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SURFACE WAVE PROPAGATION IN A HOMQGENBOUS ANISOTROPIC
LAYER LYING OVER A HQMOGENEOUS SEMI ISOTROPIC HALF-SPACE,
AND UNDER A UNIFORM LAYER OF LIQUID!

M. L. GogNa$

Introduction

In the study of surface waves we make certain drastic assumptions, Although the
assumption of isotropy is often approximately satisfied in practice, certain disagreements
exist between theory and observation that indicate the necessity of discussing problems of
dispersion under less restrictive and possibly more realistic assumptions, In recent years
the propagation of elastic waves in anisotropic media has begun to receive some attention.
The assumption that the physical properties of an elastic medium vary with repect to
direction at a fixed point in a medium characterises the medium as being anisotropic. There
are reasonable grounds for the assumption that anisotropy may exist in the continerits. An
obvious consideration is that materials deposited in water may settle in preferred orientation.

Stoneley (1926), Biot (1952) and Tolstoy (1954) have considered the prepagation of
elastic waves in a system consisting of a liquid layer of finite depth overlying an isotropic
half space. Stoneley (1957) considered the case of ocean layering. Abubaker and Hudson
(1961) studied the dispersive properties of liquid overlying a semi-infinite homogeneous
anisotropic (transversely isotropic) half space.

Here we have considered the problem (two-dimensional) of surface wave propagation
in a homogeneous anisotropic layer lying over a homogeneous semi-infinite isotropic half
Space, and under a uniform layer of liquid. This appears to be of practical interest as
the bottom of the oceapjs likely to be anisotropic (transversely isotropic) to some kilometres
depth since formed by deposited material. The frequency equation for progressive surface
waves i3 obtained and phase and group velocities are calculated as functions of wave number,
using the constants for beryl to represent the anisotropic layer. The following special cases
have been deduced.

(i) By making the depth of the liquid layer zero, the frequency equation for Rayleigh
type waves in a transversely isotropic layer lying over an isotropic balf space
has been derived.

(i) By making the depth of the transversely isotropic layer zero, the frequency
equation obtained by Tolstoy (1954) has been derived.

Stresses and displacements

We consider a medium consisting of a liquid layer-of thickness h, density p; and bulk
modulus A; lying over a layer of homogeneous anisotropic material of thickness b’ with
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“These values of displacement eoniponenu satisfy the equations (12) and (13) if
~ — p2 k2 A Ulz) = — AR U(2) + LU"(2) + ik (F -+ L) Wi(z), - (16)
~ ik ' W(z) = — LKIW(z) + CW’(z) + ik (F + L) U'(z), (17)
where primes denote differentiation with respect to z. .
If we assume that U(z) and W(z} have the forms

U(z) = Uems, ) : )

W(z) = iWers, (18)
the equations (16)°and (17) reduce to

— ek U= — AU + Lm?U — km(F + L) W, _ (19)

—ipgk? AW = — LKW + iCm3W + ik(F + L) mU (20)

Equations (19) and (20) give us the ratio U:W, for which (15} is a solution of the
equation of motion. In order that {19) and (20) give us a non-zero solution, we must have :
(Lm#® —AK? + pg k3 ct) (Cm¥ —Lk? + p, k2 ) -+ k3(F + L2 m? = 0 (21)
This equation is quadratic in m? and therefore gives two values of m?® for which
(15) is a solution. Let these be mgd (i = |, 2),
The ratio of displacement components U;, W, corresponding tom = m, is
Uj = km; (F-I-L) Cm,'-'—Lk’+pgk9c’ = l_
. W1 LmI'—Ak'-I-pg km = k (F -+ L)II'II . € (SBY). (22)
Thus we can write oyr solution as

U(z) = Uy sinh (m;2) + Uy cosh (myz) + Ug sinh (mgz) + U, cosh (myz),
W(z) = i ¢ U; cosh (myz) + i ¢ Uy sinh (myz) + i ¢g Uy cosh (mgz)
‘ + i e Uy sinh (mgz). (29)
Componems of stress in this medium are, therefore, given by C o
T“ = [i U1 (Ak + 13 m1) sinh (mlz) + 1 U’ (Ak + €1 m;) cosh (m;z)
+i Us (Ak + ¢ mp) sinh (mgz) + i U, (Ak + ¢g mg) cosh (mgz)] x
exp [ik (x—ct)], ' B
Tar = L [(my—¢; k) U, cosh (myz) + ‘
(my—e; k) Ug sinh (myz) + (mg—eg k) Us cosh (mez)+ ‘
(mg—«g k) Uy sinh (mgz)] exp [i k (x—ct)] (24)
Te =1i[Uy (qmyc + kF) sinh (myz) 4
Us (g m; ¢ + kF) cosh (myz) 4+ Ug (eg myg ¢ + kF) sinh (myz)
+ Uy (g mg ¢ + kF) cosh {mg2)] exp [ik (x—ct)]

