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.The . problem .of earthquake pred:euon '™ attracted . wlde spread attention among
seismologists in recent years, - The social and economic importance of -earthquake prediction.
has-been obvieus for a long time, and the steady accumulation of relevamt seismological
data and improvements in ‘the techniques of analysis have made it pbasible to hope that
effective peagrammes of earthquake prediction may become feasible in the near future. Ia
this connection, it would be useful to have a better undersianding of the process of stress
accumulation in the neighbourhood of active faults which may lead to a sudden fault
‘movement generating an earthquake. The quantitative estimation of the stress accumulation
1" would be facilitated if it is possible to devise suitable theoretical models which incorporate

the essential fealures of the mechanism of stress accumulation near seismically active faults,
This would enable us to estimate the stress accumulation near the fault below the surface
“from the observed ground deformation on the surface, Some theoretical models have been
developed to explain the accumulation of shear stress near strike slip faults, by Spence and
Turcons--(1976) and Budiansky and Amazigo (1976). The stress accumulation in these
models is supposed to be due to the relative motion of the parts of the lithosphere on oppoute
sides of the fault, while the fault itself remains loeked. The mechanism of the rclative motion
is not considcred directly in these models, and they require large and steadily increasing
stresses in the lithosphere at great distances from the fault. Budiansky and Amezigo (1976)
consider a lncked strike-slip fault situated in a visco-elnstic layer representing the lithosphere,
and assume that tectonic forces maintain a constant shear stress in the layer far away from
the f.ult. They show that there would be a steady accumulation of shear ftress near the
7~  faultleading to fault slip under suitable circumstances. Some work has also been done on
. ¥ posl-wlsmlc stress changes in a visco-elastic half-space, following a sudden slip on a fault
in the half-space, alier which the fault becomes locked, by Randle and Jackson (1977) and
others, The stress accumulation near locked strike-slip faults in homogeneous and layered
visco-elastic half-spaces have been considered by Mukhopedhyay and Mukherji (1978). .

~Inithis connection it has been reporied by Spence and Turcotte (1976) and others that
continuous aseismic creep has been found to occur in the central section of the San Andreas
fault from San Jose to Cholame, and this aseismic creep is reported to range from 1 to 6 Cms/’
year on the sutface in different parts of the fault. This prompted us to consider a model of
continuonsly cmping aseismic strike-ulip fault situated in a visco-elastic half space.

1 Paper No. 13 pnantod at Kuruksheira Sympodun

2 Department of Apphed Mathemtl«, Univeﬂity of Gllcutn, Univensity Golle‘eofScimce, 92 Acharya
' Y Prafulla Chandsa Road Calcuta 700 009,

"" W opl ysicist, Geologlcal Survey of India, 15 Park Street, Calcutta 700 016.
4 Research Officer, River Research Imatitute, 11A, Free School Steeet, Calcutta ~ 700016,



2 ' Bullstin of the Indian Sociely of Earthquake Technology
. \ _

Formulation

. We confilies” ¥ lohg - vei"tfdhtriké lﬁﬁfalﬂt’ﬁ &F’depﬁ}’ D; sithatbd’ i ‘aivisetselastic
half-space and readhingfubto thie dhtfiste; a8 iovin'ld Fig. I1A. 3 {Wiriltraduce rectangular
cartesian coordinates (y;, vs, Yg) wnth the free surface as the plane yg = 0, the plane of the
fault has the plane y; = 0 and thé'y, — axis ‘along the ‘trace of ' the fault, so that the visco-

elastic half space occupies the region yg » 0. We consider a fault whose length islarge
compared to its depth D, so that we have a two-dimensional problem, with the lﬁsplacememl \

u; and stresses T;; (i, j.= 1, 2, 3) independent of y;. For the strike-slip fault moverhent
which ‘we' consider, the relevant displacement component is u; and the relevant stress
components are t1g and ;3. Since u;, t;; ‘are independent of yy, u; and {ryg, v13) are found
to be independent of the other components of displacement and stress. We assume that the
visco-elastic material is of the Maxwell type, 80 that the stress-strain relations :educe to the
form [Fung (i964)]
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where pu is the effective rigidity and 7, is the effective viscosity.

