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PARAMETRIC VIBRATION OF SHALLOW SPHERICAL
SHELLS TRIANGULAR IN PLAN

B. BHATTACHARYYA*

INTRODUCTION

Within the framework of linear theory, the basic equations of equilibrium
of shallow spherical shells are well known in two types—(1) two coupled
fourth degree partial differential equations in terms of a stress function and
the normal deflection function and (2) three coupled partial differential equa-
tions in terms of three displacement functions. Thus the study of vibration
for shallow spherical shells even with the neglect of tangential inertia forces
demands for the solution of a complicated system of partial diflerential
equations with a totality of eighth degree. It has, however, been proved by
the author [1], without any extra similifying assumption, that the basic equa-
tions of equilibrium for shallow spherical sheils can be reduced to the system
below in cartesian co-ordinates-in terms of three displacements.

dw
V= A -—a-;:
L we(1)
gy =2 %
VW -+ éw =gq/D
where, v = Laplacian Operator, A= (1 + v)/R

R = radius of curvature of the shell,

v = Poisson’s ratio, £ = Young's modulus,
h = shell thickness, D = flexura! rigidity
of the shell element, g = vertical

load function and £ = E#/DR*

It is obvious, that for investigating the transverse vibration of the sheil
ignoring the tangential inertia forces, the third equation of the system (1) is
adequate by itself.

*Damodar Valley Corporation, Calcutta-—~700027.
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EQUATION OF MOTION

In order to study the motion of the shell under parametric load Z, (x, ¥, t),
the third equation of the system (1) will change to

va+£w=%(zo+AZ—ma%) ()

where ‘m’ is the mass of the shellfunit surface area, and AZ is the additional
load arising due to the shell deformation under the action of Z, in & moment-
less state given by
AZ == Tyxy, + TyXs

where Ty, T, are the membrane forces
and :
w W
| axr T p

It is sssumed here that the vertical load Z, is uniform and equalto
- @ cos Br, so that membrane forces are

Xy = —

T1==T,=%RQ cos 0t

and the equation (2) becomes

’ 2
VVW+EW+~!D-(Qcos8t+EEQcothvw+m -g-‘—,-w)=0 3
which, after taking a Laplace Operator, will transform to
1 (RQ o _
AATATA +§vw+B(T cos 0t yyw —i—m5~t-,vw =0 (@)

Equation (4) represents the parametric vibration of shallow spherical shells.
It is to be noted that the equation of motion for free vibration of the shell
panels is directly obtained from eqn. (3) by assuming Q = 0 in the form :

b
va+£w+%%t—? =0 (9

If again, in the eqn. (4) representing the parametric vibration of the shell
panels, it is assumed that 6 = 0, i.e. the normal load becomes static, and also
the inertia term is ignored, the basic equation to determine the critical static
load is obtained in the form:

voww + W+ %% vyw =0 ~(6)

ANALYSIS

3.1 OCase 1: Simply-supportad isosceles right-angled triangular shell panel
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of equal side lengths. The co-ordinate axes OX and OY (Fig. 1) are taken
along the equal sides. The boundary conditions are given by
w=2Wox!<=0forx=0; w ='Wy =0 for y=0
1

_ow e 2 9
w_aﬂ’"(}forx"{“y_'a’a#“ \7-2(5;—'_5)

a

Fig. 1

Consistent with these boundary conditions, the displacement function
W (x, ¥, ) may be assumed in the form [3]

WERD = Y iz, ) ()
where
B0 (%, y) = sin 2Bx sin By + sin fix-sin 28y, § — =z . A8)

and f(#} is still an unknown function of time.
Substituting the expressions (7) and (8) into the equation (4), the following
equation for f{?) is obtained

%‘_l_g(gsﬁq_f—%%gﬁ’ cos 8:)-f=0 w.(®)

The frequencies of free vibrations ‘pw’ of the shell panel are obtained by
assuming the deflection function w {x, », 1) in the form

W (x, ¥, ty= sin pt z An $n (x, » --.(10)
nm=q.8.,,
and substituting it into the eqn. (5).
This gives:
b
m

Py =

@56+ ) (1)
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To determine the static critical load @, of the shell panel corresponding to
the n-th mode of buckling, we assume the displacement function w(a, ¥) in
the form .

