip faults in-North America. For n, we consider values in. the range
10%—10* poise, keeping in view the fact that Cathles (1976) has obtained
-reasonably good agreement between observational results on post-glacial
uplift and corresponding theoretical results for theoretical models of the
lithosphere-asthenosphere system with values of nin this range. For .,
- we consider values in the range 50 to 200 bars, and for (r,,), near the faults
we consider values in the range 0 to 100 bars; with (v5,), < 7« in all cases.

The computed values of displacements, stresses and strains show that, in
the absence of fault creep, there is generally a gradual accumulation of surface
shear strain e,, and the shear stress «,, near the faults, tending to cause
strike-slip movement, if (r,,), < t., The rate of accumaulation of shear
stress decreases slowly with time, and t,, ~» 7, ultimately if there is no fault
creep. However, if creep across F; or F; commences, it influences signifi-
cantly the subsequent displacements, stresses and strains near the fanits. The
magnitude of this effect is found to depend on:—

(a) the velocity and spatial distribution (across the faults) of the rela-
tive aseismic creep displacements

[i.e. ¥, ¥V and fi(n), £i(0)]
(b) The depths Dy, D, of the faults and the distance D between them.

(c} The shear stress <, far away from the fault, maintained by tectonic
forces.

(d) The displacements, stresses and straing present at ¢ = 0,

(¢) The values of the model parameters p, n relates to the material
rheology.

It is found that, when creep across a fault commences, it reduces the rate
of accumulation of surface shear strain and shear stress near itself, and also,
to a smaller extent, near the other neighbouring fault. Simultaneous creep
across both the faults reduces further the rate of accumulation of shear stress
and surface shear strain near the faults. Greater creep velocities result in
greater reduction in the rate of accumulation of shear stress-and surface shear
strain, and for sufficiently large creep velocities across the faults, there is a
continuous aseismic release of shear stress near the faults, so that the possi-
bility of a sudden fault movement, generating an earthquake, becomes remote.

_This is consistent with the observed. relative absence of earthquakes near the
central part of the San Andreasfanlt in North America, where aseismic
~creep has been observed across the strike-slip fault. The influence of one
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fault on another is found to decrease quite rapidly with increase in the dis-
tance between them, and if D » (Dy, Dy), the effect of creep across one fanlt
on the stresses and strains near the other becomes very small.

However, in this case also, creep across a fault reduces the rate of acgu-
mulation of shear stress and surface shear strain near itself. Another interes-
ting result is that, in the absence of fault creep, the rate of accumulation of
surface shear strain is of the order of 107 per year, which is of the same order
of magnitude as the rate of surface shear strain accumulation near the locked
northern part of the San Andreas fault, where there is no fault creep on the
surface.

l | - - creep across
F, and F2
100} l oéoc,c, |
I ‘eeq \°°\* ,
| A |
E; ' I
o/ |
oo&e l l
< I Il
| |
|71 !Tz .
0 50 ) -

tlin'years}) —
Fig. 2 (Changes in the surface shear strain near F,)

Fig. 2 shows the changes of the surface shear strain with time for a typical
set of values of the model parameters
Here- ‘ E\y = [e13—(ey)y] % 107
7p=0
Vs> D

i3 proportional to the increase of surface shear strain near the fault F,, and
the tinle #is in years. Fig. 2 corresponds to the following values of the
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model parameters :

* s . . - -
n = 10% poise, u =3 X 10U dynes/cm?,
Te = 100 bars, T, = 50 years,
:[-L T. - 100 Year, (11.). ] 0’
} ¥, = ¥, = 2 cmsfyesr
> 3y, 2y
b fo0 = 1- 5+ 2%

fo = 1- 20+ 2

From Fig. 2, we find that E,, increases steadily upto ¢ = 7,, when creep
across F, commences. For ¢ > T, the creep across F; reduces the rate of

increase of E,, near F;. After t = T,, when creep across F, also commences,

)
I |
100 - I [
| b
055 C
L l ct eeF ‘0:‘:\\’! | ;?E'ang(‘éoss
hin b:r2sl_' 5ol I I
P |
S | |
| i
T
0 slo ' . 1t[10T ! g

t (in yearg) ———

Fig. 3 (Changes in the shear stress v,, near Fy)
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the rate of accumulation of E,, near F; is reduced to a greater extent, and
becomes nearly zero,

Fig. 3 shows the changes with time of the shear stress «©,, near the mid-
point of the fault