For the siow aseismic creeping displacements we are condsidering, the inertial forces

are very small and are neglected, For such quasi-static, : aseismic displacermamio;: the stresses

satisfy the condition,

oW =0 (1A.2)

We assume that the shear stress t1s has a constant value g far away from the fault,

maintained by tectonic forces. Near the fault, the stress system would be alte ed from time to
time due to fault creep. “Thus, the stitses would sausfy the féllowmg boungcy condum '

“ 1‘13—-0 on y3—~0 }

zi3—> 0 as’ = oygr o

(11A.3) "
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i and f3—> T 28 Ya*co )
‘ A (11A. 4)
for ys 0 o
- "From (ITA. 1) and (IIA. 2) we easily find that Ea-t- (V2uy) =0
which is satsified if Y3ug =0 (1IA. 5)
: Displacements and Stresses in the absence of fauilt slip
We first consider the deformation of the medium in the absence of fault slip, when the
displacements and stresses would be continuous throughout the medium, We take Laplace
transforms of (ITA. 1) to (ITA. 5) with respect tot. The resuliing boundary value problem
can be solved without much difficulty, and on inverting the laplace transforms, we find that,
SYa t
LY (YI: Ys. t) = (ul)o + -:-—w_nyg“ B
ey %13 (Ys, Yo t) = (f1gdo €*¥" + 75 (1—e7vt/%) (ITA. 54)
713 (Y2, Y8, t) = (®13)e €7#4/*
where (u;)g, {*12)0, (t:3)s, which may be funciions of (yg, ya), are the values of u;, vy, v g at
time t = 0, when (I1A. 1) 1o {11A. 5) become valid for the system. We note that 7,3 = 0 a8
t =+ . Assuming that (tig)e < %en, near the fault, we find that the value of ;3 near the
_ fault increases steadily from (ryg)g and —+ = as .t — . Ifthe characteristics of the fault
" F be such that it starts creeping continuously when'the shear stress g near it reaches a
critical value ©, < T, the fault creep would commence after sometime, when 7,4 reaches
this value <,.
Displacements and Stresses after the commencement of fault oreep
. We now measure the time t from the instant at which fault creep commences. For the
? slow aseismic fault creep we are considering equations (IIA. 1) to (IIA. 5) are valid. In
.. addition, thereis a dislocation across the fault F which changes with time as long as the
w 7 creep continues. The boundary conditions across the creeping fault are taken to be
~ [u;] = f(ys) . U(t) - (I1A. 6)
and [r1] =-0 = [1a]
[ } (I1A. 7)
] across F : =00y <D
- where [u,;] is the discontinuity in u; across the fault F, defined by
Cml=Lt (m) — Lt (wm)
} yg = 0+0 yg = 0-0
S and [+33], [v13] are the discontinuities in 13, T3 ACFOSS the fault. We take
K U(0) = 0, and note that the velocity of creep across Fis
3 i
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- where V() = &‘t—U(t)'
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We assume V(t) and f(ys) to be continuous functiana- Fo dmnnm 4hy displacements and
siresses - we take Laplace transforms of both sides of (IIA. 1) to (IIA. 7). The resulting
boundary value problem is solved by using the Greenh's’ function technique developed by
Maruyama (1966), as explained in the Appéndix, It is faund that exact solutions in.clored .
form can be obtained if f(ys) is a constant or a polynomial in ys. The solutions are found
to be’ given by LT e ‘ '
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whete (uy)s, {*1edo, (*rs)e arethe velues of uj, ‘vyg, vigat t = 0 iwifen the fanlt dreep just

-cothmences. - _
l~nr creep‘disloca'tioﬁ iqdepénd.cn}!.gﬁ_ciepah, corresponding to [ (y;]!ﬁ 1, we have _
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For other forms of f (ys) we have

s
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Thlynve) =T (xa)[ (xs--YaJ’;’+ =3 + o -l;y:)i; g ] d"?

