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COUPLED VISRATIONS OF A PRETWISTED SLENDER FEAM
UNDER HARMONIC‘. EXCITATION

ABHA Dl-loml
Introduction

The analysis presented in this paper considers coupled bending-bending torsional
vibrations of a pretwisted slender cantilever beam, excited by the perindic motion of its
supporting base as shown in the figure . The beam is pretwisted linearly about the
centroidal axis having maximum angle of pretwist « atthe free end. The shear centre.of

each cross section of the beam does not coincide with the centre of gravity, consequently
torsional and bending-bending oscillations are coupled.
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Fig. 1 Beam with harmonic excitation

The Differential Equations

The differential equation for the deflected form of the neutral axis of a bar according
to the elementary theory of bending is

g:.(EI—a’—?)"; (N

‘where w is the intensity of the distributed load along Z axis and w is the deflection prependi-
cular to z-axis.

Since the blade is pretwisted, the deflections occur in x as well as in y-directions resulting
in two such differential equations of the form

aa - B , o2 — .
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If the load is-distributed along: the centredial: aniy, the given load can be replaced by 1
the same Iawk distribwameraiong shershonr centze nhffhﬁ&mm"gfmmﬂwh'tws &)
distributed along the same Ay L SRR DT

Since the torsion is not uniform the relation between the variable torque T and the angle
of twist 8 is given by Timoshenko (1955) R

. — (L 038 L !
Y% e
where GJ is the torsional rigidity and.c, js the warping rigidity.
Differentiation of*this equation with respect to z gives »
oy i — o _ -
GJ 55 — Croq = (m1 3 + W) (3)
For a vibrating bar the intensity of inertia force is
5 | N T g
TmamEs)  ad  —mZ oy (A
respectively in x and y directions and the intensity of the inertia moment about -axis is
20 '
-1, 58
The following differential equations for the coupled bending-bending-torsion vibrations
are obtained by replacing the slatical loads in (2a, 2b) and (3) by the inertia fo ces
2 (., Pu , G L '
i (B 53 + B, T) = ~m 2+ a0 (4a)
8 ¢ §ty , 8% _ ]
P (hl s oy + Elyy B—z"*) = —m (v 4+ 8,9) (4b)
o0 o6 o8 - @
Gl za—c15=m3, o W+3,%0) +m3, -b?,(v-ps,fa) +1, . : o) =,
where I'yy, = I‘L:—!!l — I—"—_,;-!“- cos 2a —:— — I Sin 2¢:% : :
R Y | Lia—-1,, y
Uy = '_‘E ’f' + J%F—u cos 2u -f—‘- + I,,SmZa—i—
' I -1 . .
I,,=-i§-"81n2.:{-+1,,c052¢{- -
8,=8,,.cosd—E—-—8,,, sin‘u—;-: .
8,._# 8y0 COS & E—-—&’,,, sin n-i—- : S "‘
are taken from Carnegie (1957), _ - i =
-~
1hese equations are the same as obtained by Carnegie (1962) using energy method exoept i
the * terms, S - L 5 T ¥
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N “The right hand side of.equations (4a) and {(4b) represents an mstia. loading, and these
equations must be modified by considering thie base mation wp; and'ws, in x and y directions

respectively as Tseng and Dugundji (1970) the governing differential equations then becomes

