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ON THE USE OF NUMERICAL INTEGRATION TO SOLVE
SEISMIC WAVE PROPAGATION PROBLEMS

D. PURKAYASTHA* AND RaAMESH CHANDERR**

INTRODUCTION

. A major problem before seismologists, earthquake enginecrs and explora-
tion geophysicists engaged in seismic exploration is how to synthesize
seismograms for realistic earth models, We report here one of our expe-
riences in attempting such problems by evaluating the integrals of the formal
solutions numerically.

The solution to the problem of generating synthetic seismograms is required
by seismologists to interpret the observed seismograms for deep earth struc-
ture and the earthquake source and by exploration geophysicists for shallow
earth structures in areas likely to hold economic deposits of minerals, notably
petroleum. FEarthquake engineers are interested in synthetic secismograms
for a number of reasons, chief among which is the need to predict ground
motion to be expected over realistic earth models in response to earthgnake
induced excitation so that suitable safety provisions may be incorporated
economically in the design of important man-made structures. Although
the recent trend in earthquake engineering is to represent observed ground
motion using statistical models, deterministic synthetic seismograms should
provide useful constraints. In support of this remark we cite the observa-
tion that strong ground displacements computed as functions of time from
observed accelerograms (see for example, Housner, 1970) are reasonably
smooth.

The first synthetic seismograms were produced by Lamb (1904) when he
obtained the solution to the problem of transient line and point explosive
sources on the surface of an elastic solid half space, & highly simplified model
of the ecarthquake source as well as the earth, Lamb solved the boundary-
value initial-value problem using two Fourier transforms, one in a spatial
coordinate and another in time. The difficuities arose in evaluating the
inverse Fourier transforms after the initial and boundary conditions had been

rplied. Lamb solved these integrals approximately uging residue theory.
subsequently, Nakano (see Lapwood, 1949) and Lapwood (1949) examined
the problem of buried sources and obtained synthetic seismograms from
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approximate analytical techniques. Gacvin (1956) applied a variant of the
Cagniard technique and obtained exact synthetic seismograms for the prob-
lem of a transient line source in a solid half space. More recently, a host
of other attempts have been made to synthesize seismograms. But we men-
tion here particularly the work of Kelly et al. (1976) who used the method of
finite differences and Rao and Goda (1978) who used pumerical integration
for the evaluation of both the inverse transform integrals. The latter
authors solved the problem of a point source in a solid half space as a pre-
lude to attacking more complicated problems of transition layers in the half
space. Their synthetic seismograms were not compared directly with seismo-
grams computed in an alternative way to establish the validity of the method.
We have examined the numerical integration idea also and compare in this
paper such synthetic seismograms for the problem of a line source in solid
half space with Garvin's exact solutions.

STATEMENT OF THE PROBLEM

Consider a cartesian coordinate system Oxyz. Let the free surface of an
homogeneous, isotropic, perfectly elastic solid half space coincide with the
xy plane and let the half space itself occupy the region of the positive z axis.
Let a transient explosive line source pass through the point (0, 0, /) and lie

‘parallel to the y axis. Let the source vary with time as & (t) exp (— 7t),

where h(f) is zero for 7 less than zero and unity there after and letnp bea
decay constant. Therefore, this is a two dimensional problem in which
quantities vary spatially with x and z only, (Figure 1). The problem was
solved formally by Lapwood (1949) who gave the x and z componeats of
displacemeant at a surface point as

8% {x, 0, t)= Re {2;‘ ]]A (w* 4+ 7% [y sin (wt — kx)

— w cos (wt — kx)] dk dw };
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Fig. 1. The coordinate system and  the model. y axis points normally out
of the plane of the figure and passes through 0. The source passes
through S and is parallel to y-axis.
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2 (%, 0,f)= Re { 2 ]jB (W + 9% [ cos (wt — kx)

=+ w sin (wt — kx)[ dk dw}.
Here, A= 4jkk; v’ exp ( — vR)/F (K);
B= Zk( 24t — 2 ) oxp (— vh)IF (R);
JEY
F (k)= ( 2% —k;) — 4kt w';
s= (o)

ky = wla;
kﬂ = W/JB,
J=(~ 1y

w = angular frequency;

k = angular wave number;

« = compressional wave speed;
B = shear wave speed.

The reasons why these integrals cannot be evaluated immediately are that:
(1) they are improper integrals; (2) the integrands are multi-valued becayse
of branch points at k= - k, and k = + kp in the k plane; and (3) the inte-
grands have poles at values of & for which F (k) =0 in the k plane and a\
W= 4 jn in the w plane.

Our problem was to see if the integrals could be evaluated numerically,

NUMERICAL INTEGRATION

We first reduced the quantities in the above equations to dimensionless
form. Alllengths were expressed as multiples of r —= (x® + AY where x is
the x coordinate of the observation point. Time was expressed in maltiples
of rfa. We represented the dimensionless variables by the same symbols as
the corresponding dimensioned variables. Thus, x = x/r, h=hir, k = kr,

Su =58y, 5, = 5,fr and w = wr/a. Also, « =1 and B = 0.5773505 assuming
that the medium ig a Poisson solid. .

We evaluated the integrals by replacing them by their Riemann sums with
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terms evaluated at discrete sampled valués of w and k such that those values
did not coincide with the singularities of the integrands. The actual expres-
sions evaluated were

N - M
— : 2 ] i _
sx (x, 0, 1) =Re {2; ‘-21 (w, + 9 ) ,.21 Aip [ sin (wit — kpx)
— w; cos (wyt — kyx)] Ak Aw };
N -1 M
z (wf ~+ n') z By, [n cos (wit — kpx)

I=3 p=1

+ wysin (Wt — kyx)] Ak Aw }

$:(%,0,i}= Re {2

Here A, and B;, are values of 4 and B evaluated atw and k, and Aw and
Ak are sampling intervals in w and k planes. We note in passing that a total
of NM terms were added for each x and ¢.