In the half space III, let the displacement components ug-and wg along x and z-axes
respectively be defined by the function $ and ¢ such that :

d
“ gt
o

wa E' x | (25)
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Then the equation of motion will be satisfied if ¢ and ¢ satisfy the equations’

1 ;
R B
e, - 1 8 . : ' g
v'¢='§§ &—;P : : 29)
LT Yatley gt - 27
where V’._-—_-a-—x—’-l- g;iand l’_-: T-, P o3 ( )

For types of waves under consideration we assume-
$ = éi(z) exp [ik(x—ct)], |
¥ = ¢y(z) exp [ik(x—ct)], ' . (28)
where k and c are as defined earlier.
Substituting the values of ¢ and ¢ from equations (28) in (26) we get -
T a(1- )b =0,

ShE (1- 52 Y =o. . (29)

Since the displacement components are to tend to zero in this region as z tends to infinity,
we therefore, take the solutions of equations (29) as : :

#1(z) = Pers ,
his) = Qem - ) (30)
where ‘
3 = k2 (l— f’! )a ) ‘
’ .
si=k‘~’,]—%- . _ - {31)
Thus ( g ) ’ o
ug = %:; + g‘;". =—1i (-:- Pre-rs -l:— Q pe-on )exp ik{x—ct) - (32)
wg = g_: - g.:'?' = (P16 4 Q67) exp ik(x—ct) (33)
where Py = —Pr, Q1= — ikQ. h (34_.)

Cormponents of stress in this medium are given by

] )

- [("' K (e + 20 r) P 2pp sQe ]exp lk(x—c]  (35)

r
T = s (524 50) = e[ 2 maemns (24 k) Qe Joap ik(x—c)](6)
Boundary Conditions ' | - o '

The boundary conditions are that the'tiisplaoemnts and stresses. are continuous at the
interfaces and the pressure vanishes at the free surface of the liquid (tangential displacements
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The group velocity can be derived from the frequency equation (40) by the formula

e 41)
U=e+kdk. (

Special Caseés

() If we reduee the anisotropic layer to zero substituting h’ = o in the equation (40},
we obtain the frequency equation as ; '

- - B 1)‘11[ ] 42

tan (koh) ﬁ(w - fruk (s34 k3) ' (42}
which is the dispersion equation of liquid overlying a semi-infinite homogeneous isotropic
elastic tolid (Tolstoy (1954), Ewing et al. , 1957, p. 161)

As kh— 0 in (42) both U and c tend to the same value cg. cp is the solution of

c’ c’ cz 2 )
(-E)(-5)- (- F)-o “9
and is the velocity of Rayleigh waves in the solid medium with 2 free upper surface, The
result is understandable physically since kh—+0 means that the waves have wavelengths large

compared with the depth of the liquid layer and thus the effect of layer is negligible.
Askh— 0 in (42), that is the wave length becomes small compared with the depth of
the liquid layer, the Phase and group velocities tend to the common value ¢y, the velocity of

the Stoneley waves at the interface of solid and liquid, when the liquid is semi-infinite in.
extent. ¢, is the solution of

TO-REISR 2R w
(i) If we reduce the liquid layer to zero by substituting h = oin the frequency
equation (40) we obtain Eq. (45).

Equation (45) gives us the frequency equation for Rayleigh type waves in a transversel.y
isotropic layer lying over an isotropic half-space. As far as the author is aware, this
equation has not been given before,

Numerical Calculation}
For the purpose of calculations the variables were changed to

y = kb, | (46)
x = ¢/, (47)

and the frequency equation (40) was written as ; :
[ay| =0 (48)

where
auwlmﬁan—auBalsl-au-ausauuaﬂ=a”-aﬂnau=
aaa-ﬂu=8aé=aas'=ﬂn=8«-aas-ﬂu-an='357"859"%1"
‘Bgs = A7 = azg ™ Agy = agy w (), -
217 = cos (y¥/x371), a1g ™= sin (y4/xT—1),
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Numerical caleulations of y irf terms of % were sade af the Cambridge University
Mathematical Laboratory on TITAN. TS group velogity- was-aho saieeissed from the
formula ' : . ' :