g o~—p

= Y!’;(’;l";vsix oy | y’_:(,Xa-i-Y')i 1. -
$; (¥e, Y3} = I f (xs) [.{y'f_'""_*_ (x3—ya)it + {ys* +,(xa+¥a)'}_l] dxy (11A12)
) - 0 . .
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From (ITA. 11) we find that for f(yg) = 1, there is'a singularity of the stresses at the ']ower‘&';--

tip of the fault : y; = 0, y3 = D. Similar singularities in shear stiess at the tip of the%

e
"

k!

) , -
I
. . il ke
. S PRI & .;e‘frismmb’:—f'% Y .~



Stress Accumulation : i 5

¥ are present in the solutions obtained by Rybicki (1971) for static or quasi-static faults in
elastic media. On investigating analytically, the integrals in (I1A. 12) we £ind that the
displacements and stresses will be bounded everywhere including the tip of the fault if the
following conditions are satisfied :

(a) f(ys), f'(ys) are con inuous in0Cy; €D,

(b} f"(ys) is continuous in 0 < y3 <D, or has a finite number of points of finite
discontinuity in 0 < y3 < D.

"

() (yg)™. f"(ys) = 0 or to a finite limit as yg —+ 0 + 0
and (D—ys)2 £*(ys) = O or to a finite limit as yg - D -0,
wherem < |,n < | are constants
and(d) f(D)=0=1{ (D), £ (0) = 0.

These conditions imply that the.magnitude of the dislocation varies smoothly over the
‘%' fault and approaches the value zero with sufficient rapidity near the tip of the fault. The

integrals in (IIA. 12) can be evaluated in closed form if f {(ys) is a polynomial. In
particular, if -

f(ys) = (ys?—D14/D4, we find that
2 va. (3 yal—yy? 10 9 8 _ vt D2
b = 2 Gty 100 | 2yaye by DY

In D=V + et | yyl=ya 6ys'-2 DY) + (yy'—DY) -
(D+ya)® + e ' Dt

1 (DY 4 [(D+vs
{“m 1( Ve ) + tant ( ~ va )} (11A. 13)
6 (ys'—ys* 10 2 2 3yd-Dt D—yg)t +
$1 (vs, y3) = — [—Qsﬁ,j-’—-) — gp + MD‘ b _.._.) In Eﬁﬁf’
o 4+ 4ys (Ya'*—Ys’—D‘){ ! _ 1 }
¥ DA (D—ys)t + yo? (D+y3)t + yot
4y —2ys (6yg8—2D")f ., (D—yy’  (D+vs
¥ DF {‘tml( s )+lanl( Ya )}
_ Ya'—va (6 ys'—2D?) + (y#—D2) y ‘
D -
< (D—ys) (D+ys) |
| {(D-Ya)' + vt T Dty + yt }] (LIA, 14)

The expression for ¢3 (g, ys) is similar, and we find that, in this case (¢;, ég, ¢3) all remain
bounded near the tip of the fault.

From the solutions given above, we calculate the rate of accumulation of shear strain
near the surface, given by

o R I 9t u,
- R=[ %t ] o= (ER = (1A 15)
ya=10 va =0
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nd the vertge vilue of g ovés the faule F, giver'by” 1 -
! Co e s Y S E S L . :
(*10)a = (1/D) [ (r1a)w dys - : (ITA. 16)
[+ .
Wefindhat  R="2 YO e o o
, 6V I (IIA. 17)
and R= E%° - '6"?1(;)= if f(yy) =‘§X§_53D_)__ .
For f(ys) = (ys'—D)¥D4, we have
 (tig)a = (T1g)oa. exp (—fathn) +. %0, (1= e=rtM) — g(c) - - (IIA. 18)
where - 41) ="(4/3D).'§EI V(s). e TR (AL 19)
o [ o o '..° , . L _ o o
and (r1a)pa is the average value of (vaglo over F. If V(t) = a constant = Vv, TR
.'V . o “( ,f.‘_-l L R
we havc "o = fg‘;ﬂ-. (1— ehre) (11A. 20)