_ S % , o 8, Hwg
(G e ) = - e ey - S (6a)
. o8 , W , ot o, 1)
. 5 (m,, 7 +El'n a_z.s) = — mg (V43,8 — m Zo (6b)
o [L ) 840 23 2 ] 299
GJ a——z. bl 1 g—z-‘ = mB. a—a (u+8,8) + ma, aT‘ (V-I-B‘ﬂ) + I. é't—s (60)
Determination of Natural Frequencies
The solutions of equations (6) are of the form
o u(z, 1) = A U(z) el
S~ v(z, t) = B V(z)el=*
wpy = AF, elst {7)
wpy = BF, elut
8(z, t) = C p(z) el=t
Where F, is the forcing amplitude, A, B and C are constants which are not independent
and Uiz), V(z) and B(z) are functions of z only.
The function U(z), V(z), Biz) satisfy all the boundary conditions of the beam which are
as follows
du ov ot
. | , (8
' dtv 8%u 93y o8 28
w WA TR TS T g T nZ=L
~ Substitution uf equations (7) in (_6,) gives |
ds , dfU d? , div
Sl Elw Gy ) ~m (U4F) ot ] A+ SyEr 4 )B-mbatgcmo (o)
¢ (o dU @t (o1, 42V ; tpC=0 (9
— | dz___,(m - ) A+ [@(gl - ) —m (V+F,) o ] B-mbwfC=0  (9b)

~mdy a? UA—mbew? VB + [— { I —e %g}- {1.+m (a,=+s,z)} wt B ]c = (%)

s

The equations are mow put in terms of dimensionless variables £ = z/L, f = UJL,
¢ = V/L, { = B/L, and substituting values of I'yy, 1'zz, I'zy.

B Equations (9) becomes

= C[E {latly df  To—TI,y de dasf cdRg o def
(e {5 &~ =7 (et ) — 1o g (sn 20 )]
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' 'Fig. 2 Geometry of the sysiem

For an approxlmate determination of the fundamental frequency f(E), and ¢ () are
chosen as the shape functiori for the fundamenta] ; mode of uncoupled bendang vibration and - i:!‘
Y(E) asthe shape function for the fundamental mode of uncoupled torsional v;bmfmn of a
uniform cantilever beam. These shape functions saiisfy the boundary conditions (8) and are

f(E) = #(8) = cosh A} — cos AE — - or (sinh AE —sinh Ag, $(E) = sm (=2)E ().
where = 187510, or = 0-734]

s
o

Equations (10) can be solved for w® but the re:ult i8 a function of £ since f, ¢ and ¢ are -
not the exact shape functions. This difficulty can be overcome Fung (1955) by multiplying
(10 a) by: £.(10b) by ¢ and (10¢) by ¢ and integrating with respectto £ from 0 to L . Fhe )
method results in the familiar Rayleigh quotient Coilaiz (1960) when applied 1o uncoupled i
problems, and. is an extension of Rayleigh’s method to the coupled problem The foﬂéwmg :
equations are obtained U

(81--3’ m’) A—a,’ B—a4 a?C = o
L T3 A+ (ag—ay w?) B—agw?C =0

—f et Aag et B o (ay—agat) Cmg - - 12)
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For a non trivial solution A, B and C mustnot vanish consequently the determinant of
the coefficients of equations (12) must beazero

by 0 e

al-klg w’ ‘ erag . . —ﬂ‘;.!
—ag ag-—an wd —ag w! =0 . (13)
—agwd —ajpgwt ap—age! |

This gives a thifd degree-polynomial in 2. “1he smallest of the three values of w® given
by (13} is an upper bound for the frequency of the fundamental mode of coupled vibrations.
The other higher values of 2 are the upper bounds for the newt two higher modes of
vibrations. To obtain the smallest value of w®, we use ‘Newton)s iterative method till it
shows convergence, "

Numerical Example

A numerial example for the coupled bénding-Bendihé-tmionai vibrations of a pretwisted
‘beam under harmonic excitation is now presented. The frequencies are computed from (13),
and the cross section of the beam is taken as semicir cle of radius ay:and thickness t;. The
ph, sical constants are as follows :

L = 10in, E == 30x 106 |b/in%, G = 12 x 108 |bfin®.
ag=*45in, t; = .25 in, m = '09818 lb.