F,( i.e. yy > %’,y, —)-D)
Hence ™ = [(T1)—(Tu)d

J’a"D'f,

Yy =D

For Fig. 3, the model parameters have the same values as those correspond-
ing to Fig. 2, and the time ¢ is in years, while tp, isin bars. Fig. 3 shows
that tz, increases gradually with time, upto ¢ = T,, and the rate of increase
decreases very slowly with time, After ¢ = Ty, when creep across F, com-
mences, there is a significant reduction in the rate of increase of 7, , Finally,
after t = T,, when creep across F, also commences, there is a gradual and
continuous aseismic release of tz, instead of an increase.
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APPENDIX

DISPLACEMENTS AND STRESSES IN THE ABSENCE OF FAULT

" MOVEMENT--METHOD OF DETERMINATION:

In this case u, 1, +,, satisfly (1)-(6) and are continuous everywhere. On
taking Laplace transforms of (1)-(6) w.r. to, we obtain a boundary value

problem for (@), ¥y Tyy), the Laplace transforms of (u;, Ty 1-“) w.r. to#4,
characterised by the relations:

(1900 __ 2C:)o ]

_ P M, u oy
Ry ‘_’*.l_ _I By, £+.l.
| N
g (Al)
r“u)o_ agm o
S B o),
il & iy
+ +
B oo J
Fu 1 Eno A2
8y, ' 8y, (A2)
v’ﬁl - 0 ...(Aﬂ)
;]a=0 on y.= 0 ('- 0 <y.< w) ---(A‘)
Tp-0 88y, 0 (— 0 <Y< ) -.(A%)
T8 (nie 0020 -:(AS)

where p is the Laplace transform variable, Starting with a trial solution for a4,
of the form,

= A(p)», + B(p)
where A4, B are independent of (¥y, ¥s)» We easily find that the solution fora,,

. satisfying (Al)-(A6) is given by

(")ﬂ Toola 1
iy = L +,,p,.

So that, by (Al),

Tig = (T n)o + _ %_ ..l_p : » . (AT) ‘
(p +& P+ ' '
k|
_(Taado

and

) o
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Inverting the Laplace transform w.r. to ¢, (A7) gives us the solution (7).

DISPLACEMENTS AND STRESSES FOR ¢ »» T;, AFTER FAULT CREEP
ACROSS ¥, COMMENCES: METHOD OF DETERMINATION

To obtain solutions in this case for (), (19)ss (T1)s We take Laplace
transforms of (la)-(7a) with respect to 7, moting that (u)y, (Tugs (Fishe
vanish for f, < 0. This gives a boundary value problem for (4)y, (F3du (T1)s

the Laplace transforms of (u;)y, (T1)y (F1a)y W.T. t0 £, characterised by the
relations:

Tads = FL
L m )' (A8)
(uh = =
2 Et LEh=0 (A9)
ay' 11/2 ay. ]
V'(ir). =0 (A10)
“wa=0 on yy=0(—o0 <y < ) (All)
Gah+0 on  y, > oo(~® <y < ) (A12)
Z-:,.,_),-—p‘o as [ s | =+ 0o(n > 0) (A13)
CANEEXTACN,
across F(ya=0,0 < y, < Dy (Al4)
while (%5)p (%1s)se ar¢ continuous across Fj.
Here
- ___P
k=7 (Al5)
R

This boundary value problem for (4,),, (15)s» (T10)s» Can be solved by using a
suitable modification of the Green’s function technique developed by
Maruyama (1966) and Rybicki (1971) for static dislocations in elastic media
and it is easily shown that

@0 |, [T3XP)-GeP, ©)-dX, (at6)

b
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where O(y,, ¥y, ¥,) is any point in the model not lying on F,, P(x; x,, Xy is
any point on F, and -

LS

[()ekP) = a(p)fsw) (ALT)

Is the discontinuity in (u,), across F, at P-G(P, Q) is a Green’s function,
given in this case by :

G(P, ) — Ega—x'Gl(P. 0) z

where (A18)

G(P, Q) =4‘%ﬁ [log{(x,—y ) + (xy—y)% !
+ log{(xs + y)* + (x3 + ¥}

Noting that the integrand over F, in (A16) is over the range O to D, for x,,
we obtain (u,), from (Al16), (), and (v;;), are then obtained from (AS).
Finally, on inverting the Laplace transform with respect to ¢, and using the
convolution theorem, we obtain (#,),, (Ty4), (T19)s int the form (12)~(17).

