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AN INVESTIGATION INTO VIBRATION OF STACKS
M. MUKHOPADHYAY"®, 8.5.DeY*, anD B.R. Sen®

INTRODUCTION

The vibration of chimneys has been studied by a number of investigators. Chimneys
are treated as vertical cantilever beams. When the beam vibrates, there are bending,
shear and rotatory inertia effects. For beams which are long as compared to the cross-
sectional dimensions, bending effects are predominant and analysis of such cases has been
carried out by Housner ®), Chimneys have been analysed based on the above three
effects by Chandrasekharan.!’” The mass of beam in addition to its movement in the
lateral direction also exerts a downward force. This vertical load may have some influ-
ence on the vibration characteristios of the stacks. The purpose of this paper is to study
the extent of the influence of the vertical load on the natural frequencies and mode shapes
of the chimneys,

~

EQUATION OF MOTION

Fig. 2 represents the freebody diagram of an elementary length of chimney shown in
Fig. 1. The following equations may be written:
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A Vertical Cantilever Free Body Diagram Chimney Lebelled at Discrete Points
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where
» = total deflection of the beam
¥» = contribution to the deflection of bending moment (including rotatory inertia)
¥ = contribution to the deflection of shear deformation
V == shear force at any cross-section
M = bending moment at any cross-section
E = modulus of elasticity of the beam
I == morment of inertia of the cross-section .
N = axial force at any section x of the beam
p = mass per unit volume
m = mass per unit length = oA
= shape factor in shear
A = cross-sectional area of the chimney
Equations (4) and (5) have been obtained by considering dynamical equilibrium of the free-

body of an element dx of the beam (Fig. 2). Equations (I} to (5) can be combined into a
single equation as given below for uniform beams,

El 5 oG Foar TrAGE el + N e =0 -0
It is known that
N=PgA (I_x) ¥ _”(7)
dN
and dx pgA -.(8)

Solution of the Eq. (6) in the following form may be assumed

Y=Y sin (pt — &) .9
where Y is a function of x only.
Substituting the value of y from Eq. (9) into Eq. ( 6), the following equation results.

d'y &Y dy EI dry
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The above equation contains fourth order differentials on the left hand side while the
right hand side contains the eigenvalue parameter p? and consists of terms upto second
order differential. Equation (10) has to be solved subject to the following boundary con-
ditions. ' '

BOUNDARY CONDITIONS

At =0
y=20 w.(11a)
d b _
an i ...(11b)
At X =
dzy
M=EI—M=O . (12a)
d®y
On substituting Eq. (9) into these boundary conditions one gets
at x=0

Y=0 ‘ w(13a)
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dy
and ax =10 ..{13b)
and at . x=1
dry
EXT= 0 . (14&)
a3y
and t—fx—az 0 . .(14b)

METHOD OF SOLUTION
Finite Difference Equation

Solution of Eq. (10) can be obtained by numerical approach to the problem based on

the replacement of the differential equation by the corresponding finite difference
equation,

The chimney under consideration is shown in Fig. 3. The chimney is assumed to be
made of a finite number of regularly spaced grid points. Figure 3 shows a portion of a grid
where the pointiis a typical interior point i.e. neither the point itself nor any of the
adjoining points fall on any kind of boundary. When the chimney deflects, a section
through the points i — 2, i =1, Li+1,i+2is showninFig. 3; his the finite distance
between the two consecutive points. Y., Y, ..... are the corresponding horizontal
deflection of the points ¢ — 1, 7..... In the above formulation standard central differe-
nces with constant order of truncation error has been used,

Transformed Equation

The deflection at any particular point can be expressed by a finite difference -equation
in terms of the deflection of the adjoining nodes. This can be presented conveniently in
the form of a computational molecule given in Eq. (15).

[ E-EEEa 6 v [ BB ] .

where Ci— = EI
Ci-y = —4EI + NA? - } wAR®
C: = 6EI — 2NA2
Ciyy= —4EL 4 N2 — } wAR?

C;‘+3 = EI
EI
B =~ (g +41)
Elp
_. _{Elp
By, = (—m + ¢l )
A —_ p3h2
: P = natural frequency ...(16)
Finite Difference Form of the Boundary Conditions
At x=10

Y=0 ..(17a)



58 Bulletin of the Indian Society of Earthquake Technology

OD—-)] v-o . (1Th)

At x=L'

[O—E-0O)v-
[ ] Y=0 ...(18b)

Outline of the Solution

By using Eq. (15) one can \;frite the finite difference equation at each discrete point
including the boundry points. Lebelling the discrete point as shows in Fig. 3 and subscrip-
ting the unknown displacements and the known quantities with the label of the associa-
ted discrete points, the force-equilibrium Eq. (15) which is valid for the whole domain is
reduced to discrete eigenvalue problem formulated as a set of linear algebraic simultane-
ous equations.

