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VIBRATION OF SHALLOW SPHERICAL SHELLS
RECTANGULAR IN PLAN

B. BHATTACHARYA?!
INTRODUCTION

Vibration problems in engineering have got tremendous importance now-a-days.
Shells belong to the most useful class of structures and as such, their dynamic behaviour
is definitely worth investigating.

The basic equations of equilibrium or of motion of shallow shells® consist of two
coupled fourth degree partial differential equations in terms of a stress function and the
normal deflection function. These equations were used by Nowacki® to study the free
vibration of shallow spherical shells. The Marguerre! equations as well can be used
suitably for shells rectangular in plan. These equations of motion of a shell element
consist of three equations in terms of three displacement functions w, v, w. As such, in
solving the system it will be required to use all the three cquations simultaneously. It has,
however, been proved by the.author?, without any simplifying assumption, that the basic
equations of equilibrium (and hence of motion) for a shallow spherical shell can be simpli-
fied to the system '

aw
vu = 7\5, )
ow
Vv - A‘a};:
h 0*
Vowtutw=— 58 0
where, v=L aplacian operator,

v=density of the material

h=thickness of the sheil

g=acceleration due to gravity

D=flexural rigidity of shell element,

v=Poisson’s ratio,

t==time, E = Young's modulus,

R=radius of curvature of the shell

and, A=(1+v)/R, p2=Eh/DR?

Now, it is obvious, that the third equation of the system (1) is independent of the
other two, and it represents the equation of motion of a thin plate on Winkler type elastic
foundation if the spring constant is assumed to be equal to Eh/R2. For investigating the
transverse vibration of the shell equation of the system (1) is adequate by itself,

NATURAL FREQUENCIES OF VIBRATION

The natural frequencies of vibration of the shell under various combinations of
boundary conditions are computed below. The vibration being harmonic, displacement
function w can be assumed as foliows,

w (x’ Y t)':'w (x: J’) ei.ﬂ (2)
where, W (x, y)=unknown function,
and, p=frequency of vibration,
i=na/—1.
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Inserting the equation 2 into the last equation of the system (1) :

VW —W=0 (3)
M ,
where, pi= gﬁ pr—p?
Cast 1 1 All edges simply supported
Assume
W (x, y)= Zz Ay 5in 22X gin 2T )
a b
Mma p=Q

where a, b are rectangular plan dimensions.

Inserting expression (4) into the equation 3, the following expression for frequency of
vibration is obtained,

g 2qp nﬂ 242 Eh
A=g{o(F+ 5 )+ B )

which will give the spectre of natural frequencies of the shell. The lowest value would, of
course, be given for m=n=1.

As a particular case, the spectre of frequencies of thin rectangnlar plate can be
obtained by letting R-— co. In this case,

min®  pip?
=T T gD
Pmu ( 02 + bg ) Y_h ) (6)
which conicides with the well known result.?

Case 2:  Two opposite edges are simply supported
Assume,

. mmx
W (x, ») =2Ym (») sin —= M
ma=0
where Y, is unknown function to be determined using appropriate boundary condi-
tions along edges y=0, y=5, whereas the edges x=0, x=a are taken to be simply
supported.

The expression (7) when inserted into the equation 3 will produce the differential

equation,
2 () vie {(F) -] vamo ®
Assuming that, m?n?/a? >8,
Yo (0)=Am sh (A p)+Bum ch (M) +Cop 5B (mp)+ D, ch (m) ©
where, A= \/ nﬁ;ﬂ
a2
e
Bom= %—--l—p

and, A,, B,,, C,, D,,—arbitrary constants.

If, in parﬁcu;ar, the edge y=0 is simply supported and the edge y=>5 is clamped, the
boundary conditions will be as follows, :

Yo (0)=Y", (0)=0
and Yo (B)=Y, (5)=0 (%a)
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These conditions when used in the expression (9) will give four homogeneous equa-

tions containing the four unknown constants of integration. The determina_nt of these
coefficients made equal to zero gives the equation for determining frequencies of vibra-
tion. In this particular case, the frequency will be given by:

#m tanh (Anb) = A, tanh (u,.b) (10)
If however, m?r*/a® <B, the solution of equation (8) will become

Y (3) = Ap, sin (Any) + B,.cos (A3} +
+Cp 5h (£mY)+Dpy ch (pmy)

where, An=+/ —mw*[a*+P

The frequency of free vibration of the shell satisfying the boundary conditions (€a)
in this case will be determined by:

Km tan (A,b)=2,, tanh (u,,5) (10a)
In the case when m'nfa?=

degeneracy occurs, since the frequency of vibration is directly obtainable regardless of
the shell boundary conditions which contradicts the physical concepts.