W (x, y) = 2 An bn (%, 9) (12)
m=L3% ...
and substitute it in the eqn. (6). We obtain
lOD 2D¢
Q: ﬁ + SRBI ..-(13)
Now. the eqn. (9) for the parametric vibration can be written as:
d , D _5RQBYcos bt | . _
B+ D osp+ o1~ UL s <0 (1)
or
g?:-}- Py (1~ 2p, cos 8)<f =0 ...(15)

where, ‘p,’ is the frequencies for free vibrations as obtained in the eqn, (11)
and,
2pim SROB? g
~ 2D 25p OD
@+ 1 10D 4, | 2D¢

2Df e

Thus, 2u, == Q/Q*, by using eqn. (13).
3.2 Case 2: Simply-supported equilateral triangular panel (Figure 2).

ea

Pe

Fig. 2
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Consider a simply-supported equilateral triangular shell panel with its con-
troid as the origin of co-ordinate axes. Using the trilinear co-ordinate gystem
[2}, the Laplacian Operator is transformed to

&  » @
5;2 ap8p, OpyOp; Opy P,
where p,, p, and p, are perpendiculars drawn from any point p (x, y) inside
the triangular region to the sides and are given by

X /3 ¢ X 3
P1 =Dyt 3= %y,Pn"Po‘l"z“l‘l/z" VePyg=PpPg— X%

&
v = _?_5_ 2 + ..(16)

such that p, + p, + p, = constant = 3p, = K (say).

Here p, is the radius of the inscribed circle.
The boundsry conditions in the new co-ordinate system are

w=v9ywe=0, for h =P|=P|=0 -(17)

Forthe solution of the equation (4) consistent with boundary conditions
(17) it is assumed that

w(x ¥, )= Jf() S Bupn (P1s Par Py) . (18)
Rm g,
where,
dn (Bus Pao PO = i wp, + sin p, -+ sln py =2 _19)

Substituting the expression (18) into the equation (4), the equation to
determine f{¢) is obtained in the form

%‘_,_ g(n‘—l-f—%—g)ﬂ' cos 6:)-f=0 (20

For frequencies of free vibration ‘p,’ of the shell panel, we assume the
deflection function w (x, v, £) in the form:

w(x, y, t) = sin pf z Buiin (P1» Py P3) --(21)

] aml,b.
and.substitute it into the eqn. (5). We get:

P = g o+ 8 -(22)

The static critical load @, of the shell panel corresponding to the n-th
mode of buckling is obtained by assuming the displacoment function w (x, y)
in the form: '

w (X, ¥) = z Bala (P1; Pas Py +(23)

LR
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and substituting it into the eqn. (6). Thus it is obtained,
' 2D 2D¢
o =17+ 53 Ry w-(24)
Now, the eqn. (20) for the parametric vibration can be written in the
form:

D RQ7* cos 8
H+Zorvo1- 72 sl - (25)
or
g:.’: + P (1 — 240 cO8 Gt)of = 0 +(26)

where, ‘p,’ is spectra of frequencies of free vibration given by the eqn. (22),
and
) RQ7* 0
M= 2D +H" 2D . we
<" + -

Thus, 2p,=Q/Q, by using equ. (24)

DISCUSSION

It is seen that the equations for parametric excitation in both the cases are
transformed to the well-known Mathieu equation

dt{-}-p’ (1 — 2p, cos 81)-f(1) =0 e (27)
where ‘p,’ denotes the frequency spectra for free vibration, and is given by
Pi=205p+¢),  in the first case
D ...(28)
and . = P (7t + 8, in the second case
and ‘ua’ is known as the coefficient of excitation and equal to *
9 ...(29)

Hn = ZQ;

where Q7 denotes the critical load under statical condition, and is given by

10D
On=—7 B+ :gg,, in the first casel
.(30)
and or =~ Y -q' + in’ in the second casceJt




Parametric Vibration of Shallow Spherical Shells Triangular in Plan 37

It is to be observed that £ =0 corresponds to the plate problem having
same shape and boundary conditions.

If pY is the spectre of frequencies for free vibrations of the corresponding
plates, then

Py = 5B8*/Djm, for the first case)

_ . .(31)
and P! =7+ Dim- for the second case J
Expressions (28) may be rewritten by using eqn. (31) in the form
P=PVT+d (32)
where, d = §/2584, for the first case } (33)
and, d=1{, for the second case

Substituting the values for ¢, 7, B ic the exprossions (33), and introducing
a non-dimensional parameter v, such that

y— lzgil‘*wf:ﬂ o (34)

it can be obtained that

d = y/25n, for the first case }

. . (35)
and, d=9y/16n%, for the second case

It is obvious that the factor ‘d’ gives the necessary correction for shell
action over the corresponding thin plate.