for constant creep velocity V.
Discussion of the results, snd conclusions .
We now study the influence of, continuous f.}ﬂ_t( creep in our model on the strain

eccutnulation on the surface mear the fault; and sogrtlp dhiawged in the shear stress ¢54 near
the fault, which is expected to control the’ strike-slip fault movement, In assigning suitable
values to the parametets in our model, Viz., %o D, V{t), uand [(ys), we keep in view
the San Andreas fault, the most well-known' and widely studied active strike-slip fault, and
take D = |0 kms. and pu = 3.78 x 1011 dynesjcm?®, given by Aki (1967) for the lithosphere.

We choose v = 3 X' 1031 poise in onr model. ‘

v

We note that estimates for the stx;egs' firops near the San Andreas feult for the largest

well-recorded earthquake, the San. Frandisco earthquake of 1906, are in the range 50-100
bars. We make the reasonable conjecture that the stress dropin a very large earthquake
is nearly equal to 1o, and take te% = 50 bars in our'inodel. We consider the case V(t)=V,

a constant. Noting that the aseismic creep velocity on the surface of our model is V, and.

that ‘aseismic creep velocities oni-"the surface in the “central.section ‘of the San Andreas fault

have been reported to. be inthe range of 1 to 6 cms. per-year ' [Spence and Turcotte (1976)),
we take values of V from V = 0 to V = 6 cms. per year. We cansider the dislocation..

[u] = Vit. (ya?—DOyDA, |
so that the displacements and stresses are bounded everywhere, and compute Egp
[eig — (e19)o) X 108 near the fault on the surface (s = 0, y3 = 0) and (7,9)s, the averije

value of )2 over the fault, Fig. IIA, 2 shows the variation of Ejp with the timet. Itis -

found that the rate of surface strain accumulation decreases as 'V increases, from about
0.5 X 10-%/year for V = g, to almost zero for V = 0.6 cms./year, Fig.1IA. 3 and Fig.

X

&

by d"‘}



[

-y

&

‘M &Mﬁm ' : (AR ) 7

En={en - ()]s 105
" PemSppars
CAr3x10% poiee
Fam 0, Ym0, D =10Kms
300 ve (¥3 - D2t
{U]e —32_— 2

D

£ 200 Vi emjyear vig
. Vo2
100f-
Vep 5
B
t{in years) —.
. Fig, TIA 2

I1A. 4 show the variation of (v19)a with time, 'where (t15)ga, the average value of Tyg Over

* the fault at t = 0 (when the continuous fault slip commences) has the value 20 bars and

40 bars in f‘ig. ITA. 3 and Fig. TIA. 4, In both cases, it is found that the rate of accumula-
tion of the average shear stress (139)a decreases as V increases, and if V is sufficiently large,
(v1g)a decreases with time, so-that there is' aseismic release of shear stress. TIn each case

71 appica éls’pﬁmtehmitl#ﬁt becomes large, afid if V has the critical value of about
2.5 cmsjyear, (sip)s — 0 as t @, so that there is' complete aseismic relesse of sWear stress

by continuous fault creep. Thust, the possibility of a sudden and rapid fault movement,
causing an earthquake, is reduced continuously with time, and becomes very small for large
t. . The critical value V mentioned above lies in the' range of creep velocities reported for
the central part of the San Andreas fault {Spence and Turcotie (1976)). OF course, this
critical velocity changes tignificantly on changing the model parameters,
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' We note that, if detajled and reliable data on the ground deformation onthemrfm
and its changes wi'th= time near creeping strike slip faults are available over a sufficiently
long period, compamon of the ob;ervauonal data with the theoretically calculated ground.