SUFFICIENT CONDITIONS FOR THE FINITENESS OF THE DIS-
PLACEMENTS AND STRESSES

In considering the boundedness of displacements and stresses in the
model for finite y,, ;. ¢, we note that, if the creep velocities are finite across
Fy and F, then u(t) f1(3) and u,(t,) £,000'), the relative creep displacements
across Fy and F,, assumed in (8) and (25), will be finite. In this case, from
the solutions for displacements and stresses valid for all ¢ > 0, given by
(33), (1), (12)—(14) and (30)—(32), we find that the displacements and
stresses are finite for all finite (y,, 3y, f) in the model (for £ > 0), provided
($1s $125 $ur)» given by (15)—(17), as well as (.1, b1y’ $1')s derived from
them, as explained earlier, are finite for all points (y,, ¥y t) in the model.

Now ($3, $15» $21) Will be finite provided the integrals in (15)—(17) con-
verge and are finite. From the properties of integrals, discussed by Carslaw
(1950), it follows that this is ensured if /();) is continuous in 0 < Vs < Dy,
as assumed in the first of the conditions (CI) stated earlier, provided y, 34 0
and (y,, y,) are finite, However, as y; -> 0 the integral in (15) —(17) are not
always convergent or finite, and limit y, — 0 and the integral over X, are not
necessarily interchangeable. To study the behaviour of these integralsas
¥y —> 0, we assume that /() satisfies the first three conditions in (Cl).

Then, for y, # 0, integration by parts is justified for the integrals in

(15)—(17), and integration by parts of the resulting integrals is also justified.

Assuming the validity of the conditions (C‘i)_, integrating by parts once



190 Bull, of Indian Soc. of Earthquake Technology Dec. 1984

for ¢y, and twice for ¢,,, ¢4, and simplifying we have, from a5)—-QA7, for
W F 0, '

e o (B2) (528
- I‘_’:" £z + vy tan=t (zfy,) dz

= [ rita= tan=t ety 2

and

LR JP D,—y, Dyt

_R.‘"" =—AD .‘+('D,-'-y.)' + I+ ED:-I:y.)']
+ 5 og, 13,1 4+ (0,—3)% + 108, 1 + (B, + yomy
—~H'(O)[loge (3, + »M)]

=4[ @+ R o (8 + Y s

| I :ﬁh 5" (@—y)) log. (2 + nW dz

where X,, K, are finite non-zero constants and primes in N @) A2+
etc. denote differentiation with respect to the argument,

For $,,, we get a similar expression on applying the last condition (iv)
in (CD), viz., fy(D,) = 0, ,'(D,) = O = £,(0), the expressions for T Y
reduce to the following form for y,  0:

‘l’i_“ K:’ ¥y = r::hf{(z + »,) tan— (zlyy) dz
Dytys
+ I , @y tanl (oly) dz (Al9)

¢-:(J’,:’_J’_a) - E’: K@ + 1)) log, (2 + 3 dz

'Drén .
| R =y log, (2 + y) dz . (A20)
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$a0e D ™7 ot 4 3w oy
1 ] -

+ ]:‘*"f,"(z + y)) tan~t (2fy,) dz (A21)

where K, K,, K; are finite non-zero constants. Using the conditions (Cl)
satisfied by f,(»,) and the properties of integrals [Carslaw (1950)], we find
that the integrals in (A19)-(A21) and converge and are finite for y, 3 0, and
they remain bounded as y, - 0. Moreover the limit y, — 0 and the inte.
grals with respect to z in (A19)-(A21) are interchangeable if (ClI) are satisfled.
Thus, if fi(y,) satisfies the conditions (Cl), §y,, ¢y, ¢4 remains finite for all
points (¥,, ¥y t), including the neighbourhood of the fault F, (3; —+ 0,0 < y,
< D).

Similarly $4,", $11'» ¢z’ remain flnite for all points (y,, y,, #), including
the neighbourhood of Fy (1 — D, 0 < y, < D,) provided satisfies four con-
ditions exactly similar to (C), with »,, ;, D, replaced by y,', »,', D,. .

Hence, finally, we conclude that the displacements and stresses are finite
for all finite (»,, »y, t), including the neighbourhood of F, and F; (where
¥ and y;' = 0) provided f;(»,) satisfies the four conditlons in (Cl) and f,(»,")
satisfles exactly similar conditions, with (y, ¥y, D,) replaced by (3y', ¥4/, Dy).





