DYNAMIC ANALYSIS OF MULTI-STOREY FRAMES TO ALL

(A comparison of various methods)

by Dr. R. RADHAKRISHNAN* AND Dr. N. SUBRAMANIAN**

INTRODUCTION

Natural Frequency and Mode Shape

Classical Approach

The modal shapes, frequencies and the modal damping valuable the description characteristics of a structure. The free undamped vibration equation of motion is the basic one for solving these parameters and is given by (1)

$$[M]\{\ddot{x}\}+[k]\{x\}=0$$
 ...(1)

The natural frequencies are exactly determinable from the frequency determinant:

$$[k]-p^{a}[M]=0$$
 ...(2)

The modal natterns can be obtained from the equation

$$([k]-p^2[M])(x)=0$$
 ...(3)

where $\{x\}$ is the vector of amplitudes.

A second method is to convert the equation (1) into the mathematical eigen value problem. Defining [D] as the dynamic matrix = $[M]^{-1}$ [k], the aquation (1) reduces to the form

$$[D]\{x\} = p^{2}\{x\} \qquad ...(4)$$

The equation (4) is in the algebraic form of the eigen value problem where p is the eigen value and $\{x\}$ is the eigen vector. The solution will give 'n' eigen values which will represent the squares of the 'n' natural' frequencies of vibration and 'n' eigen vectors which will be the 'n' sets of normalised mode shapes.

Although equations (2) and (3) have a compact matrix form, the task of finding the roots of an nth order determinant becomes laborious and an electronic computer is required. The solution of equation (4) also involves mathematical techniques and the use of an electronic computer.

With frequency equation approach, it is necessary to solve the complete eigen value problem even if only a few of the modes are desired. In practice, a knowledge of the lowest or a few of the lowest frequencies and associated mode shapes are generally sufficient for the solution of many engineering problems. Approximate and numerical procedures can be used in place of the frequency determinant to obtain the requisite information only (2, 3).

^{*}Assistant Professor, Department of Civil Engineering, Indian Institute of Technology, Madras -600036. **Project Associate. Ocean Engineering Centre, Indian Institute of Technology, Madras-600 036.

Natural Policy ANALYSIS OF MULTI-STORIGHT Beller Brutan

John A. Blume's study on cantilever type buildings (4) revealed that for structures with very flexible beams, the period ratios T_1/T_2 and T_2/T_3 approaches the classical ratios of 6.27 and 17.6 for uniform cantilever bars in flexure. T_1 , T_2 and T_3 are the natural period of vibration of fundamental, 2nd and 3rd modes respectively. When the beams approached heavy rigidity, the period ratios approached the classical shear bar values of 3 and 5. Housner and Brady's study on a variety of modern steel frame buildings in Southern California (5) revealed that the fundamental periods are best described by an equation of the form: $T=a\sqrt{n}-b$ where 'a' and 'b' are the coefficients defined from measured values of periods and 'n' is the total number of stories.

the recognition of the contract of the contrac

The codes for earthquake resistant structures (6) prescribe the fundamental periods and the provisions in the codes of some of the countries are given in Table 1.

TABLE I. CODE RULES FOR FUNDAMENTAL PERIODS

S.No.	Country		Notations	Remarks
[]1. .	Bulgaria	0.19 <i>n</i>	n=Number of Stories H=height (m) of	Frames without braces
	on Techniques Strukker (1) de	0.09H/√D	building D=depth (m) in direction of Seismic force	
2 2 de la con les consideración a gon est	India Production of the Production of the	0.09H/√D	do	
The soldier,			H and D in feet	Moment resistant frames Others
	STA TO NO.	THE HE TOWN IN COME !	de la francia de la francia La francia de la	All frames
5. 3.	NewZealand	$0.1n 0.05H/\sqrt{D}$	na nga di atau na mangai —do— —do—	Frames Frame cum shear wall

