Paper No. 222, Bull. ISET Vol. No. 19, 3 September 1982 pp: 91—10i

DYNAMIC ANALYSIS OF PLANAR STRUCTURES USING DIRECT
STEP-BY-STEP EXPLICIT INTEGRATION

S.K. THakkaRr® anND K.S, Dixir?

INTRODUCTION

The determination of dynamic response of structures subjected to -
dynamic loads is an important step in the design of structures. A large
aumber of structures can be idealized as an assemblage of discrete beam
elements or beam and truss elements in & plane or space. The combination
of such elements in a plane form planar structures like multistorey
frames, trusses, bridges, arches and dams etc. The idealization of
structure as an assemblage of beam/truss elements with ths masses concen-
trated at the connecting nodes is commonly termed as lumped mass
model or mathematical model. The formulation of a mathematical
model of a structure is an important step in the dynamic analysis and
requires some judgement by the analyst.

Another important aspect of dynamic analysis is the method of
analysis. The commonly used methods of dynamic analysis are (i)
mode superposition method, (ii) direct integration method and (iii)
frequency domain method. Which method should be used for dynamic
analysis is dependent upon the type of the probiem, objective of the
analysis and sometimes on the preference of the analyst. The mode
superposition method using response spectrum is the most common
approach for determining earthquake response of structural problems.
The method is applicable to linear problems only and is sujtable for
structures which respond ia lower frequencies of vibration. The direct
step-by-step integration methods are suitable when large number of
modes participate in the response and in the high frequency dominant
problems, The frequency domain or complex response method of dyna-
mic analysis is convenient for problems requiring substructuring. Any
of the methods outlined above could be employed for linear problems.
However direct integration methods are sometimes preferred because of
jts broader application and the possibility of their extensmn to nonlinear
problems.

This paper presents the application of explicit integration method
in the dynamic analysis of planar structures subjected to earthquake
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motion. The main objectives of the study are (i) implementation of
central djfference scheme in plane frame pragram (ii) testing suitability
of exphclt integration in earthquake response determination problems-
to determitie Whethet ary sphirfoud reiponsd would otidur and (jil) hppli-
cation to differént pluilr phoblenis like mltistofeyed frame, cable
stayed bridge, arches and dams.

DIRECT STEP-BY-STEP INTEGRATION

There are two types of alogrithms’®7 that tan be badiéally
identified in direct integration methods (i) explicit integration method-
requiring no solutiod of simuttatiedus equations, and (ii) lmphclt integ-
ratibn method réquiring tolution of simultafibous equatwns. The
comparitive merits afid deérits of the two mtegratlon methods are
giveti in Tible 1. The earthquake respohiée problems are generally low
frequenty domitant problems dnd are usually solved by implicit integ-
ration inetliods bédause of reasdns (5), (6) and (7) given under impticit
integration in the Table 1, Not many attempts hdve beed made in the
application bf explicit integration methods for the soliitiodl of edrthquake
résponse problems. The purpose of this study was to employ explicit
integration method-central difference schems in the earthquake response
problems of structures and to examine its adequacy. The explicit
integration methods have some advantages over the implicit integration
such as ofitlined in item 8 and 9in Table 1. Particuldrly the explicit
methods néed very simple computer programming and tequite very
simall computer storage. Very large size problems can be easily handied
with this integration. There is al%hys 4 fear of undersirable high fre-
quéhcy réspoiise to be picked up wheh explicit integration methods dre
employed. This aspect cha be studitd by solving the different problems
and examining dominating frequencies in time history response. The
carthqilke retponse problem by explicit integration is shown by a
block diagram in Fig, 1,

INFUT DYNAMIC
| eaRTHQUAKE
f RaguA! nesvimsz
PLARAR ' EXPLICIT
sTRUCTURE 'DEALZATION INTEGRATION

Fig. 1. Earthquake Response Problem by Direct Bxplicit Integration

EXPLICIT INTEGRATION

The equations of motion at time t can be written as,
My + Cti, + Kw, = R, M
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TABLE |—Campgrative Merits and Dmﬂntg af
: Implici# apd explicit Integration’

‘No. Implicit Integration

Explicit Integrption

1. For the evaluation of dynamic
response at time ¢4-A1, the
equilibrium equation is satis-
fied at time ¢ '

2. Assembly of stiffness matrix
is required '

3, Solution of simultgneous
equations are necessary

4, Mass and damping matrix
could be diagonal or consis-
tent

5. Time step size is large. Inte-
gration method could be
unconditionally stable, also
time step is independent of
the size of elements.

