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RESPONSE OF BRIDGES SUBJECTED TO A SYSTEM OF
MOVING FORCES

N. MUNIRUDRAPPAL, B.C, RAJANNAY AND M. VENKATACHALAPPA?

ABSTRACT

The two dimensional behaviour of the structure subjected to moving load with
sprung and unsprung masses has been considered. The moving load is assumed to
be of two degrees of freedom. The theory encountered in this paper will find its
widest application though the actual conditions ate more complicated.

The response study has been made, in the form of dynamic coefficient. Its
variation has been studied under parametric study taking ioto account the mass of
the moving vehicie, mass of the bridge, weight of the vehicle, weight of the bridge,
speed of the moving vehicle, and unsprung and sprung parts of the vehicle, Itis
observed from the results that speed parameter and the sprung and upsprung parts
of the vehicle will give rise to the increase in value of dynamic coefficient.

1. INTRODUCTION

Transport Engineering structures are subjected to loads that vary both in
time and space. Such loads are called as moving loads. In recent years all
branches of transport have experienced great advances characterised by in-
creasing speeds and weights of vehicles. As a result, structures and media
over or in which two vehicles move have been subjected to vibrations and
dynamic stresses larger than ever before.

Theoretically the problem of moving load was first tackled for the case
in which the beam mass was considered small against the mass.of a single
constant load. The original approximate solution is due to Willis (1851),
being one of the carly experiments in the field. Stokes (189) and Zimmermann
(1896) approached the problem under similar assumptions. This case applies
to railway bridges and has been analysed by Stokes (1849) and Sundara Raja
Iyengar and Jagadish (1968). Stokes (1849) solved the problem with an uni-
formly distributed mass with constant velocity. Similarly Inglis (1934)
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Krylov (1905) and Timoshenko (1911) solved the problem by- considering the
load mass small against tha beam mass traversed by a constant force with
oonstant velocity on the beam. Timoshenko (1922) integrated the differential
equation of the forced vibrations of a simply supported beam by modal
superposition. He seated that the maximum dynamijc deflection is 1,5 times
the static deflection, when the traversing time is 1/2 the first matural period
of the beam. It was recognised late by Eichmann (1953) and Warburton
(1964) that the situation is less conservative and the maximum deflection is
1.743 times the static deflection. This corresponds to a traversing time of
0.81 times the first patural period. This conclusion was further supported
" by using finite elements by Vananeio Filho (1978).

A masslessload traversing with constant velocity on a beam uniform
mass was studied by Lowan and Bondar (1954), and solved it with the aid of
Green's functions and integral cquations - respectively. Timoshenko (1922) is
also credited with the solution to the problem of the effects of harmonic force
moving over a beam ata constant speed—an idealization of the effects of
counter weights on the locomotive driving wheels. Similarly, Ayre et al.
(1950) Nagaraju et al. (1973) and Sundara Reja Iyengar and Yagadish (1970)
studied the dynamic response for a two span continuous beams and canti-
lever beams. The case of moving sprung load has also been treated by the
analysis based on the theory of orthotropic plate traversed by a constant
force. : =

In the above paragraphs it can be scen that the response study is made
with (i) a massless beam subjected to a load with a mass and (i) a massless
load on & beam with uniform mass moving with constant velocity. In prac-
toe it is pot so, since both the moving load and the structure over which it
moves will have respective masses. The first investigators to. tackle this
problem were Saller (1921), Jaffcott (1975) whose iterative method fails to
converge in some cases and Stending (1935) who treated several specific cases.
A satisfactory method (Fourier series with unknown coefficients for the
trajectory of the moving mass) was devised by Schallankamp (1937), Much-
nikov (1953) and Ryazanova (1958) and solved the problem by the method
of integral equations. Whereas Nalerkiewicz (1953) solved the problem by
Galerkin method and Bolotin (1961) by a method that leads to approximate
solutions in quadrature.

Inglis (1934) used harmonic asalysis to solve important cases likely to
come up in dynamic calculations of railway bridges traversed by steam loco-
motives. General system as well as statically complex systems have been
studied by the helpﬁj?'ormal_ nmode analysis by Kolousek (1967).