S.No.	Country	Formula	Notations	Remarks
6.	Peru ·	$0.1n$ $0.09H/\sqrt{D}$		Frame Frame and few shear walls
		$0.07H/\sqrt{\bar{D}}$	—do —	Frame with some shear walls
		$0.05H/\sqrt{D}$	•	Frame with many shear walls
7.	Phillipines	0.1n		Moment resistant frames
		0.05 <i>H</i> /√ <i>D</i>	do	Normal buildings
8.	Spain	$2\pi\sqrt{\frac{\Sigma m^8 u^8}{\Sigma m^2 u^2}}$	m=lumped masses u=flexibility	all frames
9.	U.S.A.	0.1n		Moment resistant frames

MODE SUPERPOSITION OF SPECTRUM RESPONSE

Housner's average acceleration spectrum and average velocity spectrum for earth-quakes (7) have been adopted by the Indian Code (8). The maximum response values of relative displacement, relative velocity and absolute acceleration determined for a single degree of freedom system by the method of Duhamel integral (9) during the time history of earthquake are denoted by S_d , S_v and S_a . Plots of S_d , S_v and S_a against undamped natural periods for various fractions of critical damping provide the earthquake response spectra for relative displacements, relative velocity and absolute acceleration respectively. Hudson (10) has demonstrated that if damping is small, approximations resulting in the following simple relationships can be plausibly made, although no rigourous demonstration of the errors involved seems possible.

$$S_d = \frac{1}{p_d} S_v \qquad \qquad \dots (5)$$

$$S_a = p_d S_v \qquad \qquad \dots (6)$$

where p_d is the damped natural frequency of vibration.

Fig. 1 would demonstrate that the S_d values and consequently the S_r and S_a values of the different modes do not occur simultaneously. The values read directly from the

 $\times 1n$: Disp. of mode 1 at time inst. when mode n disp. is max. $\times n1$: Disp. of mode n at time inst. when model disp. is max.

Fig. 1. Mode superposition in multi degree of freedom systems.

Housner's response spectra provide only values of S_d , S_t and S_a for each mode. The total effect of 'n' modes considered at the time instant when $(S_d)_1$ for mode 1 occurs is $\sum_{n=1}^{n} x_{n1}$ and not $\sum_{n=1}^{n} (S_d)_n$, the notations of which have been explained in Fig. 1. The total effect at the time when $(S_d)_i$ for mode i occurs is similarly $\sum_{n=1}^{n} x_{ni}$ and is less than $\sum_{n=1}^{n} (S_d)_n$.

For practical designs, a knowledge as to the number of modes that are significant and a technique for predicting from the response spectra the total response values of all modes at the same time instant are required. The modes which are significant are fairly determinable from the product of equivalent single degree mass of each mode and the corresponding $S_a(11)$. On the basis of his study on Alexander Building Clough (12) concluded that on the average, the second and third modes of vibration add about 15 percent to the shear forces developed in the structure in the first mode of vibration and that about 36 percent of the second-mode spectral response value and 41 percent of the third-mode spectral response value is present in the maximum total shear force.

Biot suggested that a suitable method for mode combination is to take the sum of the absolute values of the individual modes (9). This would obviously give the worst possible combination and would thus set an upper bound to the response. Fung and Barton showed for pulse type excitations that algebraic sum of the individual modes will give a better value than absolute sum, for higher frequency responses (9). For earthquake type excitations, they however prefer the absolute sum.

Rosenblasth suggested from a probabilistic approach that the mode spectral values may be combined as the square root of the sum of the squares (RSS) which is also known in earthquake literature as Root mean square value (RMS) (9). Jennings suggested a refinement involving the average of the absolute sum and the square root of the sum of the squares (13). Merchant and Hudson suggested a weighted average of absolute sum and RSS of the form

$$\frac{\text{RSS}+m \text{ (abs. Sum)}}{m+1} \qquad \dots (7)$$

Where 'm' is a weighting factor by adjusting which the maximum non-conservative deviation could be limited to any desired level at the expense of an increased number of positive deviations (13). Husid and Ronnberg (14, 15) demonstrated that for Chimney-like structures, the RSS method used in several earthquake design codes gives a poor estimate of the exact response, mostly on the lower side. The Indian standards Institution in their code IS 1893-1975 have adopted the above idea of Merchant and Hudson to suggest a weighted average of the form:

$$r(RSS)+(1-r)(Abs. sum)$$
 ...(8)

in which r is a weighting factor having values:

0 40 for	building	heights	less	than	20	m.
0.60	•	,,			40	
0.80		99		==	60	m.
1.00			ater	than	90	m.