Using the finite difference representation; Eq. (15) with boundary condition is placed
into the matrix form : '

[CI{Y} = A[B]{Y} «.(19)
where[C] and [B] are square matrix of order n, where n is the degree of freedom of dis-
crete representation and {Y}is the eigenvector or the horizontal deflection of the defleoted
shape. Materices [C] and [B] are unsymmetric in nature-because the governing Eqg. (15)
contains the coefficient involving the independent variable w. Thus the solution of the
system of equations as given by Eq. (19) containg complex eigenvalues,

On premultiplying by [B] -1, Eq. (19) reduces to :

(B {C] — AI){Y} =0 +(20)
The values of A are obtained by using QR transformation method.(
Corresponding to the values of A, {Y} is computed.

DISCUSSION OF RESULTS

The cantilever has been analysed for three different slenderness ratios keeping the
material and cross-sectional properties same in all three cases. The chimney has been
considered as a beam having uniform crosg-sevtion. The following data were assumed

E = 1.5 x 108 kg/om®
I=6.0 x 10° cm¢
w = 0.0024 kg/cm?
s = 0,0000244
A = 30000 cm?
w=78
Three different spans considered were 705¢cm, 2820cm and 7050cm so that slenderness
ratios were 5, 20 and 50. :
The following four cases wete studied for sach of the above slenderness ratio :
Casel  fffect of bending, shear, rotatory inertia and axial load
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CaseII  Effect of bending, shear and rotatory inertia
Case III  Effect of bending, rotatory inertia and axial load
Case IV Effect of bending and rotatory inertia

The analysis for each category was based on five discrete points; Entire analysis was
carried out by IBM 1620 at the Computer Centre at L.I.T., Kharagpur, by a suitably deve-
loped program as mentioned{®), .

The first three natural frequencies and mode shapes for the above four cases for sach
slenderness ratio are given in Tables 1,2 and 3. The mode shape coefficients given in the
Tables 2 and 3 corresponded to the values of one-fifth point starting from the fixed end.

A look into Table 1 reveals that on comparison between case I and Case Il for
chimneys having slenderness ratios of 5 and 20, axial force has absolutely no effect on the
natural frequencies and for more slender chimney (//r ratio = 50) the axial force has only
marginal effect, the difference in fundamental frequency being 2.5 percent. Same remarks
are valid when Case ITI and Case IV where shear effects were not considered, have been
compared. As is obvious elimination of shear did not have appreciable effect on slenderest
chimney but considerably increased the natural frequency for the shortest chimney.

TABLE 1.
NATURAL FREQUENCIES OF CHIMNEYS

1st Mode 2nd Mode 3rd Mode
Length Percent Percent ~ Percent
cm exact exact . cxact

Case I 705.0 59.990 100.0 326.95 100.0 765.99 100.0

2820.0 10.750 100.0 59.28 100.0 140.02 100.0
7050.0 2,190 100.0 12.33 100.0 29.65 100.0
Case I 705.0 59.9%0 100.0 326.95 100.0 765.97 100.0
2820.0 10.78 100.0 59.28 100.0 140,02 100.0
7050.0 2.24 102.5 12.41 100.5" 29.65 . 100.0
Case I 705.0° 244.5 407.7 1094.50 336.0 2082.50 272.4
2820.0 15.00 139.5 - 82,10 138.4 . 191.90 136.6
7050.0 2.36 107.9 13.23 107.2 31.58 106.2
CaseIV 705.0 244,52 407.7 1094.53 336.0  2082.62 272.4
2820.0 15.00 139.5 82.20 138.5 192,00 136.6
705¢.0 2.40 109.5 13.30 . 107.9 31.80 107.2

For longest chimney, mode shapes for beams with and without axial force differs
only in fourth decimal places for first three modes. For other two chimney similarity is
more pronounced. _

No attempts has been made to improve the resuits, by Richardson’s e}tra{:olation
technique; because from this limited study conclusion is obvious ie. the axial load has
no effect on the dynamic characteristics of the chimneys.
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CONCLUSION

The weight of the vertical stacks acting downwards has only marginal effect on the
lateral vibration of chimneys and as such can be neglected for all practical purposes.
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