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DYNAMIC ANALYSfS OF PLANE FRAMES WITH
‘ SHEAR WALLS

B. K. GOYAL,* S.P. SHARMA" AND S.K. AGARWAL*

INTRODUCTION

With the increase in heights of multistoreyed buildings and revision of seismic coeffi-
cients in the country modal analysis of tall buildings is desirable. This paper presents an
efficient method for the dynamic analysis of frames considering effects of bending, axial
and shear deformations. The distributed mass of vertical members is replaced by lumps
at beam levels. Other assumptions, remain the same as in the case of a static analysis.
(Goyal and Sharma, 1968)

FORMULATION

Generation of stiffness matrix for plane frames with shear walls has been discussed
elsewhere (Goyal and Sharma, 1968) and is briefly summarised below.

Figure 1 shows a typical plane frame with shear wall. To explain the assembly
technique the derivation of the stiffness matrix for the first column only is presented, others
can be treated in a similar manner.

Let K,, and K, be the stiffness matrices of a member connecting joints 1 and 2 in
an absolute coordinate system. Using the standard assembly technique, equilibrium of
joints 1 to m can be written as shown below. Lateral loads acting in X-direction only are
considered.
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Fig. 1. Joint Numbering and Coordinate System of a Frame
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where,
dr={ur Ve al’}

and
Si={p. 0 0}
are the deformations and the force vectors for a joint . This matrix may be written in

the following form:
k1131+ku zzFx

where
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81={d1 d’ + . dm}
So={dmty dm+s - . dym}

and :
F={ifr - . . fu}

It would be noticed that 3, is the deformation of the rth column/shear wall and F,
the loads acting on it. It is assumed that F, to F,_, are zero—all lateral loads act only on
the last vertical member and is denoted by F.

F={prty 0 0 py 0 0 . . .py, O 0},
where r=(n—Dm

The conditions of equilibrium for the entire frame may now be expressed as shown
below
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Foygdy Ky g3y =0
Ky 8y HhygBy i3, =0
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From Equation (1a) -
By=—ki ki 3y
Substituting 8, in Equation (1b)
[kag—kqy k32 Ky 8,+Ic., 8,-0

oF ' %o 83+ Ky 8:"‘."0
where ’

Kyy=Kkey—ky, k o Kae

' Procoed.inﬁ similarly

L 53+Es|84= 0
where '

Eﬁa=kss—kal E;l Ky
and finally

Eﬂ—] -] 8"_1 +kn—1 " 8;|=0
where

ED—I u—1=ku -1 a—-l—kn—1 =y E;—‘ 8 x—é_’hh-} n-| "‘ .

or 85—1"—— .-:.l:‘] n=1 ka—ll a.l

Substituting for 8,_, in Equatlon ()

{kll—k. -1 1-1 N~y kl-l .] 8,|=F .

or " Kndy=F
Since F has non zero component in x direction only Knns On and F can be

rearranged in the form | .
woalyel e

U={ur+1 "rh- . .ur-q-'"} o
d={vrsy 9r+1 Vria ﬂrﬂ Vram  Orym}

P={prs1 Pris.. .Drim}; r=(—1m
Partitioning the matrices of Equauon (2) and eliminating for 95 it can be. shown that

d=—An 4, U o 3
AU=P B B C)

where

where

A—Au“Au ng Au : -
_[4] is thus the stiffness matrix of the franie for ‘horizontal deformations . For

the purposes oLdynamm analysis the masses are lumped at storey levels reducing the -
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number of unknowns to m instead of the number of joints in the frame #m. The mode
shapes and natural frequencies can now be found by computing eigen values and eigen
vectors of the matrix

[M—+ A M—*j

where [M]is the appropriate mass matrix. Horizontal forces are then calculated giving
the vector {P}. The horizontal deformations {U} of the nth vertical member are obtained
using Equation (4). The other two deformations for this vertical member {¢} are available
from Equation (3).

Rest of the deformations may now be obtained by back substitution. Bending
moment, axial force and shear force at member ends can then be calculated.

