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FREE VIBRATION OF ELASTIC MEDIUM
R. NARAYANA IYENGER* AND P. NARASIMHA RAO*

INTRODUCTION

The dynamics of elastic media has been studied in the past mainly from the wave
propagation point of view (Ewing ef al, 1957). This is probably because of the importance of
such problems in fields like geophysics, wherein one mostly considers layers of infinite length
'or layers of infinite depth. However, while considering finite elastic media the approach of
the -theory of vibrations would be more informative and useful. As an example the
inplane vibrations of a gravity dam idealized as a thin rectangular mediurn can bé cited.
Also in dynamic soil-structure interaction studies the foundation may sometimes be
modelled as a two-dimensional elastic medium of finite depth and width, resting on a
rock bed. In such problems probably the most desired results are the natural frequncies
and mode shapes for the free vibration of the two-dimensional medium, These can be
used invariably in forced vibration studies. These modelling of soil deposits as elastic
continua for purposes of dynamic analysis is not new, Previously Idriss (1968) and Idriss
and Seed (1967, 1968, 1970) while studying the seismic response of soil layers, have suggested
an one-dimensional analysis for semi-infinite layers. Clough and Chopra (1966) have ana-
lysed an earth dam section as a two-dimensional elastic medium by the finite element
method. Eernisse (1966) has considered two-dimensional problems in dynamic elasticity for
which closed form solutions are generally not available. Exact solutions may not be
possible because of the complicated boundary conditions that are to be satisfied at the edges.
Nevertheless, general expressions for the eigenfunctions would be most desirable since the
forced response can be expanded as a series in terms of these functions.

Herein, the natural frequencies and mode shapes in closed form are found for a
finite elastic medium under two typical sets of boundary conditions., The medium is
assumed to be held at the lower edge against displacements and is taken to be stress free
at the top. These are infact the conditions met in practice also. For the lateral edges
two variants in the conditions arc used. An orthogonality relationship of the modes is
also presented in the sequel.

TWO-DIMENSIONAL MEDIUM

The system under consideration is a rectangular elastic medium as shownin Figure 1.
For the inplane vibrations of the medium the equations of motion are (Ewing et a/, 1957)
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Fig. 1. The two-dimensional elastic-medinm.
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Here, u(x,y, ) and v(x, y, 1) are the displacements in the X- and ¥- directions
respectively. A, i« and m are the bulk modulus, shear modulus and mass density of the
medium.
The most useful set of boundary conditions for the top and bottom edges are as

follows: .
oy(x, 0, )=Tey(x, 0, N=0 . (3)
u(x, h, y=v(x, h, £)=0 )
Here, o, and v,y are the normal and shear stresses given by
ou , av v
d‘,—ﬁ (a—x+a—j)+2|.l- bjﬂ s (5}
oy, 0
rm,=p(£+5§) . (6
.For the other two edges the following two sets of conditions are.considered:
Case |: |
40, y, O=u(L, y, t) =0 )
o0, y, 1)jex=dv(L, y, 1)/ax=0 .o (8)
Casa 2:
¥0, y, £)=w(L, y, )=0 e ()
ou(0, y, t)/ox==>0u(L, y, t)/3x=0 ...(10)

These are believed to be realistic since in practice the late-al conditions are
uncertain and probably lie in between the strict stress-free and the displacement-free
conditions,

ANALYSIS
The free vibration solution to equations (1) and (2) can be taken in the form
ulx, y, )=U(x, y) sin wt , . (11)
vx, y, )=V(x, y) sin ot .. (12)

where o is the circular natural frequency of the medium. The resulting coupled
equations for U and ¥ can be uncoupled by introducing the displacement potentials & -
and ¥ defined as :

o0 v
U=ty ... (13)
ed v '
: V=% "= ...(14)
‘The equations for ® and ¥ would be '
Vi =—[mw?/(A+2u)] O ... (15)
ViY== —[mwifp] ¥ ' (16)

Since the solutions for both the cases mentioned above are similar, case 1 will be
considered first in detail. The solutions for ® and ¥ which satisfy the boundary condi-
tioris given by equations (7) and (3} can be chosen in the form v

' ®i,(x, )=y} cos (inx/L) (17

Yilx, y=bi(y) sin(inx/L) ...(18)
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where i=0, 1, 2,.., and j=1, 2,3,....
Substitution of these expressions in equations (15) and (16) leads to

$y+@H) ¢iy==0 .+-(19)
by +(BY/A) ;=0 _ «.. (20}
Here, primes denote differentiation with respect to y, and '
o= (A 4 2) —(imh/ L) .21
Br=mauthd/p —(inh/L)? ; v (22)
Since w? is positive, « and B have to satisfy the condition
pP—a>>0 (23)

Also, since the Poisson’s ratio cannot be greater than 0.5, «® and B? cannot vanish
simultaneously, Due to these constraints, only five combinations of « and B are possible.
The solutions of equations (19) and (20) in the various cases along with the boundary
conditions given by equations (3) an (4) lead to the following frequency equations.