6. Numerical damping is con-
trollable. High frequency
response can be eliminated
by pumerical damping.

7. Computgtionally econpmical
for structycal problems sub-

jec'ted te low freguency load-
ing such as elﬁhquake, .

8. Computer storage require-

ments are larger

. 9. Applicable to both linear

a.nd nonlinear problems

10. Computer time for i

smaller than explicit method

For the evaluation of dynamic
response at time (+Af, the
qm];bnum eqpation is satisfied at
time ¢+ A?

A;sgmbly of stiffness matrix is not
required

Simultaneous equations are not
required to be solved

Mass and damping matrix must
be diagonal .

Time step size is very small.
Integration mcthod is condition-
ally stable. "Az should be less
than critical time step At Time
step is dependent on the size of
the clements.

Numerical damping is usually
small and caonot be controlled.
High frequency response cannot
be eliminated by numerical cfamp-

ing.

Computatiopally ecopomical for
struptml pmh!eml thh high

frequency response dominant and
wave propagat:on problem'

Computer storage requirements
are very small.

Applicable to both linear and
nonlinear problems. Economical
for strongly nonlinear problems
such as involving both material

-and geometric- nonlinearify.

: .Gmpgter tlme for hpegr styuc-
structural problems is much'

turgl proh}gms is usually larger

ki

than implicit me,thod
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where, M and C are mass and damping ‘matrices, K is the stiffness
matrix of plane beam eclement. R is s vector of externally applied
dynamic forces which . for ground motion is—My.u, ¢, i, are displace-
_ ment, velocity and acceleration vectors. The acceleration ¥, and velocity &,
in equation (1) can be replaced by the following central difference
formulae,

thy = At' (Ve gt — 2“.c + Uiy a €3]
l-t
=5 (=gt + i) (3)

Substituting (2) end (3) in equation (1), we obtain the - following
equation,

M*lﬁ.‘.“ = R* ) ‘ (4)
where

M
L il
M =7+ 35
' 2M C My
R* = Ry — P, 3—. L + (Eh E—. Wy dt (5)
'Equetion (4) can be solved for 4., directly by knowing R, P; m Ku,,
and displacement w; and time rand r — At.. The scheme requires a

special startmg procedure at ¢ = 0, because right hand side, R* in equa-
tion (5) requires w;. 4.

It should be noted that explicit calculation of w4 is possible from
equation (4) without requiring solution of simultaneous equatnons The
assembly of stiffness matrix is not required atany stage of time stepping,
The main calculation at every time step consists in working out R, and
P, and sssembly of these nodal forces vector. The mass and damping
matrices should be obviously diagonal for explicit solution of equation (4)
to be possible, . The diagonal damping matrix is possible if mass
proportional damping is adopted,

C=aM (6)
The value of = can be obtained by prescribing damping in first mode
of vibration.
STABILITY OF EXPLICIT INTEGRATION

The explicit integeation is a conditionally stable schemé. - The time
step of integration should be smaller than the critical time step A,
The critical time step can be approximately obtained from the transit
time of longitudinal wave between the two nearest nodes,
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Ar:r=z,p , (7)

where, L_% shortest distance between the two nodes and C, = velocity
of propagation of longitudial wave.

‘STARTING PROCEDURE

With uy, 4, and #, as known, u_, can be obtained from the eqnﬁ-
tions (2) and (3) as,
Mess = tly — Agtly + %"— W (8)
- %, can be obtained from oquation (1) at ¢ = 0 as,
t = M~ (Ry — Kity ~ Cid) 9)
Substituting u, from equation (9) in (8) we obtain,

ot =ty — At g+ 5 M4 (Ro— Kiy — C i) (19

IMPLEMENTATION OF EXPLICIT SCHEME IN PLANE FRAME
PROGRAM

The following steps of calculation will be required in the implemen.
tation of central difference scheme in plane frame program,

- () Tnitialize uy, up, #,
(i) Form stiffness matrix X, for each element, store in unassembled
form

(iii) Form mass matrix M, for each element and assemble, store it
in assembled form - o