_ In all the references mentioned so far, the vehicle was idealised by a single
mass point. It goes without saying that, for modern means of transport
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with distinctly differentiated unsprung and sprung masses, such a simplifica-
tion is no longer in order. The first solution of the motion of Sprung masses
on a beam is due to Hillerborg (1951) who obtained it by means of Fourier
method and by the method of numerical differences. Further advances in
-the solution of the problems were made possible by-the arrival of digital
compuyters. Using these techniques Tung et al. (1956) and Biggs et al. {1959)
solved the problem originally treated by Hillerborg and applied the solution
to vibration of highway bridges. It was assumed that the static and dynamic
deflection curves were instantancously proportional. The same problem has
been analysed on the basis of a simplifying assumption that the dynamic
deflection is proportional to the first normal mode of vibration of simply
supported beam as studied by Biggs et al. (1959).

The finite element method was first used in the 1960’ by Fleming and
Romualdi (1961), Veletsos and Haung (1970) and Wen and Toridis (1962).
A stiffness formulation of the equations of motion was used for a three span
continuous beam (Fleming and Remuald; 1961). The moving load with
sprung and unsprung masses was considered in the analysls, A numerical
step by step integration showed the influence of mass ratio on the time
required for the load to cross the beam, and of the stiffness of the suspension
on structural response. Cantilever beams under massless moving load were
analysed by Veletsos and Haung (1970) using flexibility formulation. The
equations of motion are formed and integrated by the modal superposition
method. Single span, three span continuous beam and cantilever beams were
analysed using flexibility approach (Wen and Toridis 1962). A three axle
vehicle and nonlinear spring for the suspension were uwsed. The equations
of motion were integrated numerically,. For a thorough treatment of the
analytical methods used for problem of moving loads with and without masses
in both structures and solids was very well treated in the excelleat book by
Fryba (1972). '

In reviewing the above work on the effect of masses due to moving load
and bridge structure, the various investigators formulated the problem, based
on beam approach. As such the theories developed are not taking iato
account the transverse modes of vibration. The aim of the present study is
to take into consideration the effect of the frequencies and mode shapes
resulting due to the secondary beams of transverse beams in addition to the
longitudinal beams to study the response of highway bridges (Rajanna et al,
1972).  In other words the two dimensional behaviour of the structure sub-
jected to a moving load with sprung and unsprung masses is considered, The
moving load is assumed to be of two degrees of freedom system. The theory
encountered in this paper will find its widest field of application, though the
actual conditions are more complicated. It is now a well known fact that
track irregularities, clastic properties on highway bridges, unbalanced com-
poneats of unsprung masses and other factors are apt to bear considerable
effect on dynamic stresses included in respective structures.
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THEORETICAL ANALYSIS
In studying this problem the following assumptions are made:

(1) The beam behaviour is described by Bernoulli-Euler’s differential
equation based on the assumption of the theory of small deformations,
Hookes’ law, Navier hypothesis and St. Venant’s principle. The beam is of
constant cross section and constant mass per unit length,

(i) The load moves at constant speed.
(iii) The damping is proportional to the velocity of vibration.

(iv) The computation will be carried throughout for a simply supported
beam, i.e. beam with zero deflection and zero bending moment at both ends,
Further, at the instance of force arrival, the beam is at rest, i.e. possesses
neither deflection nor velocity.

. Formulation of the Problem

Figs. 1 and 2 represent the model of a beam system. The total weight
of the vehicle is given by

P=P,+P, ()

where P,==m,g is the weight of unsprung parts and P,=m,g is the weight
of sprung parts of the vehicle. The two masdses are connected by means of
springs k and coefficient of viscous damping ¢. Their vertical displacements
are denoted by y,(f) and y,(t). Displacement y,(¢) is measured from the
position in which spring <k’ is deformed by force P,. Displacement yy(f) is
measured from the marked dashed lines, Figs. ! and 2.

Since the system is assumed to be subjected to a moving vehicle which
moves from left to right, with constant velocity ‘v’. the coordinate of the
moving vehicle w.r.t. a constant point is:

Xy =V1. M
Free .
4
4
r
v,
Simply 5
supported 7 Letpdp M Simply supported
/] A L
v R AP
4 L2 222
/ |
Free N

Fig. 1. Rectangular Grid with Af Cross Beams and N Longitudinal Beams
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Fig. 2. Moving Sys & m with Two Degrees of freedom and Force Q(r)

The unsprung mass myg is assumed to be acted uponbya harmonic force
given by:

O()=Qsin Q¢ 3)

whete O is the amplitude of the force, Q=2nv/B is the circular frequency of
the force and B is the circumference of the driving wheels.