Case | /=0
In this case both «% and p? are positive. The frequency equation is
- cos a=0 v o (24)
the roots of which are given by
tgy=(2j—1) m/2 . (25)
These roots give the solution for the displacements are
Us(x, y)=0
Vos(%, Y)=(oxy;/h) cos (xysp/h) .. .(26)
¢ A non-dimensional frequency parameter  can be conveniently defined in the
orm , .
Oy =mahhp. .27
Now, from equations (21) and (25) it follows
Qoy=Q2+Ap) (j= = ...(28)

Case | 20, a?>0, p1>0: .
For this case, the transcendental equation leading to the natural frequencies is

4—(4af/A+A/eB) sin « sin B+(4y*/A+A/*) cos « cos PO «..{29)
where y={(irh/L) ...(30)
and A=pt—y2 | .o (31)

The eigenfunctions for the displacements in the X- and Y- directions are
Unx, Y)=[(2aBy/hA) sin (By/h)—(y/h) sin (ap/h)—Cy(A/2vH) cos (Ev/h)

—Ci(v/h) cos (ay/h)] sin (irx/L) .+ (32)

Vi, yY=l(#/h) cos (a/h)-+(ux/hA) cos (By/R)—Cy(w/H) sin (ap/h)
-+Cy(A/28k) sin (By/h)] cos (inx/L) «.(33)
where C,=[(2«f/A) sin p—~sin a«]/I(&/2v%) cos B-+cos «) .. (34)

Case | 0, a®<0, p2>0:
The transcendental equation for this case is

4+(4A,8/A)—A/A,B) sinh A, sin B+(4v*/A+A/y?) cosh A, cos f=0 oo s (35)
where By=(]a?] )12 .+ (36)
The eigenfunctions are given by
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Uix, p)= [(2ﬁAl‘r/4A) sin (By/R)—(y/h) sinkt (Aly/h) C:(AIZTh) cos (By/h)

- —C,y(y/h) cosh (A;pih)] sin (inx/L) - ...(37

. Vil(x, Y)=[A /) cosh (A,y/hy+(28,Y*HA).cos (By/h)+Cy(A,/H) sinh (A,3/h)
N +C,(A/28H) sin (By/h)] eos (iwx/L) ...(38)
where Cy=[(2A p/AY sinh-B—sinh A,}/[(A/2v®) cos Bfcosh A,] .5 (39)

Case | 740, a2 <0, pi<0:

For this case the equation leading to the natural frequencies is- ‘

4— (4A1A,/A+A/A1A,) sinh A, sinh A,+(4y’/A+A/-ra) cosh Al cosh A,-:O ..(40)
where Ag=(|BPHte. o (41),
The mode shapes are :

' Ui, 7)=[Cy(A12vA,) cosh (Agyfh)-+Ca(x/H) cosh (A,p/k)

_ —(28,A4%/A) sinh (A,yihy—(y/k) sinh (A, y/A)]'sin (imy/L) .. (42)°
Vif(x, ¥)=[(A,/F) cosh (A y/M)+(2A,v4hA) cosh (Ayy/H) .

— Cy(A,/h) sinh (A;y/h)—Cy(A/2A4Y) sinh (A,y/h)] cos (l‘n:x/L) (43)"

where Cy=[(2A,4A,v/4) sinh A,+sinh Al]/[(A/ZTg) cosh A;+cosh A} - ;'. .(44)

Case | 'i20, «?=0, g2>0 :

. .The frequency equation is ‘ STl o -
4—[(M)B/(1+Mw)] sin B+(4w7\+7\/u) 08 3—— , RPN C
The eigenfunctions are

Uii (x, 2)=[2C, (u/3) (8/y) sin (By/h)— —1C.O1h)— (1/2)(A/#)(Y/h)c05 (By/)—(x/h) smmle)

. (46}
Vu (%, Y)=[Cy+2C, (n/}) cos (By/h)— 0‘/2#) (Y’lhﬁ) sin (8y/A)] cos (inx[L) ...(47)
where . C.=[(M2p) (v*/4B) sin ﬁ]/[I+2(;.z/:\) cosB] . e "48):

Case | _ 0, 02 <0, f?= | |
The frequency equatlon for this case is obtained as . — -
4+[A,Q2+Me)(1+N/p)] sinh A,—5 Gosh A, =0 @y

The eigenfunctions dre -

Uy (x, Y)=[(v0)+Cy(v/h) cosh (A,y/h)—(yfby st (Alyih)} sin- (mx/E) --(50)
Vis (x, 1)=[(Ay/h) cosh (A, y/h)—Cy(A /h) sith (ﬁz Y =28/l —(2/h) (y/h)] cos (mﬁgfl))f
where : Cy=sinli A,][cosh AI—Z/Y’] SN 7 X