(iv) Work out u_,, at ¢ = 0 from equation (10)
(v) For every time step, work out R, = — My, for ground motion
problem _
(vi) For every time stcp; work out, P, = Ku,,
- . (vii} Assemble P, forces, in ail the elements
" “(vill) Form 1ight hand side R* in equation (4)
' ix) : Soivc fgrdisplacements from equation (4)
(x} Repeat steps (v)-td {ii);_fbrrcvéry time step, for complete time
history. , T

A plane frame computer program rwith these steps is written for
- earthquake response of planar structures.
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NUMERICAL EXAMPLES

The numerical examples of a two storey frame, circular arch,
gravity dam and cable stayed bridge are chosen to demonstrate the
application of explicit integration in determination of earthquake
response. The structures are assumed tp he assemblage of beam
elements®®, The beam element, Fig. 2, is assumed to have three degree
of freedom at every node. The axial, shearing and bending deforma-

-
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Fig. 2. Beam element with axial, shear forces and bending momeat for two
' dimensional Structures

tions are included in 6X 6 stiffness matrix of beam element®. The lumped
masses of diagonal mass matrix are obtained on the basis of physical
lumpiog of mass half and half of element at each node. The rotary
inertia of the element /i (o = mass density, / = moment of inertia,
h = length of the element) is also lumped half and half at the nodes,
The critical time step and the time step adopted in different problems
are given in Table 2. The N — S component of May 18, 1940 Blcentro
earthquake is applied at the base of structure in every case. Time history
response of dispiacement, bending moment, axial force and shear force
are obtained at different sections of the structure.

RESULTS OF DYNAMIC ANALYSIS

Two storey frame: Figure 3 shows the time history response of a
two storeyed building frame. Fig. 3b shows deflected shape at a specific
time. The displacement, shear force and bending moment time histories
indicate the dominance of fundamental mode. There are no high fre-
quencies seen in the response.

Circular arch: The earthquake -response of a 100 m fixed circular
arch is shown in Fig. 4. The deflected shape at a specific time, displace-
ment, axial force, shear force and bending moment response are shown
in Fig. 4 b, ¢, d, e and f. The participation of higher modes is clearly
visible in axial force, shear foroe and bending moment response. But
no spurious frequencies (very high frequencies) are present in the
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. TABLE 2

Critical Time Step and Actual Time Step in Different problems.

Structure Critical time step At adopted
At= L
G
(8econd) ~ (Second)
Two bay frame 0.0015 0.001
Fig. 3
Circular Arch 0.0018 0.001
Fig. 4 :
Gravity dam 0.0014 ~ 0,001
Fig. 5§ .
Cable stayed . 0.00151 0,001
Bridge
Fig. 6

response. This shows that earthquake motion excites those frequencies
in the structure which lie in the frequency range of accelerogram only,

Gravity dam: Gravity dam idealized as an assemblage of beam

_ clementis shown in Fig. 5. The deflected shape, shear force and bending

moment at a specific time are shown in Fig. 5c,dande. The time
history of displacement, shear force and bending moment at a selected
node/member are shown in Fig. 5f, g and h. The higher mode frequen-
cies are visible in shear force and bending moment response. There

.. are no spurious frequencies seen in the response.

Cable Stayed Bridge: Figure 6a shows the mathematical model of
a cable stayed bridge consisting of assemblage of beam and truss
elements. Fig. 6bshows deflected shape at a specific time which is of
antisymmetric type. Fig. 6 c, d, ¢ show time history response of
displacements, shear force and bending moment. The high frequencies
are seen in shear force and bending moment which is quite common in
earthquake response of structures.
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SUMMARY AND CONCLUSIONS

The application of explicit integration method—central difference
scheme to planar structures is presented with special reference to earth-
quake problems. Steps to implement this method in plane frame
program are described. The suitability of explicit integration to earth-
quake response problems of structures is demonstrated by solving several
structural problems, The following main conclusions are derived from

the above study.

1. Time history response of structures can be obtained reliably by
direct step by step explicit integration method without giving

rise to any spurious response.

2. The method is applicable to variety of planar structures, A
single computer program can solve different types of struc-
tures built as an assemblage of beam elements.

3. The computer storage requirements are very small in explicit
method. The method does not pose any problem in solving
structures with large number of elements and nodes.

FURTHER DEVELOPMENTS

Application of explicit integration to two dimensional planar prob-
lems of earthquake response is established in this paper. There are
further possibilities of extensions of explicit integration method to three
dimenpsional space frame structures and nonlinear problems of earth-

quake response.
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