Case3. Al edges clamped

The approximate method namely the variational method due to Vlasov-Kantorovich?
shall be used here.

_NON €08 (En X)) [ _ 005 (Eny)
Assume, W(x,y)—-z ZAm”{I_W}{I-—W} (ll)
mel) p=0
where Em=2mn/a, En=2nx/b.
Substituting the expression (1 1) into the equation (3), multiplying
by {I_t:os () { 1—.c08 (E..y)}
cos (mr) || cos {nr)

and then integrating to the whole plane-area of the shell, we fivally get the expression for
the spectre of natural frequencies of vibrations:

s _ & [Df s trg . Eh :
rhn = S50+ 2 1 31 )+ = 2
Making R — oo, the frequencies for plates, clamped along all sides will be obtained.

FORCED VIBRATIONS
In the case of forced vibration, the last equation of the system (3) would become:

hoow 1
VVwtew+ g S = S ety (13)

where, .
q(x,y,t) is the external arbitrary load depending on time.
The solution of equation (13) can be written as
W (xy.0=2 W;(x,)¢; (£) (14)

where, W, (x,y) shouid satisfy all the geometrical as well as statical boundary conditions
and, ¢; (#) should satisfy initial conditions,

Substituting expression (14) into equation (13), and using the relation (3) following

equation is obtained ‘
h P . 1
E Pl {Mpf ¢ }= BI(xr.0 (15)



88 Bu fetin of the indian Socisty of Ebrﬂ.quaké Technology

The equation 15 is now m: ultiplied by W, and the product so obtamed is mtegrated over
the surface of the shell. This gives:

di+p} di=Qu (D) ) (16)
where, Q=i [[eerowenar an (162)
with, E:S I W2 (x,y) dx dy.
The solution of equation (16) is given by:
b (£)==A; cos p; 1+ B, sin Pd-i-"]—.er (1) sin p(1—1)dr (17

where A; and B; are constants of integration which are to be determined from the
initial conditions. Supposing that these conditions are:

w(x,y,O) B(xsy)s w(x,y,O) ‘["(xsy)
the use of relation (14) will give:

ﬂ(x,J’)-——Z.‘Wt (xsy)?i (0) } . (1 8)
$(x,3)=2ZWy(x,¥); (0)
l\gullltiplying these by W, (x,y) both sides and integrating over the whole surface of the
shell,

E = [o0s) Wit pax ay a9

E&(O)=H¢(x,y)wmx.y)dx dy
Using the expression (17} in (19), given,

A @, Bi=as O
and therefore :
Ay f” 0 (x, ¥) We(x, y) dxdy |
B [[ 4o Wity dr dy (192)

PARTICULAR CASES
Case 1. Simply supported shell with sinusoidal load

Here, qg(x,y, h=q(x,»)sinQt,
Assume:
W(X,J’)=z z A, 8in MEX in Y
a b
Lo m=0 np=0
L ‘ a b
so that E—TI ] sin? =% sint T2 n'rry dxd
Lo - oJo . a
N _gsin Ot
and Qumn (t)—EYhA [ i q(x, y) sin -5— sin 222 dxdy
gsm Qf Bow S

ﬁ{h Amn
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1
where, . - Bm.n=“—,;in' when q:(x, y)=con‘star1_t
and ’ ' " Bua= 4: sin ™% sin "%8
when there is a point load Psin Q¢ at (u, 8).
. "gB,,.,,I*. N
Moreover, Pmn ()= YA ), S0 Qt sin' p, (1—7) d. ...(20)
From equation (20) it follows,
B,.. sin Qt
' boan ()= Th A O .20
80 that the amplitude of vibration wnll bo glven by:
B.n mrx . A - o
W (x, V)= hz z Mn_QJ sin —5 - sin —b—}f . (22)
R m=0 n= .
Case 2. Clamped shell with sinusoidal load
Here again,
g (x, ¥, =g (x, y) sin Qr
Assume: :
e A cos (EwX)] f, _cos Eup))
w(a,y)—zo Z’A {i- — Hl s
0t L)
o e cos (£nx) cos (§ny)
0 that, ' "L.u ] - { ~cos (Mﬂ)} {I cos () } dx dy
=9/4 ab
_g8inQt ok -" b2 cos (EnX)} ) cos'(E. )} ’
s QO (0= b LS ren (-GG H- G ek
g B..
h Amn " sin (¢ . . .(23)
where,
B,,.,.=gq - for  gq(x, y)=constant
__4r cos (£, o) { cos (£, 3)
9ab{1 Encos (mr:)} I- £ cOs (nm) --(24)

for a point load P sin Q¢ at (, 3).
Proceeding as before, the amplitude of wbratlon is obtamed as;
vrm COS (E.»m X) €os (Eﬂ J’) - '
WeEN=E> > 7 e {1 oos (mr) } { cos (nmy 3
CAsE3.  Simply supported shell witha suddenly apphed patch load

