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INERTIA CHANGES FOR A MULTILAYERED SPHERE
DUE TO A DISPLACEMENT DISLOCATION

H.R. WasoN!

ABSTRACT

The displacement field due to an arbitrary tangential dislocation buried in a
layered aphere has been derived by Wason and Singh (1972). Using the dis-
placement field at any arbitrary point, the changes in the components of the
inertia tensor due to a buried displacement dislocation are theoretically cal-
culated for a multilayered spherical earth model. ‘The inertia changes are first
derived for the special case in which the epicentre lies on the earth’s axis of
rotation. Then, through the orthogonal transformation, the epicentral axes are
carried to the geographical axes and the inertia changes have been calculated
with reference to the geographlical system. The results have been derived for
three cases of shear dislocations; vertical strike-slip, vertical dip-slip and dip-
slip on a 45 degree dipping plane.

INTRODUCTION

Press (1965) calculated the displacements, strains and tilts due toa
static dislocation in a haif-space. Mansinha and Smylie (1967) computed the
changes in the products of inertia of the Earth due to a rearrangement of
masses associated with major earthquakes and then calculated their contri-
bution to the excitation of the Chandler wobble and the secular polar shift,
As a mathematical model, they used vertical, rectangular strike-slip and
dip-slip faults in a uniform half-space.

The extension to spherical Earth models was first reported by Ben-Menahem
and his co-workers. Starting from the resuits of Ben-Menahem and Singh

- (1968), Ben-Menahem and Israel (1970) obtained the displacement ficld at any

point within a sphere and then calculated the inertia changes due to an arbi-
trary displacement dislocation in a uniform sphere. These authors found that
a spherical Earth model yields higher inertia changes than the corresponding
half-space model. Smylie and Mansinha (1971) computed the changes in the
inertia tensor of a realistic Earth model taking account of self-gravitation and
initial hydrostatic stress. They showed that the changes in the inertia tensor
computed for a real Earth model were higher than both for a uniform spherical
model and for a half-space model. Dahlen (1971, 1973) computed the changes
in the products of inertia of a real Earth model caused by the displacement on
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a fault of arbitrary location and orientation. Israel, Ben-Menahem and
Singh (1973) calculated the changes in the inertia tensor for a real Barth model
due to an arbitrary displacement dislocation. These authors treated in detail
the singular case corresponding to the Legendre polynomial of the first
order, '

In this paper tho changes in the inertia tensor for a layered spherical
Earth model due to a buried arbitrary displacement distocation are computed
theoretically.

THE DISPLACEMENT FIELD DUE TO A BURIED TANGENTIAL
DISLOCATION :

The displacement field at any point of a layered sphere due to an arbi-
trary tangential dislocation was evaluated by Wason and Singh (1972). We
express the displacement field at any point (7, 6, $) in the ith Jayer for
three fundamental shear dislocations in the following form.

- Case I—Vertical Strike-Slip (m = 2)

U7, 0, §) = ~ g. XP* (F)P? (cos 6) sin 24,

wlr. 9, 4) = > [ﬁg 2ho(r) — yh(r) a%]r; (cos 6) sin 26, (1)
uy(r, 6, ¢) =2 g [z,'- "r) a‘% —si‘—fl-é . -(r)]P: (cos 8) cos 29,
Case II—Vertical Dip-Slip (m = 1)

ur, 8, §) = — 2"}; xb4 ()P (cos 6) sin 4,
o, 6, §) == 22’1 [;hll—oz:.n(r) — ) a%]P: (cos O) sing, (2)

u(r, 6, ) = 2"% [z,’- a(r) a_aé -_ﬁ:.-?)- yha(r) ]P: (cos 8) cos ¢.
Case ITT—Dip-SHp on a 45° Plane (m < 0, 2)
ulr, 6, §) = 3_2.":. X0 %(7)P, (cos 8) -+ % g’x’- *(r) P1 (cos 0) cos 24,
o 2P, (cos 6
o, 8, §) = 3 3 yon(r) P 08 0 )

ol 4
.— %.:Z‘[m z} Kr) — yhor) a%]P: (cos 0) cos 24,
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uy(r, 9, ¢) =§‘,’ [z}v »r) a—ae - .'1] 5 P (r)]P: (cos 9) sin 24,