EARTHQUAKE RESISTANT STANDARDS

Codes of most of the countries lay down a pseudo dynamic method or modal analysis for the design of structures against earthquakes depending upon the height and importance of the structure. The Indian Standard IS: 1893-1975 lays down a pseudo-dynamic method of seismic coefficients for buildings of heights not exceeding 40 m to 90 m and a rigorous dynamic design for buildings whose height exceeds 90 m. The standards of Aseismic Civil Engineering Construction in Japan lays down a seismic coefficient method with a provision that other superior methods are also allowed. It is the normal practice in Japan to adopt the response spectrum method for lowrise buildings (upto about 10 storeys) and to adopt a rigorous dynamic analysis for higher structures. The uniform Building Code 1970 Vol. I of U.S.A. lays down a pseudo dynamic system of design taking into account the principles of dynamic response and also specify factors conecting period and other parameters of the Building in determining the lateral forces. The provisions of some of the other countries are indicated below in Table 2, with an asterisk.

The methods of mode superposition for analysis by response spectra, as laid down in some of the codes are listed in Table 3.

DISCUSSIONS ON CODE PROVISIONS

For dynamic analysis of structures, the parameters of period of free vibration, mode shape and damping values of the structure are most important. While the period and mode shapes can be determined in a rigorous manner by the aid of an electronic digital computer, there should be simpler methods available for determining them at

TABLE 2. CODE PROVISIONS FOR EARTHQUAKE RESPONSE ANALYSIS

S. No.	Country	Static	Pseudo dynamic	Modal Analysis by Response Spectrum	Rigorous Dynamic Analysis
· 1.	Bulgaria Canada	~	, X .		
3, c	Cuba	×	×		n i Gartino di Salara Gartino di Salara gressi di Salara Gartino di V oltano
5.	France		×		
6. 7.	Mexico NewZealand	×	* X	×	×
8. 9.	Peru Phillipines		× : ×	m X · · · · ·	e e e e e e e e e e e e e e e e e e e
10.	Rumania	1.5	×	×	
11.	Spain		X		
12.	Turkey	×			

TABLE 3. METHODS OF MODE SUPERPOSITIONS IN VARIOUS CODES

1. India RMS - Same as RSS 2. Elsalvador RSS 3. Peru RSS 4. Rumania $\sqrt{N_a^8+0.5}$ $(N_b^2+N_c^2)$ $N_a=Mode-1$ Response	Sl. No.	Country	Method	Notations	Remarks
3. Peru RSS 4. Rumania $\sqrt{N_a^2+0.5} (N_b^2+N_c^2)$ $N_a=Mode-1$ Response	1. 2.			1344	
4. Rumania $\sqrt{N_a^2+0.5(N_b^2+N_c^2)}$ $N_a=Mode-1$ Response			RSS		The state of the s
N _b = Mode-2	1. • en	Rumania	$\sqrt{N_a^4} + 0.5 (N_b^4 + N_c^4)$	$N_a = Mode-1$ Response $N_b = Mode-2$	District Control

least for preliminary designs. Apair from the limitation that higher periods common be obtained from the codes rules the empirical ferminar half down in the codes of various countries for determining fundamental periods will represent only percently applicable values and thus may be pour approximation for particular suffrage many putterns. Simple methods are also not available for determining the mode thapen to a good depote of accuracy.