Let a suddenly-applied uniformly distributed load in the form of a rectangle (Fig.'3)
act on a simply supported shell. ' '
Thus, .

a—nf2 < x < u+n/2

q(x’ » =g H (), for '{v g2 <.y < vief2
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and, ' B .
O<x <2, i422< x<a ' (26)
0<y<v—ef2, v4e2 <y < b

where H (1) denotes the unit step function and g;=constant. Substituting equation (26)
into equation (16 a), and using the function W (x,y) for the simply-supported case,

g 16q, H(1)
Qe (0=24 - T A;Jnﬂmn

qa(%,y, )=0, for

- ‘ T, (@ T, (V) T, (”l) T, (=) e -(27)
) whére,
T @=sin 77, T, (esin 7

. M oot e
Ty (n)=sin -2—-1] T, (¢)=sin 73
Subst:tutmg equatlon 27N into équation (17),

bn ()= £ 220 (= °,‘,’§,,i’;;'; @ T, T () T ©

Thus, the final solution would be:
W (x, 3, t)—z ZG,,,,. (t) sin 7% gin 'L:Z . .29

Gun (D=Agn mn (1) o .(30)
The bending momerit at any section will be given by:

! . !
M,=D ZZ('.’f_’i v "_%f) man () sin = sin r_:;:y
' % 22 .
- M,<D zz(”’“ i " G (¢) sin 72X sin'lg_y -..(3)

Case 4. Clamped s!xéll with.a suddenly applied patch load
Proeeeding as before,

g qH @R (e _ c0s (%) cos (£.y)
Qrn ()= Eyh 3‘3mﬂ I J. —oal  cos (m) }{l cos (’"‘-’) dx dy

ihqfu?) {"J— T, (@) T, (n)}{t—T,, () Ty (2) }

where,

—afg

where,

oo N K
E%; » Ta (M)=sin (& %/2)

T =g g T (@=sin @2

Equatlbn an will be. give, }

‘& 49, (1—cos p, t)
'ﬁmn() h 903 mm: Foun (u,v I, €)

whetp,~ IR ' an-‘"-{"}- -TITQ} {s"-_‘TsT-l}
Thus, the final solution would be: 7
A cos (£, x) cos (E,, ) '
WG 1) zz Goun (1), { o5 3 }{ <38 (mm) } .32
where, Gmn (t) Am!’l 95m'l (t)

T1 (ﬁ) =
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NUMERICAL RESULTS

Two shallow spherical shells with the given data

v=0,12, .E=2x 10° kg/m?, ,

2=9.81 m/sec?, y=2400 kg/m?, A=0.1m
have been considered. Their plan dimensions are 10x 10 m and 10mx 6m. Figures
1 and 2 show the change in natural frequency- (fundampntal; due to the change in
radius of curvatures of the -shell for simply-supported: as ‘well as clamped boundaries.
It Ls ol.llmous from the figures that eﬁ'ecﬁ of c]ampn’xg condition is more marked when radius
is higher ‘

24

a=tim.
0 p=i0m.
% - “
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{ 12 A
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O
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H
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Fig. 2—Frequency Versus Radius

_ Figures 4.and 5 show the time history. of ccntre-deﬂectmn ofa IOmx Gm sh%ll under
a suddenly applied patch load with :
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Fig. 3--Rectangular Patch Load
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Fig. 4—Centre Deflection vs Time " Fig: 5—Centre Deflection vs Time
(Simply Supported) (Clamped)
fi=af2, v=>hb2

n=2m, e=1.2m

the other parameters being as before. It is extremely necessary to consider a iarge number
of terms in order to get very accurate results, which is possible only on fast computer.
The figures here represent only the qualitative aspect of the dynamic response of the shell,

The solution corresponding to the clamped-boundary-case converges quite fast,

CONCLUSIONS

1. The basic equations of motion of shallow spherical shells rectangular in plan
can be reduced to the system (1).

2. The spectre of natural frequencies are to be determined using formula (5), when
all the edges are simply-supported, formula (10), when three edges are simply
supported and the fourth clamped, and formula (12), when all the edges are
clamped. . g

3. Amplitudes of forced vibration are to be determined using the formula (22) when

all edges are simply-supported, and, the formula (25) when all edges are
clamped. '

" #: . The dynamic response of thin shallow’ spherical sholls rectangular in plan is
completely solved under arbitrary homogeneous boundary conditions, -
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