The top surface of the beam is covered with an clastic layer of variable
stiffness and it is given by

k(x)=k,+k, cos 2rxfl, O]

The meaning of k, and k, is defined in Fig. 3(a) where /, is the length equal
to the span of the longitudinal beams, spacing of sleepers or cross beams etc.
Equation (4) expresses the idealised elastic properties of a roadway which may
be expected to vary - barmonically along the length of the bridge. Thisisa
generalised equation which takes into account the cross beam effect, if ky=0.
The effect of the spring k, represents the spring constant of tyres.

+K(X)
\F/T—
| N

Fig. 3 Propertics of the Elastic Layer Below the Vehicles.
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Referring to Figs. 1 and 2 the track irregularity is assumed to vary
harmonically along the bridge span in the form:

F(x)=4la(1—cos 2nxfl,) 5
where  _
r=maximum depth of the track unevenness

I,=length of the track irregularity (Fig. 3b).

Making use of the above assumptions the equations are formulated

with respect to figures 1 and 2 resulting in a set of three simultaneous differen-
tial equations with variable coefficients describing respectively the vertical
displacement of sprung and unsprung masses and the beam vibration within
the interval 0=t<l//V, 0=xgl The equations related to sprung mass,
unsprung mass, and beam vibrations are of the following form (Fryba, 1972).

Sprung mass;

Mya-+ (P — )+ k(Vy—yr)=0 O
Unsprung mass:

P+3()—~mn+k(ry—1)+ s~ 1) —Rit)=0 M

M= c(¥y= )~k (ry—y)—P—0(1)+ R(1)=0 , (8)

Beam vibration:

EIa 24 (x t)+p.ar=(x,t)+2y.f.o x, )=3(x—x)K(¢t) )

bat
where

R(t)y=k(x)[py(t)—y(xy O)+7(x,)]20 (10

is the force by which a moving system acts on a beam at the point of contact
x; and the over-dots correspond to the differentiation with respect to time, «.

The set of equations (6) to (9) should satisfy the boundary conditions of
simply supported beam, i.e.,

2
y=g-xl;=0 at x=0 and / 1)

and the initial conditions become:
Y% 0); 11(0)y=p10; 72(0)=2y

ox, t dnlt) dyy(t ,
ygt )r-u; t';l( =Y105 J:;S ) :_o=y’° (12)

{=0
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The equations 6 to 9 are very general statement of the problem of vibration
excited by a system of masses moving along a beam.

The above equation are reduced to dimensionless form by introducing
the following parameters:

x==iE; t-:—:;; Y*E, ©)=x(x, t){yo,

i (D)=y(t)yo; (13)

where i=1, 2, ... etc. and y,=2Pg/Gw? (1) represents the deflection at mid
span of the beam loaded with force, P, at x=If2. Substituting the above
non-dimensional parameters, equations (6) and (1) reduce to:

Ji=ms iy )+ G, —y) ~ (14)

. -—l‘ %(I'I‘Q"R) ¢| xu. (yl yn)“w(ﬁn—y.) (15)

il where the asterisks on y; and y, are omitted for simplicity and the over-dots
f : stand for the differentiation with respect tot. Comparing equation (14) with
‘ the corresponding equation of (Fryba, 1972; Eqn: 8.43) there is a mistake in
the second term of the RHS of Fryba's equation. In the case of Fryba in the
\ denominater we have Xo.  Actually it should be X}/* which is taken care of in
r equation (14) of the present paper. The general expression for the dynamic

: displacement ‘)’ can be writtenin terms of Fourier sine series in the
form:

HE )= 3 gu(s) sin () ae)

Non-dimensionalising the equation (9) and using equation (16) we find
that each Fourier coefficients gs(z) satisfy the equations:

;-—R/u' sin (J-r)-—4n'ﬂl)' = 3y, il an

'q'
Fryba (1972) has shown that in the case of a constant moving force and in
the case of harmonic force, series (16) converges at a rapid rate. Thus in
dealing with the large-span bridges it will be sufficient to consider obly the

first term of the series (16). Then taking q,(r) q,equatlon (17) can be repla-
ced by a single equation:

g=R/a? sin (v)— ul, a(v)— ;'% (<) ‘ | (18)
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where:
R(z)= RJ,Q =v; (1+4 cos br)
(<) —a(%) sin v —y(¥)]==0 (19

is the dimensionless force according to equation (19) by which a moving sys-
tem acts on a beam at the point of contact.