Case III coriupundl to a fault with the slip angle A* = 90° and dip angle
3 =45°, The displacement field due to an arbitrarily oriented tangential
dislocation is given by a lincar combination of these three fundamental
fields: .

u = cos A* [sin 3u; + cos 3upyJ + sin A*[sin 23oy; — cos 23wy, 0
where By, W,;, Uy, are the displacement fields for cases I, II and III respecti-

vely. ujy is obtained from wy by replacing ¢ by (¢ — n/2). The radial
fanctions xJ"(r),y;"(r) and z;"'(r) are given by

*M(r) = )‘:1 MM 4 MMy + MM + M M2 10T (r)e
ge

P = 3 MM+ MMt + MaMi? + My M3 1000 6)
ge=1

A7) = 5 LMo M5y + Mo M KT

where My, LM, , M} and (M} represent the (k/)th element of matrices
M»(r), M7 (D), [M? (r)]* and [ M7 (]~ respectively.

The expressions for these matrices and the column matrices JM™(r) and
tJ™(r)) are given elsewhere (Wason and Singh, 1972).

CHANGES IN THE COMPONENTS OF THE INERTIA TENSOR
IN THE EPICENTRAL COORDINATE SYSTEM

We shall follow the procedure adopted by Ben-Menahem and Israel

(1970) for the case of homogeneous sphere. The inertia dyadic J for the
undeformed sphere about its axis of rotation is given by the volume integral

7=[ @@~ nldm, ®)

where T is the unit dyadic and r is the position vector at any point before the
deformation. The integration is to be carried out over all mass elements dm
in the relevant volume V. To the first order in small quantity |u|/|r|, the
change in the inertia dyadic, @, is given by

’@:L [2(r-w) T- (ra+ )] dm. )

We set up the epicentral coordinate system with unit vectors (e,,, eq,,
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¢, ) in such a way that the €, axis coincides with the rotation axis, the €,
axis points in the direction of the fault'’s azimuth (® =0) and the e,, axis in
a direction opposite to the normal m, to the source element dS on a vertical
fault (see Fig. 1), Denoting by @, = @y, the cartesian elements of the
inertia change dyadic with respect to this coordinate system, we have

0;=0:¢ee, . ®

where the indices 1, 2, 3 correspond to e,,, €y,, and e,,, respectively and the
symbol (:) signifies the double dot product. The unit vectors e,,, €20 O,
are related with the unit vectors ey, e,, e, in the directions of e, ®, r, respec-
tively, through the ralations

€y, = ¢ 8in 0 cos O + eg cos 0 cos O — e, 8in O,
s, = €, 8in.0 sin @ - e, cos 6 sin O + e, cos O, 9

€, = €, cos 0 — e, sin 0.

No
SOURCE

Fig. 1 Geometry of a Tangential Dislocation

In the ith layer, we take
W= e, 1+ ey + up ey
dmy; = pyr® sin 0 dr do 4o, (10)

where.dny and ¢y denote, respectively, mass clement and the. density of the
Ith.layer. From equations (7)-(10), we obtain the following integrals for the
inertia-change dyadic. ’
+1 v
Oy = ﬁ r Pt [2 r r #(r, 9, ©) sin 0 40 JO
im0 J ¥ 0 Jo

-2 E J:' u(r, 9, @) sin®0 cos'® d9 do
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_ J:J:'u.(r, 8, @) sin 0 sin 20 cos* ® d8 b

+ J': I:' 4 (r, 8, @) sin®e sin 20 &o d®) r* dr,
Oy =‘2: I::ﬂ Pi [2.[: I:'u,(r, 9, ®) sin 6 do d®

2 j: j:' 4,(r, 9, ©) sin gind do dO

- J: I :' ts(r, 6, @) sin 6 sin 29 sin’® 40 dO

_ I: J:'u, (r, 6, ®) sin sin 20 d6 dO] P dr,
0= T I':"‘ o2 I: E " ur, 0, ©) sin®d db 4O