Following Rao and Goda (1978) values of wy, wy and Aw were chosen so
as to satisfy the requirements of the discrete Fourier transform (DFT)
(Bracewell, 1978). Accordingly, a synthetic seismogram, whether for s, or s,,
was assumed to be cyclic with period T,. Its digitized version was computed
for 2+1 (5 an integer) regularly spaced time intervals in each cycle. Thus
the following relations were fixed automatically.

AT, (i.e., digitization interval) == T,/2%+;

wy = 2a(T,;
Wy = Wryquist = 7/AT;
Aw = wy;

N= wNyqnist/ Aw = 2%,

wy, wy and Aw were therefore all real. But, as a result, the k summation
for each w; (i =1, 2, ..., N) had to be performed along a line parallel to the
k, (i.e., real k) axis a small distance ¢ above it so as to avoid the P and S
branch points at k = w; and k = 1.73 w, respectively and the Rayleigh pole
at k = 1.8839 w; (see Figure 2, contour 2). The following relations were
assumed for each i. '

ky =095 wi + js;
ks = mw; 4 je, m a real number greater than 0.95;
Ak = (ky — k)[(M — 1) = (0 — 0.95) w)/(M — 1),

The value of m was chosen by trial and error such that the resulting seismo-
grams for m and ;m 4+ Am were negligibly different. The values of w and &,
sampled according to this scheme fell on a grid as shown in Figure 3.

*
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Fig. 2. Contour of integration in the k plane. Contour 1 used by Rao and Goda (1978).
Contour 2 used in this study. P and S are branch points and R is the Rayleigh
pole.

ke =
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Fig. 3. Grid of sampled values in w and k.. The figure is schematic.

RESULTS AND DISCUSSION

Traces 1 and 3 in Figure 4 represent synthetic seismograms for s; and sy
computed according to the scheme discussed above for numerical integration,
while traces 2 and 4 are exact results according to Garvin’s solution of the
same boundary-value initial-value problem (Bhandari, 1981). The syathetic
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seismograms of traces 1 and 3 were computed for T, —= 2.56 in dimensionless
time, a reasonably long interval relative to the interval 0.8839 between the P
and Rayleigh pulscs. The following were the numerical values of other
variables during this computation.

U T
’ Y

/ N
Fig. 4. Synthetic seismograms. Traces 1 and 3 were computed during this study. Traces
2 and 4 were computed by Bhandari (1981) after Garvin (1956). Scale of dimen-

sionless time on the horizontal axis is indicated. The vertical scale is arbitrary.
Traces I and 2 refer to s. and 3 and 4 to sa-

ne==2

T, = 2.56{25 = 0.08;
w, = 2m[2.56 = 2.4544;
wy = 7/0.08 = 39,2699,
Aw=2.4544;

N=16;
¢ = 0.01;
ky= 0.95 w;+ 001 j, for each i;
m=2.85;
kys = 2.85 wy + 0.01j, for each i;
M= 128;
71=0;
x =10;

h=0.5.
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The synthetic seismograms emphasize -the P and Rayleigh puises. There
is no S pulse as such because we have an explosive source and a shear wave 7
can only be expected as a result of mode conversion whea the P pulse inter-
acts with the free boundary of the medium. Such a converted puolse would
be a part of the Rayleigh pulse. The particle motion in the synthesized
Rayleigh pulse is retrograde elliptical as expected from other theoretical
considerations.

Comparison of traces 1 and 2 and traces 3 and 4 leads us to the conclusion
that there is a qualitative agreement between the numerically integrated and
exactly computed traces. However, detailed inspection of the traces reveals
important differences, most notably the presence of spurious oscitlations on
trace 3.

Traces 1 and 3 are the result of extensive testing in regard to values of
u, m, M and e. The rule of thumb that emerged was that the magnitudes of
these quantities should be increased gradually uatil the shape of the seismo-
gram stabilizes. We speculate that the spurious oscillations of trace 3 could
be suppressed if the number N of terms to be added is made very large.
The speculation is buttressed by the fact of the well-known slow convergence
of the Fourier series, The speculation, however, was not tested on the
computer because of the long computer time involved.

Our experiments have also revealed that the number of terms to be added
increases with increasing complexity of the earth model. These seismograms
are not shown here because alternate exact solutions are not available as well
as because the number of terms comsidered by us in any of those cases was
quite modest.

Finally, it is important to point out that Rao and Goda (1978) evaluated
the integrals along 2 path of three segments (Figure 2, contour 1) in the &
plane. The integration along their middle segment is analogous to our &
integration except that their contour runs from P branch point to Rayleigh
bole oaly while our contour goes much beyond the pole. On either side of
Rao and Goda’s middle segment there is a segment running oblique to the
k, axis until the integrand has diminished sufficiently in magnitude. This is
an attractive strategy at first sight. But it is apparent that while the inte~
grand diminishes monotonically along such oblique segments, the leagth of
the path is infinite and the total contribution from the ignored sections may
not be ignorable. What is important is to establish that a slight alteration
of the path length along the contour, whether straight or segmented, will
not alter the resulting seismogram radically, This is why we have been
comparing seismograms for m and m -+ Am.
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CONCLUSION -

On the basis of Figure 4 and numerous other computations we conclude
that broad features of the synthetic seismograms may be obtained using
numerical evaluation of the formal integral solutions of the boundary-value
initial-value problems of seismic wave propagation. But accuracy in synthe-
tic seismograms would be achieved by this method at considerable computa-
tional effort only.
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