The first three regions of dynamic instability of the problem defined by
equation (27) are approximately given by [4)

o* = Zp,,‘/l =+ pen A

0* = pav/T - 4273

0* = po/ T= 22 » .-.(36)
2 92

*=Zp, /1~ L
3° TE%, |

Table 1-2 showing the regions of instability for different values of the
parameter ‘y’ are provided with g, varying from 0.0 to 0.4 in terms of 6*/p8

with » =1 for the two cases. A table-3 is also provided showing the ratio
Palpa for different values of y with n= I for both the cases,



Bulletin of Indian Society of Earthqu&ke Technology

33

ILeL"1  $SE8°I I1€65°CT  T906°T LI6L'y 661579 €0

8S8° [ ELLB™T 99bL"C  9788°C STIL'S  8ELL'9 0

69681  ¥668°1 9¥ER"CT  £898°C TEEV'S 190079 I'0

0606°T  0606°1 \9£98°C  9t98°C 1LTL'S LZL°S 00 081 = 4

8LLYP'T 9S-I 8081°'CT  Tvrk-t 6670°v  8I6¥°S €0

85671 86L8°T 001E'T  e¥Tr'T 130€°v  V¥9LT'S 0

£S65°1 bLES" 1 8T €TIV'T €695+ LISO°S I-0

SS09'T  SS09°1 €30y°T  E80F T 9I18°'F  99I8°Y 0°0 0TI = 4

PIET 1 8I8l’I 69971 piLs'1 be80°¢  BHOTY €0

I€61°1 - S90C°I 989L°1 795871 c86T°¢  86L0°F 0

SITT’I 0T’ 1 L4 TA 0L¥8°1 9t6P’'c  BL9E'E 10

€6TT1 £6TT°1 6EYS°1 6e¥8°1 8/89°¢  8L89'¢ 6’0 09 = 4

9€19°0  60¥9-0 £S06°0  6¥I0°1 £eL9° 1 P08T°T £0

0Lp9°0  E¥S9°0 T656°0  9900°1 688L°1  6061°CT (A

$799°0  ££99°0 6686°0  LI0O-1 bL68" 1 9L60°C 10

£999°0  L999°0 0000°T 0000°1 0000°T  0000°C 00 0# 4
[4 1 T 1 T [
Uo7 PIg U077 puz U077 15T L

1 9582 10) AIIqe)su] Jo §e007 [ ATHVL




Parametric Vibration of Shaliew Spherical Shefls Triongular in Plan 2

-

T6Ts°S  0BOE'9 S8€€°8  0BLE'O1 7699°ST  16T6°¢€T v'0
$Y0T°9  Ti8F°9 1951°6  #29T°01 $OT6°91  9850°€T £0
9THS'9  €919°9 0669°6  16L1°01 1880°81 O¥SI°TT To
¥869°'9  1LOL'9 T010°01  L8ZI"OF 6581°61 80IT°1Z 10
L9 TIeL'9 611T°01  6I1i°01 LETTOT  LETT 0L 00 081 = 4
95Ty BEII'S 0ST8'9  Er6Y°8 61Z8°C1  LS8S 61 v'0
£8L0'S  LYOE'S LY6Y L . L66E'S Y8 E1  €£L8°81 £0
ISSE'S  ¥IF°S S8€6°'L  SIEE’S #508°P1  8TEI'8I To
9T8Y’'S  L6Sk'S £€61°8  €067T°8 SEOL'ST  609€° LI 10 ,
9LIS’S  9LIS'S S9LT'8  S9LT'8 675591 6755°91 0'0 ozl = 4
£€TT€  6LL9E 1198y  1050°9 VIET'6  66¥6°ET +°0
TLI9'E  €8LL°E I86E°S  LI86°S 1998°6 ST €l €0
WIS'E 1S58 WSS THEGTS 19¥5°01  ISI16°20 Al
0506'S  00I6°E LSER'S  L¥OG'S SP8I°I1  £59¢°ZI 1o
66T6'€  66T6°€ 6¥68°S  6v63°S 868L°T1  868L 1T 00 09 7= 4
(4 1 (4 ! (4 1
suoy pig suogz pug JWOZ i8] iy

II 93%9 10} L}jIqeysn] jo RUWOZ 7 TIAVL




LA —

==y P e

40 Bulletin of Indian Society of Earthquake Technology
TABLE-3: Value of p,/pt for different values of y for n= L.

N

20 40 60 80 100 140 180

p./p."\\

Casel. 13415 1.6125 1.8439 2.0494 22361  2.5690 2.8636
Case2. 3.5000 4.8477 5.8949 6.7823 7.5664 89303 10.1118
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