I,,B‘iﬂ.ﬂostl:» I”_nao ty {a; + (230) +8¢2}

' 12 ] 3
2 2
Ie = m{’; + (Z_:n) + 3s,? }: 8, = 2 » 8o = 0.
With these values, the fundamental frequenc:es for various values of & and F,/L have

been tabulated below. In Fig. (3) :1

8
Izv"—'o, C|_=Ea°5t]_(' 8) J"M

has been plotted as a function of & and in Fig. (4}
0

‘f’_"_"=o

L

has been plotted as a function of F, /L.

Discussion and Conclusion -

The equations of motion for bending-bending and torsional vibrations of a pretwisted
beam which have been obtainéd using a beam type theory are similar to those obtained earlier
by Carnegie (1962) using eneigy pringiples. However, the equations in the paper include
higher order terms also and therefuré expected to be-meore accurate. The -method based on
Rayleigh’s Quotient which has been used to solve the equations of motion of the complicated
system under consideration to give an upper bound of the fundamental frequency of the
coupled vibrations is also expected to give reasonably accurate results. as,the accuracy and
the convergence of the method has already been investigated by the authors Tomar and Dhole
{1975) specially when 32 and 8y are small,
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Fig. 3 Bifect of prewwist on freqhency - “# ' Fig. 4 Effect of forcing amplitude on
‘ oo L frequency
:
The results obtained for the fundamental frequency of coupled torsional and bending-
bending vibrations show that it increases .as.the w!e of pretwist increases and decreases
R as the ratio of forcing amplitude to blade length increases.
e .~ TABLE
RS Square of thfé');ndamental frequency ie. myt
" Forfixed | Fo |{ Forfinedw =6
in radians Fo/L=? T radians
0 433508168 0 . 10.20383x10%°
- R T smosaxlm
: | %  4.36491X108 2 4.36491 X 108
: 3 5.38932 x 108
T 441743108 4 2.76966 x 103
= - 4.58253x108 5 2.34133 X 108
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APPENDIX
Notation _ ‘ _
GG = Longitudnal axis through the centroids of the crosa sections of the beam

about which it is uniformly pretwisted from angle zero at the fixed end to
angle « at the free end. The distance z is measured along this axis.

Ox, oy, oz = Co-ordinate axis through the shear centre of the cross section at fixed end
i.e. at z=0, oz is parallel o GG axis.

0'x, 0'y, 0’z = Co-ordinate axis through the shear centre o’ of the cross section at the point z
g po
and parallel to ox, oy and oz axis respectively.

Wg = Base motion perpendicular to the axis of the beam and in the xy-plane,

u = deflection of the shear centre of the cross section at the point z of the beam

in x~direction.

v = deflection of the shear centre of the cross section at the point z of the beam in
y-direction.

L = length of the beam.
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~ E = modulus of elasticity.
G = shear modulus of rigidity.
G = warping rigidity.
Ls = second moment ofarea at z = 0 about x-axis.
Iyy = second moment of area at z = 0 about y-auns.
I,y = product moment of area of cross section at z = 0 about ox and oy-axis.

I'se = sacond moment of area of cross section at the point z of the beam about o'x
“i’u ’ ’ :

I'y = second moment of area ﬁf cross section at the point z of the beam about o'y

¥

T'ey = product moment of area of cross section at the point z of the beam about o'z
and o'y axis.

Is = mass moment of inertia about the shear centre per unit length of the beam.

80 = Co-ordinate distance between shear.centre and centroid in x-direction of the
cross section at z = ( of the beam.

3ys = Co-ordinate distance between shear centre and centrmd in y-direction of the
cross secuon at z=0 of the beam.

3% = Co-ordmne distance belween shear centre and centroid in x-dnrecuon of the
cross section at the point z of the beam.

8 = Co-ordinate distance between shear centre and centroid in y-direction of the
cross section at the point z of the beam.

J = a constant depending upon the cross section of the beam such that GJ is the
torsional rigidity,

© @& = the angle of pretwist in radians of the section at Z = L.
t = time

§ = dimensionless variable £ == z/L.
w == frequency of vibration.




