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diffioult to find the mature of the forcing function, If the oa‘b le suspénded systems are
located in seismic 20nes or other areas ot;h:ch have frosppm bourhood they
would be required to resist the effect nzﬁn;nar ksts as the case
may be, It is, therefore, important to be able to pmhqt ynamlc response of such
systems under variaus types of dynamic loadms. o

' The example of aérodynaiic collagse of Taeomi Natrows Bridge in 1940 was mainly
duetothe excessive deﬂectionwmm L 'onal vibrations -with only moderate
velocity of wind. Similar failures are evidencéd by many examples of suspension buidges
. ﬁthe eaﬂ;& peno;lls Consldergbieth amm;ﬁt of w% be;?done since btrl:; ’l‘aoomnd

arrows bridge collapse, to study ew suspensiop bridges and a

good deal is known on thﬁ‘lﬁ)&t y the phendmenon of galloping
of electric transmission cables has been investigated for a long time now. - However, no

such fa:lure~has been rép orted in suspended mofaystems sofar bmmethmhm boen

ss:ble that oblets of | > instability; & '
Miﬁi ¢ofle Up sakﬁmdedroorm Thmﬁm; hereummwhxmcb

_ worktobe mtgifﬁa study. ‘of v:bratlon chnmwiim of suohsymm: 'mepmm -

paper is éh

oLy

. Y
EEECERE )

LN

2. Rudﬁh&ﬂhw:' } University of Roorkee, Rootkee (U. P.), Inda.

'symms being flexible in -
high

roofing material-over
t and roquires the .
mponse ef attucture at this critica¥.



_ Vibration Characteristics of Cable Suspended Systems : 155

DYNAMIC RESPONSE OF CABLE SYSTEMS

A pretensioned cable structure consists of a number of cable elements jointed at their
intersections.- These elements can be treated as perfectly flexible, straight and weightless
for purposes of analysis. The number of elements in these structures is usually Jarge, and
the governing stiffness or .flexibility matrix, formulated for their analysis 15 large too.
With the help of digital computers, however, this does not present any special problem.

FORMULATION OF EQUATIONS

A typical cable system acted upon by different force elements is shown in Fig. 1, The
weights of the cable system are assumed to be lumped atnodes. The vibration of the node
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o ;‘Pi'g. 1. Prestress cable truss (Node numbers are encircled. Member forces in tonnes are shown along thé;n).

in any direction with respect to the static equilibrium position, is treated as a linear small
.- deflection problem. During vibrations of the system the equations of equilibrium can be
set up by considering the inertia force acting in a direction opposite to that of motion.
These forces together with damping force and the restoring forces must equal the externally
.applied time dependent load. An equation in the standard form can be obtained as
[M] {U}+[C] {u}+[K] {u}={G}+{F(t)} (D)
“where _ :
[ M]=diagonal mass matrix
{ C]=damping matrix
[ K ]=stiffness matrix
{ u}==deformation vector
{ G }=qnadratic and cubic deformation vector
{ F (t) }=time dependent external load.

Following a ““Tension Coefficient” approach developed earlier for cable system by several
authors'? ) B the stiffness matrix [K] and the matrix { G} containing the nonlinear
terms obtained and is described as follows.

Consider a node q (Xq, ¥q, Zq) shown in Fig. 2 connected to the other node P (Xp: ¥p, Zp)
through members i, which have pretension force F, and initial length I;. The structure is in
equilibrium under this set of forces. Therefore,
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————— (NITIAL PQSITiON
——— DEFORAMED POSITION

Fig. 2. Deformed state of node p and q.