COMPUTING TECHNIQUE

Tridiagonalisation is used to obtain the condensed stiffness matrix of the frame.
This procedure reduces the storage required substantially. Stiffness matrix for one vertical
member need only be stored (Ku, i=1...m, size 3m x3m). Matrix for beams K, (i=1,
...1, =1, ...m) is a diagonal matrix of 3X 3 submatrices—one corresponding to each
beam. Thus only the submatrices need be stored.

SEQUENCE OF COMPUTATION
Matrix K, can be written in the form

B [B]](SXS) ]
[Baltgxa ’
Kl’=
|- [Bal J(snxan)
Let X! be defined as given below
B kll k12 . . . klﬂ B
k!l kgz . . . k!”l
K7l= . . . .
L kyy ke . . knn
Hence
kn_ BI klﬂ BB M . klﬁ B"
koyBy kyB, . . Kon Bn
Kt K= . . .
kuB, kuB, . . kmB. J
where
['B’]E{k; mtr

Since this matrix is required for back substitution it is punched out or stored on
tape/disc for a subsequent use. Further,
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It can be easily shown that

[ B{kyB, B{ kB, . . . Bl kywBn)
Bl ky B, 11kwB, . . . BIk,B,

Ky Ki'Kypo=

L B kuB, BT kpy By . By Kpq By | (%)

Equation (5) thus gives an algorithm for calculating the matrix product required
for the generation of matrix [A] used in equation (4).

Intermediate output is used in back substitution.
ILLUSTRATIVE EXAMPLES

Two examples have been solved using this approach. Experimental results were
available for the first in the literature. The second one is chosen to demonstrate the
utility of the method for a frame likely to occur in practice. Eigen values were computed
using the Jacobi Classical Transformation Technique.

EXAMPLE 1
Tso and Chang (1971} have conducted an experimental investigation on coupled shear
wall model made out of plexiglas. Value of the fundamental frequency with only inertia

forces acting has been reported. They, however, have not commented on the probable
cxperimental crrors.  Figure 2 shows the dimensions of the model. Effect of local wall
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Fig. 2. Details of Frame Solved in Example 1
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deformations has been considered as recommended by Michael (1966). The predicted value,
using the proposed approach, is found to be 63.29 c.p.s. while the reported experimental
value is 58.4 c.p.s.

Tso and Chang report that their predicted value was 5% above the experimental
value. Value obtained by the proposed simplified approach is about 84 % higher than the
experimental value. It would be seen that the simplifying assumption which resulted in
a drastic reduction in storage requirement and computation time has given reasonably
accurate results,

The difference may also partly be attributed to the replacement of distributed mass
by discrete masses. This effect would be prominent because of the absence of floor
loads. It is expected that in an actual structure carrying sizeable floor loads the error
would be smaller.

First three mode shapes and corresponding frequencies are shown in Fig. 3.
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Fig. 3. Mode Shapes and Frequencies for Example 1

EXAMPLE 2

Figure 4 shows a typical frame having a shear wall and columns—a configuration
likely to occur in practice. First three mode shapes and corresponding frequencies are
given in Fig. 5.

CONCLUDING REMARKS

The proposed approach permits calculation of mode shapes and frequencies of
plane frames with shear walls and subsequent determination of member forces with a
relatively small computational effort. Calculations can be carried out even on medium
sized computers. Accuracy of prediction is expected to be sufficient for design purposes.

The Fortran programme developed can handle 18 storeyed frames (number of bays
is not limited} on an IBM 1620 (60K) machine. Frames with shear walls of variable
cross section can aiso be analysed.
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Fig. 4. Details of Frame solved in Example 2.
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Fig. 5. Mode Shapes and Frequencies for Example 2
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APPENDIX—-NOTATION

x, y—Cartesian Coordinate system
6 —Rotation about normal to x—y plane
u, v—Translation along the x and y directions respectively
de={u, v 0;}
the joint deformation vector of r
8]={dr+1 drﬂ- . .dr+m}, r=(i—1)m
the deformation vector of a vertical member i
pi—Load in the x direction at joint i
F—Total load vector acting at the last vertical member
[k, ] —Stiffness matrix of the member ik

[M]--Mass matrix
(B )=[Kr mtr]