COMPLITER ORIENTED PROCEDURATION OF THE PROCEDURAL COMPLETED FOR THE PROCEDURATION COMPLETED FOR THE PROCEDURAL COMPLETED FOR THE PROCEDURATION COMPLETED FOR THE

In equation (4), D is known and $\{x\}$ and p^* are unknown. The matrix $\{B\}$ is then defined in the following form as

> [D][B] = [B][A]...(8)

where [B] is an orthogonal square matrix and [A] is a diagonal matrix. If the above equation is possible, [A] will give the 'n' values of p^2 and [B] the 'n' sets of vectors of $\{x\}$, which are the desired solutions.

For determining the Eigen values and Eigen vectors of a building frame, the dynamic matrix [D] is first prepared. Thereafter, the procedure is to find an n^{th} order orthogonal matrix [B] with element b_{ij} , such that the transform of [D] by [B] is the diagonal matrix [A].

i.e.,
$$[B]^T[D] = [A]$$
 ...(9)

As the matrix [B] is orthogonal, premultiplication of both sides of expression (9) with [B] would result in expression (8) and hence this procedure. For the transformation of the dynamic matrix, into a diagonal matrix, the Jacobi method is used in the program (9). Side by side with the diagonalisation of the matrix [D] by iteration, the orthogonal matrix [B] is also generated under each step. Each step corrects the values of elements assigned in previous steps, until the diagonalisation is completed and the orthogonal matrix is simultaneously formed, according to the convergence criterion defined.

Based on the above procedure a computer program was developed in FORTRAN IV Language to run on IBM 370/155 machine. The input data consist of the number of storeys, storey stiffnesses and floor masses. The program generates the dynamic matrix and as explained above, the dynamic matrix is diagonalised and the eigen values and eigen vectors are determined. SIMPLIFIED EQUATIONS

It was found that most real buildings either lie in the shear zone or fall close to shear zone of frequency pattern. Hence, about the hundred and hirty five shear frames of 5 to 40 storeys, with various column stiffness patterns were analysed using the computer program. From the results, the fundamental period, Inform philorem stiffness-uniform mass shear frames is given by following expression

$$T^{0} = \frac{M}{R} (16n^{0} + 16n + 7.3)$$
 ...(10)

Hetice from the known values of K and M, the fundamental period of a uniform shear building can be determined to a high degree of accuracy from the above expression by very simple calculations (16).

ed the fire decirency fillst in defibite maripus modes of the Uniform sheat abuilding have fixed values about the first in of the fill-lose from the fundamental period calculated as about the pittink of env mode see beyont and internet, high degree of accuracy by making another frequency rations. Table, have also decree worked contributionally leading the mode shapes for the strange, having 3, to, 40 storeys and are not shown here for brevity.

TABLE 4. FREQUENCY RATIOS FOR CONFIDENCE SHEWING BRIDINGS

(8)	ма, file пастх n=5	$\begin{array}{c} n = 10 \\ \text{Te} \left[\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right] = \lambda \left[\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right] \end{array}$	in equation (9), wis known to the constraint of
the above years	1 1.00 w chi ja 2.92	alie a si fi Hamabaman	pi lagrat inc. nr. 100 ki wa. ki la. 10101200 malama.
3. 1. 3. M. S.	5191	4.89 6.69 8.34	4.95
(3)		9.80	10.44
		14.06 12.06	12.09 13.60
norging of Liverightes Moreople	i presenti di Perese Similari e Peresenta Tombari e Peresenta	12.06 13.79 (1.00) (1.	14.98 16.20
dana, sing,	ាក់ កើតទីការដែល ។ រដ្ឋបាន ក្រុម ស៊ីម៉ាំ និស្សសាស្ត្រា	-1.73% (Circ. Mar. 1) -2.09 (1) -2.09	- Did a or an ed 2004 capacity
For	the taper stiffne	The company of the contract of the contract of the state	n fil fra di Santa d

et crois list de crare units ett de codice a missi de les mans del brate le complet de les montres de complet de contratte de complet de contratte de complet de contratte de

$$T^{2} = \frac{M}{R} \left(a \eta^{2} + b \eta^{2} + c \eta + \frac{M}{2} \right) \qquad \qquad \dots (12)$$

where the values of g, h, c and d are given in Table 5. For other values of f, the values can be interpolated. The frequency ratios and mode shapes, have been worked in tabular form for these frames also and are not included here for brevity,