o)

Q(v)= =g~ =4, sin (by?) is the dimensionless force

and T(t)=;%:)- m}a,[1— cos byr) (20)

is the dimensionless ordinate of track irregularities. The initial conditions
are:

d . .
a=a0; L =g, at 1=0 @1

Though the equations and the boundary conditions represented in equa-
tions (21) are the same as those of Fryba (1972) we take different values of
" the parameter assoclated with the free vibration data of the bridge analysed as
a 2-D structure in evaluating the dypamic coefficient, 3. Because of the
change in values of the frequencies and modal values of parameters «, X, ¢
will be effected.

Non-Dimensional Parameters:

The various non-dimensional parameters used in the analysis are as
follows:

(i) Speed parameter o« =c/2f,l.

(i) The ratio between the weights of the vehicle and beem x=P(G,
where G=pg/ is the seif weight of the beam.

(iii) The ratio between the weights of unsprung and sprung parts of

vehicle
| Xo=P,/P,.
(iv) The frequency parameter of unsprung mass:
| £
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where f; is the natural frequency of the unsprung mass and
1
Jor= 5z EfmPt

(v) The frequency parameter of sprung mass:
Yr=/ alf_il)

where f, is the natural frequency of the sprung mass and
L
Foar= 5, Uealma)¥.

(vi) Parameter a expressing the variable stiffness of the elastic layer of
the roadway

a=k,/k,.
(vii) Parameter, b, a function of beam span and leﬁgth
b==2ifly.
(viii) The logarithmic decrement of vehicle sprung damping

by=C/2m,f,.

(ix) The initial parameters

o Ysor Yoo Yier Paow 9o G;o-

For the bridge grid under consideration free vibration analysis is carried out
and the results used with respect to the dynamic response of the bridge grid
are reduced to a beam subjected to a loading system as shown in Fig. 2 and

the solution to the equations (14), (15) and (i8) are obtained by numerical
methods.

NUMERICAL SOLUTION

For the numerical solution, the method developed by Gill (1951) is used.
He developed a step-by-step integration procedure based on the Runge Kutta
method (Ralston and Wilf 1965). This procedure has the following advantages
over other available methods: (i) This needs less storage register (ii) it controls
the growth of rounding errors and is usually stable (iii) it is computationally

economical. The procedure was programmed for an IBM 360 computer and
later on for DEC 1090 computer.

The solution starts with the printing of input data and the calculation
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and printing of «, and ;. Following this, Gill's method is applied to the
computation of various functional values inthe specified time steps. The
computed values of 7, yy(r), ¥4(t), ¢(7) and R(x) are printed at every Nth step,
the number N having chosen in advance. At the end of the computation, the
machine also prints the largest value of ¢ and R i.c. maximum ¢ and maxi-
mum R and the value of + at which the maximum occurs.

The choice of the integration step length, 4, was made by Collatz (1942)
method. The accurate results are obtained for steps of & = /2000,

Using the input data as shown in Table (1) the effect of some of the dimen-
sionless parameters on the maximum value of g(t), i.e. on the maximum value
of the beam deflections are considered. These initial input data are valid for
large span bridges of the span length equal to 50 m, wherein bridge is assumed
to be traversed by electric or diesel locomotives,

In the figures referred to in our discussion the maximum value of g(7) is
represented by 8, such that:

3 = Maxm ¢(r)
where 8 is the dynamic coefficient.