ZF___i B=2d_g )

Similar equations will hold goodin y and z directions. Now the disturbing force may
give rise to a vibration of the structure, thereby causing deflection (ug, vq, Wg) and
(up, vp, Wp) along x, y and z axis at nodes q and p respectively. The equations of equili-
brium in x direction in the deformed state can then be written as

i
zFl' [(xp—x?)’-i-(up—uq)]:o )
| .
where
I =l (1 +2¢,+e,)'2 v (4a)
1 1 1 1
or ],(l+e1+§ ea—ie: —75 € 8+ iei‘ ey ) ...(4b)
and
i =1 (12ete)n - (59)
1 1 3 3 5
or —E( l—el-—i c’+§ e: +§ elca“'i‘:: +... ) .+.(5b)
Here,

°1=;2" [(xp—xq) (up—ug)+(Yp— Ya) (Vo — Vo) +{Zp—Zq) (Wp— Wy))

1

ea='1“§“ [(ap— g+ (Vp—va)* + (Wp—wo)*]
; _
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Ao F/=F,+EA (-'-‘lq) (6

“The terms on the right hand side of eqn, (4b) and (5b) are obtained by expanding the terms
in éqn. (4a) and (5a) respectively by the binomial expansion and neglecting fourth and
higher order terms,

" Now substituting eqns. (4b), (5b) and (6) in eqn. (3) and rearranging the terms, after

-neglecting fourth and higher powers of deflections u, v, w, in such a manner that all terms

containing single power of deflections are kept on the left hand side and ali the nonlinear
terms are grouped into gx on the right hand side, then we get

> [l EA-F)crd o] o)

Eqn. (3) and (7) and similar equations along y and z directions are the equations of
equilibrium at each free node in the structure. Thus there will be simultaneous equations
having 3N unknown (2N for a plane system) where N is the total number of interior
nodes. Therefore, the coefficients of (u, v, w) will give rise to stiffness matrix K and non-
linear terms of deflection (u, v, w) on the right hand side will give vector {G} of eqn. (1).

If the problem is treated as a linear one and term {G} are neglected, as well as the
damping in the system is ignored, egn. (1) reduced to,

[IM]{U3+[K]{U}={F ()} ...(8)
. For free vibrations of the system the equation of motion reduces to,
[MI{U}+[K}{U}={0} (9

- Assuming harmonic solution with frequency o, egn. (9) is reduced to the standard eigen-
_value problem of the type,

[A]{U}=A{U} ...(10)

Egn. (10) can be solved by employing some of the powerful numerical methods for obtain-
ing the eigenvalues and eigenvectors.

.'Methods of Solution :
There are generally two broad classifications of the methods for solving the eigenvalue
problems. ¥
1. Transformation methods
(@) Jacobi’s method,
(b} Givens’ method,
(¢) Householder’s method.
2. Iteration methods
(a) Convergence of iteration,
(b} Rayleigh’s quotient,
(c) Inverse iteration,
(d) Matrix deflation,
(e) Stodola’s method,
(f) Holzer’s method.
The transformation methods are preferred when all the eigenvalues and eigen-vectors
_of a-given system are required. These methods accomplish the solution by operating on

- the matrices of the system which necessitates the storage of the matrix, which may have a
large size for cable systems. The methods use a sequence of matrix transformations to
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find a similar matrix [ B }.such that the evaluation of determinant | B—w®M | is simpler than
the calculation of | K—w*M |, On the other hand, the iterative methods can avoid the
necessity of storing the entire matrix, These methods yield a sequence of scalars and
vectors that converge to some particular eigenvalue and its corresponding eigenvectors.
SYSTEM CHOSEN FOR STUDY |

A plane cable truss as shown in fig. 3 is chosen to investigate the dynamic character-
istics under different loading conditions.
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Fig. 3.  System chosen for stydy (u. d. . has been discretised at each node as concentrated load).

discrete, straight, weightless elements meeting at node points. The weights of thess
elements, are concentrated at the nodes. Masses are lumped at node points.

The natural frequencies and the mode shapes of cable truss systems have been obtain-
€d using Jacobi’s method for solving eigenvalue problem. Variable structural parameters
chosen are extensional rigidity of top cable, dip-span ratio of the top cable and different

loading variations. This study helps the designer to arrive at the design range for these

parameters for a particular type of loading so as to avoid the condition of resonance with
the expected dynamic load.