SOLUTION WITH BOUNDARY CONDITIONS OF CAsE

The solutions for ¢ and ¥ which sa.tlsfy the 'boundary conditions of equations (9)
and (10) can be chosen in the form

Dy (x, V)=1(¥) sm (mx/L) I - :t53)
Wis (X, »)=4ii(y) cos (inx/L) ... (54)

The analysis is very similar to that of the ﬁrst case.. Ouly the final résults are”
presented here. -

1 Case2, i=0:

- The frequency equation is I : s -
cos B=0r ' o , ...(55)
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This yields
Bos=Qu=(j—H = ...(56)
and ‘ 5
Uys (%, ¥)=—(Bos/ ) cos (Bo; ¥/h) - .57
Vail%,5)=0 | .. (58)

2 Case?2, i#0:

For i=l, 2,3, ..., the same combinations of «? and #* as considered for the first
set of boundary conditions are to be considered here also. It is interesting to note that
the frequency equations remain the same as before. The eigenfunctions may be obtained
from the previous solutions using the following simple relations.

Uy (x, y)oicos (inx/LY=—Uy (x, y),/sin (inx/L) ...(59)
Vi (x, Yhafsin{irx/L)y="Vi; (x, yh/cos (imx/L) ...(60)
Here the subscripts 1 and 2 refer to case 1 and case 2 respectively.

ORTHOGONALITY CONDITION

For the present problem the eigenfunctions satisfy an orthogonality condition of
the type

Uy (%, ) Un (5, )+ Vg (%, 3} Vielx, p)dx dy=0 .. .(61)

© e, 3

for itk or j#l
Since the eigenfunctions are of the form
Uy (x, »)=Uy(y) sin inx/L ...(62)
Ve (%, ¥)=Vy () cos inx/L ...(63)
a further orthogonality relation of the form
k

j‘ Wis Ui+ Viy Vi) dy=0 ...(64)

is valid for every  and j¢k. The proofs of these assertions are very straight forward
and hence they have been omitted here.

NUMERICAL RESULTS

The various transcendental equations leading to the natural frequencies have been
solved numerically on a digital computer. Detailed results have been obtained for the
frequency parameter 0 over a wide range of values of if/L. Five values of A/, namely,
0, 2/3, 1, 2 and 9 have been chosen for the numerical work. The results are presented in
figures 2 through 6. The last value of A/, namely, 9 corresponds to a Poisson’s ratio
value of 0.45. [This is supposed to representative of a soil medium]. The frequencies
corresponding to the modes associated with {=0 have also been shown in these figures.

DISC'USSION AND CONCLUSIONS

The analysis shows that for both the types of boundary conditions the natural
frequencies for /0 are governed by the same transcendental equalions although the
eigenfunctions are different, However, the ordering of the natural frequencies would be
different, for the two cases. Thiscan be seen from figures 2 through 6. The fundamental
frequency for the case 2 type of boundary conditions is governed by the =0 mode, whercas
this is not true for the other type of boundary condition.
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Fig. 2. Variation of Natural Frequency;
Polsson’s ratio=0; 3/u=0; — equations 29, 35, 40
Oequation 45; —»—. equation 28; — — ~—equation 56,

»

Fig. 3. Variationr of Natural Frequency:
Poisson’s ratio=0.2; afp—2/3; — equations 29, 35, 40;
Uequation 45; — . —.equation 28; - — —equation 56.

. .
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Fig. 4. Varlation of Natural Frequency;
Polsson's ratio=0.25; 3/p=1.0; — equations 29, 38, 40;
Dequation 45; —«—.equation 28; — — —equation 56.
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Fig. 5. Variation of Natural Frequency;
Poisson’s ratio=1/3; iju=2.0; — equations 29, 35, 40;
Clequation 45; —«—+—equation 28; — — —equation 56.

. The non-dimensional parameter #/L always occurs in the form ih/L. With this in
view the results have been shown against /L and Lfih. As the parameter ih/L tends to
zero, all the natural frequencies converge to the values corresponding to =0,
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Fig 6. Varlation of Natural Frequency;

Polsson"s ratio=-0.45; »/u=9.0; — equations 29, 35, 40;
[;lequatlon 45; — «—«—equation 28; — — —equation 56.

An interesting observation in this connection is that for the boundary conditions of
the second type given by equations (9) and (10) the natural frequencies corresponding tc
i=0 are same as the frequencies of a semi-infinite layer as studied by Idriss and Seed
(1968) using an one dimensional theory.

Apart from leading to the natural frequencies the ' free vibration studies are of
immense importance in forced vibration analysis. In earthquake engineering problems,
the external excitation appears generally in the form of a time dependent boundary con-
dition. For the two-dimensional medium considered herein, a useful result would be the
response and stress distribution for earthquake excitations at the edge y==h. Such a study
is in progress at present. :
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