Dynamic Analysis of Mulli-Storey Prantes

TABLE 5.3 CHEPPICERY YOR TAPERSHERE ILDINGS

Fundaments			$T^2 = \frac{M}{K} (an^3 + bn^2 + cn + d)$			
No.	f		b	<u>d</u>		
1.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0.0000579	- Selection of the se	7.540182		
2.	1 1 13	0.0007248	5060 milini 20 13-270240 - 5 meni 32-88256 1916-71 70 BU - ilii	3.324875		
3.	11 (2)	0.0023351	13.221467 38 39 29090	3.963298		
4.	13 69.0	0.0038194	13.271370 20.11338 BT Linux X.177.	6.089831		
5.	6 (1 (1) (1)	0.0025998	75m3°1 (t) 1 15y492296 mu≥3%£ 18.7\$490 1833	7.288665		
6.	1 2 1 1 2 3 0 1 2 3 0 0 8 0	0,0012878	19 18 1 (i) April 13.551889 April 5001 8.63797 Silve those the colin sound (iii) Show those them bliv such (iii)	7.287244		
			Phillipless	7.		

COMPARISON

For comparison an uniform stiffness uniform mass 5-storeyed building frame with the following values of mass and stiffness are taken. M_i (i=1 to i=1 to i=1

Moment Reviewed frames

(i)

From Table 4, the second, third, fourth and fith mode frequencies are found out as 0.3441 s, 0.218 s, 0.170 s and 0.149 s respectively. These values tally exactly with the values calculated by a rigorous computer analysis, namely $T_0 = 0.3441$, $T_0 = 0.2183$, $T_0 = 0.1699$, $T_0 = 0.1490$. Formulae are not available in standard codes for finding the second, third, fourth and fifth mode frequencies. Moreover, they also don't take into account the moment of inertia variation of the columns. Hence the proposed formulae are more useful for any general frame and could be included in the Indian code for obtaining more reasonable and accurate results.

SUMMARY AND CONCLUSION

A brief review is made on the various methods used for predicting natural period patterns and mode superposition of spectrum response. The carthquake resistant standards of various countries are discussed. A rigorous computer method developed

EDWIG TABLE A COMPARISON OF SOMMULAE LABORY

SI. No.	Formula	Formula Fundaments Frequency in		
1	Bulgaria code	· · · · · · · · · · · · · · · · · · ·		
iologic ((i) Frames without braces (ii) With braces	• Trugger (g.)	0.95 0.36	
2.	Indian code			
8:8 ⊬ ≦8.3	(f) Moment resistant frames (iii Other frames	A STATE OF THE STA	0.5 0.36	
3. 4.42€∂€2	Canada	-	2:50	
Constant Constant	(i) Moment resistant frames		0.5	
	(ii) Other frames	-	0.362	
1880.0	Iranger 1992 NewZealand	· 大声。	0.652	
	(i) Frames		0.5	
7. 258695	(ii) Frame cum shear wall	SEEN IN THE	0.362	
6.	Peru		U.544	
ilenen m	. (i) Frame	· · · · · · · · · · · · · · · · · · ·	0.5	
7. 287244	(ii) Prame with few shear walls	2	0.652	
	(iii) Frame with some shear walls		0.507	
_	(iv) Frame with many shear walls	er om a comment of the con-	0.362	
7.	Phillipines			
	(i) Moment Resistant frames		0.5	
la om m lynibi	The state of the s	ion the line	0.362	
arz 6.94 €r.° Bed - 7 9. †po	2 Spain, 1 / 13.	•	0,286	
200 (9. 202) 2. 3. 3. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	.	0.5	
ដ ១ ៤០១ ។អា ជស្រួយសា	Lithhash Siminol		1,0044	
11.	Computer solution		1.0044	
o with the co	ายกระทำกับเกลานั้นนี้ ว่าครามีการการ แล้ว () () เกาะเกลา เพลานา เพลาะเกลเลา	11 30	รัตร์ กรุรร	

is discussed. From the one hundred and hifty five models analysed a simplified equation is proposed. It is shown this equation gives more reliable values and hence is suggested for the indian Code. Tables have been provided to find all mode frequency (seponse of any general shear frames.