+ I " I“ue(r, 6, ®) sin 6 sin 26 8 d0] A dr,
¢Jo

Oy = — i J' * p,[j: j:' #(r, 9, ®) sin%® I.in 20 46 do

=0 J¥

+3 I' j’ " uelr, 8, ©) 5in 0 sin 20 sin 20 d6 d®
0J0

Ay ’
+ L' L e (r, 9, ©) sin®® cos 20 0 dd]r* dr,

By=— 3 [ P,[r J':'u,(r, 8, @) sin 6 sin 26 sin © do do
L]

=g J 7y
L
-+ L J:' tig(r, 6, @) sin 6 cos 20 sin © 49 IO
]. '
+§]:j:'u,(r.e,o)sinzecomdadm]radr,
P
o=

+ L' J: " us(r, 9, ©) sin 0 cos 20 cos ® db O

'w [iw
— % L L o (r, 6, ©) sin 26 sin @ d0 d0]  dr,

4 ' P in :
Pt[f L u,(r, 0, ®) sin 9 sin 20 cos O 49 4P
I 0

4s

(1

(12)

(13)

(14)

(15)

(16).

where ¢ = 0 corresponds to the liquid core and pis the number of concentric,

‘_homogeneous, isotropic and perfectly elastic spherical shells,
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To evaluate the integration over ®, we make use of the orthogonality
relations )

r' cos m® sin md 40 =0, (17

.r' cosm@cosndi&bj:'uin'm‘b 3in n® GO == 234,
n -

For the integration over the colatitude §, we use the relations (Bea-Menahom
and Israel, 1970)

r sin® 6 cos 0 P, (cos 8) do =g8...
o

I:[cos 20 + sin  cos B-a%] P} (cos 8) d9 = 0,

r [cos 0 +‘coa 26 sin O-a%] P! (cos 0) df = 2—54 . 7 (s)
\ \

b - ' 16
I 8in® 9 P} (cos 8) d8 = 5 3ym

]

j' [ain 20 + sin® €& _8_] P32 (cos 0) d6 =0,
0 o6 |~ »

: . ] . 48
K[sm’ 8 cos 6 % 4 2sin 0] P} (cos §) d6 = T Byu

. 4 4
E sin® 67, (608 6) 48 = 3 30 — 1% By

]: sin 0 P, (cos 6) d6 = 23,,.

performing the integrations over ® and 6 in (11)<(16) and using equations
(1)-(3), (17) and (18),we find that all contributions for cases I, II and III arise
from the spherical harmonics of orders 0 and 2 only. The non-zero contribu-
tions to the intertia-change dyadic are given by

\

Case 1

P

=

=5 5 [ emlr )+ ity 19) .

Case II 7
16w p

On =3~ :g‘o I ::H ot [ () 4 3y)% ()] . 39

A}
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- e = e

of orders 0 and 2.
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Case TII '
P rhia
eu=3 % [." wrloe @+ 0+ 92 )
— X2 (r) —= 3y (r)) dr,
[ oroxem + 210+ 35 )

+ xpPA(r) + 3ppr(n) dr, (1)

Og = }%: i= jr:“-l o [SxP0(r) ~ P2 () = B () 1 dr.

From equations (19)-(21), it may be noted that the radial toroidal functions
Z*™ (r) get climinated during the integration over 0 and ®. Hence, it becomes
clear that a change in the inertia tensor of the Earth due to a tengential
dislocation is caused only by the zero frequency limit of the spheroidal modes

.
Now, we have to integrate over the radial functions according to equations
(19)21). Using equations (5) and (17), we get
4
J'r:ﬂ pr [x2 (r) + 3y () dr
. ‘,‘, "y g 1,5 Rl + 8”#
= 50T O M5 =D+ i
M Oy =+ 3 M2 (=D s @D
and .

Jl::'h Plr‘x;o,.(r) dr='_i1 (Jr.ﬁ (ri))q‘[_ 'I' Ml_l (r:.;.], - r’)
- Sy Ma G} @

CHANGES IN THE COMPONENTS OF THE INERTIA TENSOR IN
THE GEOGRAPHIC COORDINATE SYSTEM

Following Munk and MacDonald (1960), we set up a geographic system
with unit vectors (e,, €,, €;) having its origin at the centre of mass of the
Barth. The e, axis coincides with the axis of rotation of the Earth, the e,
axis is drawn through the Greenwich meridian and the e, axis points at 90°
east of Greenwich.