TABLE 1. Input Parameters

=00 Y=g Fu=00 yo=UI3 5,=00 g=0
7, =0.0 a=0.3 y'=1.0 5=20 1w =02 a,=0
a,=0.0  b=0 by=0.00 x=05  x,=0.25 ¢=008

$,=0.5 S, =0 S3=0.00 a=0.12 h=-2%0 L=00

DISCUSSION AND CONCLUSIONS

The Effect of Speed

The cffect of speed as defined by parameter, « is varied from ¢ to 0.14 in
the steps of 0.005. The variation of 3 with respect of « is represented in
Fig. 4. The graph displays generally ascending tendency with a number of
local peaks. One of the first well defined peak occurs at « = 0.03, while at
for « > 0.04, there is hardly any peak at all and remains constant from
a = 0.08 onwards. The reasons for the local peaks may be due to the fact
that the system under study is very complex. '
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Fig. 4. Effect of tho Speed Parameter, a

The Effect of Frequency Parameter of Unsprang Mass, v,

Fig. 5 represents the response curve of dynamic coefficient, 3, against
speed parameter for different values of unsprung mass. Figure 6 relates to
the variation of dynamic coefficient as against unsprung mass for different
values of «. From Fig. 5 it can be seen as v, falls off the dynamic coefficient
3 grows very large and very quickly. The greatest effect takes place in the
range of 0 <« 0.06. From Fig. 6 it can be seen that for v, > 5 and for
given «, the dynamic effects arc nearly constant. This means that a very hard
clastic layer on the beam surface has virtually the same cffect as an infinitely
rigid layer (i.e. the unsprung mass is in direct contact with the beam),

The Effect of the Frequenacy Parameter of Sprung Mass, v,

The dependence of 3 on (i) parameter « for various values of y, and
(ii) parameter v, for various values of « is illustrated in Figs. 7 and 8 respec-
tively. Figures indicate that the dynamic effects have a tendency to grow
with growing y,, The maximum value of 3 occurs when the value of y,lies

4
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Fig. 5. Effect of the Frequency Parameter of the Unsprung Mass, ¥,

between 0.2 and 0.4 and in the range of « varying between 0.040 to 0.065.
The diagram herein also represents number of local peaks.

Effect of Varlable Stiffuess of the Elastic Layer, a

Figure 9 depicts the relation of the dynamic coefficient, 3, with reference
to the speed parameter, a, for different values of, . It can be seen from the
Fig. 9 that 8 increases rapidly in the range of a varying bétween 0.100 to
0.300 and « lying between 0.040 and 0.065. The maximum value of § occurs
ata=0.06 and 4 =0.300. Tt is observed from the numerical values, that 3
is virtually independent of parameter @ at « = 0.0225 and varies continuously
with respect to a. The same results can also be seen from Fig. 10.
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The Effect of X, the Ratio between the Weights of Vehicle and Beam

The variation of 3 on parameter, X, at various values of « is shown in
Fig, 11 and variation of 3 on parameter « at various values of X in Fig. 12.
At constant «, 3 and X relation is fairly complicated, but generally it is seen
that 3 varics with increase in values of X. The values of 3 is maximum for
X =0.50 and 0.750 in the range of « =0.05to 0.06. The diagram displays
number of local peaks. '

The Effect of the Ratio between the Weights of Unsprang and
Sprung Parts of the Vehicle, %, .

The variation of 8 with respect to « for different values of X, are plotted
and are shown in Fig. 13. Judging by the general pattern of the diagram, at
constant speed parameter, X, bears but a small effect on the dynamic
coefficient. From the graph it can be observed that the local peaks are much

):‘
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Fig. 7. Effect of the Frequency Parameter of the Sprung Mass, ¥,

minimised as it can be seen from the effect of the ratio between the weights of
the vehicle and beam (Fig. 11). Maximum value of 8 of 6.00 can be seen at

«=0.055. It can also be seen from the Fig. 14 that the values of 3 decreases
as « increages,

The Effect of Velticle Sprang Damping, ¢,

The effect of the logarithmic decrement of vehicle sprung damping, &,, is
indicated in Fig. 15 and 16. Even though the dynamic coefficient, 3, falls off
with growing ¢, in most of the cases, they have an increasing tendency at
some speeds with decrease in value of the v, (Fig. 15). From Fig. 15 it can

be seen that 3 increases to a very large value of 8.7 against a speed parameter
@ =0.06 and for ¢, = 0.
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The Effect of Span Rotio &

The dependence of 3 on b reveals that at constant speeds the ratio of the
beam span to longitudinal beam length has a slight effect on § (Figs. 17 and
18). The variation of § in b for speed parameter « is represented in Fig. 17.
Here 8 possesses the maximum value for different values of b = 16, 20, 24 and
28 which almost remains the same and represents local peaks at increasing
speed parameter. The maximum value of ‘3’ occurs in each case, ‘a' lying at
0.04, 0.055; 0.06 and 0.0755.