REFERENCES

- 1. Timoshenko, S.P., Vibration Problems in Engineering (3rd ed), D. Van Nostrand Company, Inc.,
 Princeton, New Jersey, 1955.
- 2. Hurty, W.C. and Rubinstein, M.F., Dynamics of Structures, Prentice Hall of India. Pvt. Ltd., New Delhi, 1967.

3. Clouds A Street Stre

5. Housest, G.W., and Bridy, A.G., (Natural Periods | physician of Buildings', Journal of the Engineering Mechanics Div., ASCE, Vol. 19, No. EM 4, Proc. paper 3615, Aug. 1963,

tertinguals Resistant Destrictions of world Siles Miles deternational Association for

7. Houses G.W., Behaviour of Structures During Earthquakes' Journal of the Engineering Mechanics Div., ASCE, Vol. 85, No. EM 4, Proc. Pager 2220, Oct. 1939, pp. 109-128.

— Indian Standard Criteria for Harthquake Hosbiant Design of Structures William Standards Institution, New Delhi, 1975.

16. Hadden Per Baragan Proc of the Second World Confession in Patricial Procession and Second Procession in the Second World Confession in Process of the Second World Confession in Patricial Process of the Second World Confession in Patricial Residential Process of the Second World Confession in Patricial Residential Process of the Second World Confession in Patricial Residential Process of the Second World Confession in Patricial Residential Process of the Second World Confession in Patricial Process of the Second World Confession in Patricial Patricial Process of the Second World Confession in Patricial Pat

Joseph, M.G., 'Equivalent single Degree Structure Analogy in Dynamic Analysis of Tall Buildings with Appendix Representation of Appendix A

12. Clough. R.W., 'On the Importance of Higher Modes of Vibration in the Earthquake Response of a Tall Building', Builetin of the Selam. Soc. of America, Vol. 45, No. 4, Aug. 1955.

Merchant, H.C., and Hudson, D.E., 'Mode Superposition in Multi-degree of Freedom systems Using Earthquelyo Response Superposition Date, Bulletin of the seism. Soc., of America, Vol., 52, No. 2, April 1962, pp. 403-416.

14. Thusid, R., with Remining, C., "Exact Response and Model Superposition Techniques of Benefits Structures with the installed Evolutions, Sympassion Established Englacements of Benefits Roomer, Nov. 1970, pp. 254–261.

Husid R. and Ronnberg. C... The Estimation of the Exact Resource of Chineses, with Earthquake Estimation of the Exact Resource of Chineses, with Earthquake Estimation Symbo. 1800, 1970, III-11, pp. 389-396.

16. Joseph, M.G., and Radhakrishnan. R. Natural patterns of vibration of building frames, Journal of Sound and Vibration, Vol. 46, No. 1, 1936, pp. 15-32.

o tal agranda a Maria a Nacoria na la la care come<mark>do entr</mark>ocerca o ejeculo de Santa a espara de la ca The control of the state of the water of the water of the control The constant of the constant of this state of the constant of

$$\frac{TDP}{2T^{2}}(p-p_{n}) \stackrel{\text{if } P}{\longrightarrow} 0$$

where a in the nature period of the cartification with strong failing or p. . It can be nearly a continuity of the first particular of the continuity of the the distribution of the continuity is the only or a patible with observations.

happendies on the values of L. L. p. 181 . . . our ligarity opatterns for the paths or . integration in relation to the erossing of there we with the lines $p=p_1$ and $p=f_2$. The mosi realistic duation is that of Fig. 1.

Adirect in extraine of framilia of the contractive distribution functions v(W); from it one may then obtain the frequency distribution function $\tilde{n}(W) = -(dn|dW)$. IV is the strain energy released by the carthografic telested to I and p by

3.1