In the previous section we derived results for the particular case in which
the epicentre lies on the Earth’s axis of rotation  For an arbitrarily situated
source we must apply an orthogonal transformation which carries the
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epicentral axes to the geographical axes. To this end we consider a scurce at
a point (7y 0y Dy, Where 8, Do, respectively, are-the colatitude and the
longitude drawn oastward from Greenwich. Lot d, be the fault's azimuth,
taken clockwise from north toward the fault strike (Fig. 2). The unit vectors
in the two coordinate systems are related by the relation

€x €y,
e |=[T]| ee (24)
el' el'o

where the clements Tj, of the matrix T are (Ben-Menahem and Isreal, 1970).

Fig. 2 Azimuth {#), Colatitude (5o) of the Source and Azimuth (dg)
of the Fault Taken as Euler's Angles.

Ty = — sin @ sin‘do — cos @, cos 0, cos dy,
T,, = sin ®, cos d, — cos O, cos 8, sin dy,
Ty, = cos @, sin G,

" Ty = cos ®, sin dy — sin @, cos 6, cos d,,
Ty = — c08 O, cos d, — 8in @, cos 8, sin d, T (25).
T,y = 8in @, sin Oy,
Ty, == sin 8; cos dp,
T,s = sin 0, sin dy,
Tyy =08 0.

. From equations (8) and (24), the inertia-change : dyadic C in the geographic
system' i8 related to the inertia-change dyadic @ in the epicentral system
through the relation ' : :

C=TO0T" e ;(ié)
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Thus the elements of the inertiii-change dyadic C are given by
Cyu = T8y + T1h0y, + T10y + 271,7110,,
+27 137148 + 27, 71,0,
Ca = Th®yy + Ta®yy+T00y, + 27, T,,0,,
+ 2T 3 T34 @gy + 2T T30y, -
Cys = T510y1 + ThOyy + TaaOyy + 273, T140y
* + 2T 3 T5sOg + 2T T3y@ s . ' 27N
Cn =T, uT:1®u + 17T, nTn@n + T uT:a@)aa + (T uT n+ T;,T u)“@nr
+ (T1aTay + T14T1y) €42 + (T2 71 + T1a T3} Oy ‘

’ Cor = TuTuOu + TuTu®un + TuTun + (TuTaa + TuTyy) Ory
+ (T3yTas + TaaTaa) Ogy + (T3, Tay + T35 T01) Oy,
Ca= Ty Tu®n + T0aT4s0u + T0alu®s + (TnTys + T1aT3) Oas.
+ (TyaTas + T1aTs0) Osy + (Tya gy + Ty Ty) Oy
Here the indices 1, 2 and 3'of C correspond to the geographic axes ey, ¢y, ¢,
respectively. From equations (19)-(21), and (27), we have
~Chse I
: Ci = 2T;1 T340y,
- - .Cf.. = ZTuTnem.
Cpy = 2T Ty, : .
Cis = (T Ty + T15Ty) Oy (28)
Cig = (TyTy, + T33Ty) @y,
f . Cﬂ. = (T“Tl! + TllTal) ell'
--Ca'seiﬁm"’*‘“ .

Cii = 2133730,
Cas = 273 T304,
';.".:C'&" 2T31T;s®ag- ' o ‘ .
| Cl"“‘ Tl + T, 1wl Ogs | : 29
Cya = (TusTss + T15T52) Oz ‘ -
.Cuij= (T1aTas + T13T30) ®2|
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Case III _

Cu=Tho, + T140,5 + 11305,

Cn =T8Oy + Tho,, + THO,,

Coy= TI’IGI‘I + T, a’lf‘)n + Ta’a@aa,

Coa=T4yT,0y + T, 1873204 + T3y 7T, e (30)

Coo = T3 7540, + 1,7, 2205 + T, T, 0,,,

Co =T, T30y + T, 13700y + 11373404,

CONCLUSIONS

The changes in the components of the inertia tensor of the Earth due to
a buried displacement dislocation are calculated theoretically, The inertia
changes are independent of the toroidal modes and depend on the spheroidal
modes of order zero and two only. The effect tha displacement fields
described have on the rotation of the Earth, the Chandler Wobble and the
secular polar shift can be evaluated from these inertia-changes.
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