COMPARISON OF RESULTS WITH THAT OF FRYBA

The results as obtained by Fryba (1972) has been illustrated in his
Figs. 8.4 t0 8.11 and 8.13. In the cases of the parameters considered 8 vary
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Fig. 9. Effect of Variable Stiffness of the Elastic Layer.

with increasing in value of «, whereas in the results reported in the paper, the
maximum value of 3 is obtained at the speed parameter lying in the range of
0.045 to 0.065. At higher speeds the value of the dynamic coefficients gets
reduced and it is appreciable. Other than these the other effects like local
peaks at « = 0.02 onwards the 3 variation remains constant with respect to
speed parameter =, with almost having the same values of 8. The effect of
frequency parameter of unsprung mass, v,, on 3 variation, in case of Fryba
and the present work remains the same with change in the magnitude of the
3 values, Similar variation can be observed with respect to effect of the
variable stiffness of the layer a, x. %o, ¥, and &.

CONCLUSIONS

From the results obtained, the variable quantity that mostly influence the
dynamic stresses in bridges is the vehicle speed. Speaking generally, the



94 Bull. of Indian Soc. of Earthquake Technology Sept.-Dec. 1984
S41 )
Ll=0-06
5.0 /

/
| /

86 7

AN

-
§ )4
£ 30
(_83 / /004
28
'g / ol
el /]
a 2'2] ] /I foos
18 - 7/ nE
14 0:0F
J"A/
1.0

008 041C¢ 0495 020 025 030 035
{a=Variable stiffness
of slastic Loyer)
Fig. 10. Effect of the Speed Parameter

high vehicle speed always produces an increase in the deflection and stresses
in bridges.

Second is the cross beam effect, that is, uniform spacing of the sleepers
(in case of railway bridges) and other regular unevenness enlarge the local
peaks in the dynamic coefficient. Also it is seen from the results that sprung
and unsprung masses of the vehicles contribute very much in increasing the
value of the dynamic coefficient. This gives rise to an increase in the dynamic
stresses e.g. in the case of a steam locomotive the predominant cause of
dynamic stresses in the bridges are produced by the unbalanced weights of the
counter wheels. More often they are responsible for the single well defined
peak that appears in the resonance curves at critical speed. Now-a-days, the
dynamic effects of railway vehicles grow larger approximately proportional
to the frequency of sprung masses acd vehicle weight. In large span bridges
a predominant role is played by the mitial conditions of motion as the vehicle
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starts to traverse the bridge, hence the increase in dynamic stresses by the
state of track ahead of the entrance to the bridge. The theory reported
herein is very weli suited for highway bridges made of steel, reinforced and
prestressed concrete of large spans.
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a — Variable stiffness of the elastic layer of the road way
b — function of the beam span and length
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Fig. 12. Effect of the Ratio between the Welghts of the Vehicle and the Beam, %

— viscous damping coefficient

—  Young's modulus

~ natural frequency of unsprung mass
— natural frequency of sprung mass
— acceleration due to gravity

— self weight of the beam

— integration step length

— moment of inertia

— elastic spring constant

— spring constant of elastic layer below the tyre
— spring constant of tyres
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Fig. 13. Effect of the Ratio between Weights of the Unsprung and Sprung Vehicle
Parts

— length of the track irregularity

-— span of the longitudinal beams

— mass of the unsprung mass

— mass of the sprung mass

— total weight of the vehicle

— weight of the unsprung mass of the vehicle
— weight of the sprung mass of the vehicle
— Fourier coefficients

— amplitude of the force J(r)
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harmonic force acting on the unsprung mass (m,)
maximum depth of the track unevenness
assumed track irregularity

dimensionless parameter of track irregularity
time

velocity

horizontal coordinate

vertical displacement

speed parameter

circumference of the driving wheel

frequeacy parameter of the unsprung mass
frequency parameter of the sprung-mass

dynamic coefficient

mass density

logarithmic decrements of vehicle spring damping
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Fig. 17. Effect of Parameter, (i)

ratio of the weight of the vehicle to that of the beam

ratio of the weight of the unsprung mass to that of the sprung
mass

circular frequency of the driving wheel,

first differentiation with respect to time
second differentiation with respect to time.

initial condition
unsprung mass
sprung mass,
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