The basic system chosen for study has the following data,
N=number of hangers=5 '

H=horizontal component of initial tension at the end of the top cable=50.0
tonnes, . :

L =span of truss=100 metres, :
AET=extensional rigidity of the top cable=600 H
AEL=extensional rigidity of the 'bottom cable=-600 H
AEH=extensional rigidity of the hangers=60 H

FH=initial pretension in each hanger=0.08 H
du==sag of the top cable=0.0625 L )
d,=sag of the bottom cable=0.0625 L

D==difference in the elevation of ends of top and bottom cable=0.15 L.

Values of frequencies and mode shapes are obtained for “W/H from 9.6 to 1.8 over
full span and W/H from 0.3 t0 0.9 over half spar where W is the total load over the truss
System.  Results are obtained for dip-span ratio of upper cable d,/L from 0.05. to 0.075
and for extensional rigidity of the top cable AET/H from 300 to 900,

PRESENTATION OF RESULTS

.. Dynamic characteristics of 100M _span truss
frequencies and mode shapes were obtained fora n

over the structure (W), extensional rigidity of top
_were varied, : '

type cable system were studied. The
umber of cases in which the total load
cable (AET) and sagspan ratio (dy)

This cable truss system is assumed to consist of '



Vibration Characteristics of Cable Suspandéd Systams- 159
‘Figures 4 and 5 show the effect of variation of AET and dy respectively on the first
three frequencies of the cable system for two conditions of loadin g—one when full span is
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Fig. 4.  Effect of variation in extenslonal rigidity of top cable on first three frequencies of the truss system.
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Fig. 5. Effect of varlation in sag span ratio of upper cable on first three frequencies of the truss

loaded and the other when half span’ is loaded. The former -will be referred to as F, §.
condition and the latter as H. S.' condition. It is seen, that. frequencies of the system are
not significantly altered by variations in the values of AET

of dy. This would suggest



160 Bulletin of the Indisn Socisty of Earthquake Tachnology

that changing the cross sectional area or the sag of top cable of the truss will not mate-
rially alter the dynamic characteristics of the cable system. T

Figure 6 shows the variations in the frequencies (first three) when the total load over
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Fig. 6.  Effect of variation in intensity of loading on first three frequencies of the truss system,

the structure is varied. As should be expected, the frequencies drop nonlinearly * with
the increase in load intensity both for F. S. and H. S. conditions.

Mode shapes for a class of truss system are plotted in Fig. 7 and 8 for F. S. and H. §.
conditions, It .is seen that the fundamental mode shape is antisymmetric for both the
conditions. Higher modes are alternately symmetric and antisymmetric,

The effect of variations in AET, d, and W, on the fundamental mode shape of the
system has been examined. The mode shapes for different cases have been plotted in
Fig. 9 to 11. It is seen that the general nature of mode shapes remains the same in all

cases although the relative mode shape coefficients at various points do changé with such
variations.

Dynamic characteristics of trusses with concentrated loads at isolated single points
(nodes) have also been examined. For this purpose a load of 5 tonnes has besn consi-
dered at nodes 1, 2 and 3 (one node only at a time). The fundamental mode shape in each
of the above three cases is plotted in Fig. 12, The associated frequencies are also
indicated for each casein the same figure. As should be expected, the mode shapes of
the truss whén load acts at node 1 and 2 are asymmetric while for load acting at node 3
(mid point), the mode shape is symmetrical. It is seen that the fundamental frequency
increases with the movement of load point towards the centre of span. This conforms to
tllle ngrmal thinking that cables with central loads are stiffer than those with loads acting
elsewhere. :

CONCLUSIONS

Truss type cable systems are generally Jow frequency systems with antisymmetrical
fundamental mode. Some of the most important structural parameters like the exten-
sional rigidity and dip of the top cable have little effect on the fundamental and higher’
frequencies. as also on the nature of the mode shapes. Systems with concentrated lgads:
at the centre are found to be stiffer than those with loads elsewhere - "
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Fig. 9. Mode shapes with variation in AET,
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Fig, 11, Mode shapes with variation in W.
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