model. ]:tmny then be possible to obpun :elmhle mmof the Y g 5!10 Mr
stress ¢yg near the fault, so that the probapifity o{gim ﬁ nida& ‘fay _movement,
‘causing earthquake, may.be amessed, and the maximum prob le mgnitu “af such an
earthquake, if it does occur, can be estnmated roughly. f‘innliy, we note that the simple
model we consider can be expected to represent only approximately the. complex tectonic
processes oocurmg near actual creeping strike--lip faults, However, it is hoped that these

results may give some insight into the nature of the process of aseismic fault creep and the .
resulting release of stress and strain. b
Appendix
We take Laplace transforms of (11A. 1)-(11A. 7) with respect to t, and obtain a boundary.
value problem, characterised by the relations,
=P O (_u&/ﬁ.:.@ﬂt_@&
Ple + 1n dyy Pl + 1 :
' _ . (1A, 1a)
g = ——P | (mislelp {Buyfdysle '
pln + 1/ 3Ys Plu + 1fn -
a'tTg 31;3 . .
= =0 ‘ IIA. 2
&y, + Byg _ ( ) _
T3=0 on y3=0 o ®
} (I1A. 8a)*
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;}g-b!wfp, ng ‘if-v @, Lol Lo < (A 4a)
7, =0 : - - . . (1A, 5a)
(9] = f(ys) U(p) across F: y: = 0 G‘< ¥s < D (ITA., 6a)
and {Fis} =0 = frygl aomom :F . . - (11A. Ta)

where p is the Laplaee transform vanable, ul. -r”. 11;, U are the Laplace transforms of uy,
w1, :T1es  U(t)with ' sespect to & the suffix Borein ' &),,*(vweu %hm#the*m ‘att =0,
and:[&if] isthe dismﬁmhy*h 0y-uctoss. F. M etryto Sad Typeig) rr¢ Hithe form, '

= () + (ﬁn)s: T1a = it + (oo Ta8'= (agds + (Faaha,
where (1)1, (181, (*13)1 satisfy (T1A, la) - (lI‘A Sa) dnd -are dﬁmnumulfhmughout va 20,

while (81)s, (vsp)s, {vas)g satisfy : R e
(vide = ﬂ? | .
Fas) _ =), _ ... (LA '.b).
18)2 = M —3';;;

(et

e amwEmERee T o
" i)y &0 at e } | S |

(IEA, 3b)
0w w=o ik
(Fida—+0 as  yg+@ foryg»0 (IIA. 4b)
vi(O)e =0 {11A. 5b)
[(0)e] = f (vs) U(p) across F , (HA. 6b)
and [(ael=0=1[Tmsk] = = - | (IZA. 7h)
The solution for (1), (%,2);, (733)1 is edsily i‘f)uﬁtc_l"_ to be '
Che (Fl);F-H‘h%QQ _
and o (r1sh = (raadollp -+ - oo

The bonndann ~alue problem for (Op)e, (23T (11;); can be sqlved: by using a s\utable modi-
fication of the Green’s function technique developed by Maruyama (1966) and Rybicki (1971)
for static dislocations i in elastic media. Following Maruyama (1966) and Rybicki (1971), it is
easily shown that ' :

(ﬁﬂz(Q)"‘f [ () (P)] G (P, Q) dxy

s
where Q (v, ys, ys) is any point in the medium, P (x;, X, x.) is any point on the fault and

[ (s (P) ] = £(xs) T(p)
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is the discontinuity in (3;)y across F at P. G(P, Q) i a Green's function, given by
(P Q)= 4z Gi (P, Q).
where Gi(P, Q) = g 1n (10 + (a=ya)} + In (x4 (vt |

‘The integral for (8;)g can be é'\raluiféd in clo,séd fpr':f; if f(yy) is a.polynomia.l inyg. After
obtaining (1l )y, we obtain (v3s)g, (72a)s from (I11A. 1b).. Finally, using {ITA. 8a), we obtain
U = () + (W) _ S
ot = (g + s and T = (maa)s + (*13)s

and vetify that they satisfy (ITA. 1a) — (IIA. 7a). The Laplace transforms are then inverted,
using the convolution theorem, to give uy, 12, T23 as functions of yy, vy, t.
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