Ume+ke, (49)
;hat ilc-t—lj- gy g—;‘- - | ' (50)

Elastic constants A, C, F, L should be those for the sedfmpgs of the oceti bed. But
10 observational results for these are ayailable. For want of better material, I have used °
the elastic. constamts for beryl, - but . wisen mots’ Appropeiats . values beganss aypilable they
shouid-be interted in place of those usedl ‘héve. Thesc were therefore used and phase
velocities and group velocilies - were caloulated for different wave numbers,

In all calculations (Love 1944) ' '

i B w2694 1 Cm2363 Fw66l L =653
measured in 1011 dynesfem?, ‘ | | co

‘The thickness of the: tigquid layer md,qrdgptrqpic dayer in these catculatiens are twken
to be 5 km. and 4 km. respectively. . :

The phase velocities and the group velocities for different yajues of the wave number
k are given in Table I and exhibited i Fig-2. In this ﬂﬁﬁ}adllpﬁ!iw qutve for only
the. fuidameptal moge is given. - My ‘wsigipal_intention was.te ‘enloidate the dispersion
curves for several.modes, but the computation wfehefirst mode alone occupied one hour -
of machine time and so it was decided not to calculate thMmmbr the other
n odes. B o

Fig (2) shows the curves of -the phase and Q}O“P velocidied VM vary with wave
Bumber in the fundamental mode, These appear to be similar in every respect to the curves
drawn by Tolstoy (1934) for the completely isotropic case and Abubaker & Hudson {1961)
for a liquid layer overlying a transversely isotropic half space.

An infinite number of modes higher than the fundamentst existfor Lipg > ¢%, ¢ > ¢y, -

3.0

—r

2.0

"IF'r. c/e,
2

0 | i ] i._ d. -
o 2 U g j [y 8
R |t

Fig. 2 The varidtion of phase and.group velogitias of the fundamental
mode with wave number : '



It -is 10 bp expected that they will also. be simﬂ-rf-m;mm@pywwmmm
Abubaker & Hudson (1961). ' a - S _

As the wave length becomes small compared with the depth of the liquid layer, the phase '
and group velocities of every mode tend to the common value c;, the velocity of compressional
waves in the liquid. On the other hand, it is cledr from the Fig, (2) Mrat ks kh »'o'béth U
and ¢ tend to the value cg which is the velocity of the Rayleigh-type waves in the transversely
~ isotropic layer overlying an isotropic balf'space., ) . '

Variation of phase and group velocity with wave numiber- for the findamenital mode
kh c/o, U/Cy kh CICy U/C, kh C/Cy UIC,

0.10 2.81 2.80 1.7 1.58 0.70 33 117 0.87
0,20 2.80 278 1.8 "1.48 0.72 3.4 1.17 0.88
0.30 2.79 2.76 1.9 144 . 073 3.5 1.16 0.88
040 2.78 2.72 2.0 1.41 0.75 3.6 .15 0.89
0.50 2.76 2.62 2.1 - 137 - 0.76 8.7 1.14 0.89
0.0 272 2,35 2.2 1.35 0.78 3.8 1.14 0.89
0.70 263 - 1.74 23 132 079 3.9 1.13 0.90
0.80 247  1.09 - 24 1.30 0.80 4.0 1.12 0.90
0.90 229 0.77 2.5 1.28 0.81 4.1 112 091
.00 214 0.66 2.6 1.26 0.82 4,2 1.11 0.91
LI0 2.0 0.63 2.7 1.25 0.83 4.3 1.11 0.91
1.20 1.89 0.63 2.8 1.23 0.84 44 1.10 0.92
1.30 1.79 0.64 29 1.22 0.84 4.5 1.10 0.92
1.40 1.71 0.68" 3.0 1.24 0.85 4.6 1.10 0.92
1.50  1.64 0.67 3.1 1.19 0.86 4.7 1.09 0.92
1.60 1.58 0.68 3.2 1.18 0.86 48 ¢ 109 0.93
- Conclusions

The above calculations show that a layer of transversely isotropic material underneath
& uniform liquid layer and overlying an isotropic half-space has little effect on the shape of
the dispersion curves of surface waves of Rayleigh-type if we use the elastic constants of
beryl crystal to characterise the transversely isotropic layer. This conclusion might not
liold if constants appropriate to actual rocks below the sea bottorn were inserted. Experi-
mental determination of these constants is much needed, If they were available, calculations
like those here could give dispersion carves for comparasion with observations.
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