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ANALYSIS OF CIRCULAR PLATES OF NON-UNIFORM
- "THICKNESS WITH CENTRAL HOLE
B ‘ ) .
A.S. ARYA®, ANAND PRA{(ASH“‘ AND'V. J. RAQ***

INTRODUCTION

i In recent times the problem of analysis and design of raft foundation slabs of tall
circular structures like water towers, silos, chimneys and hyperbolic gooling towers under
the action of wind and earthquake forces has attracted wide attention of enginoers in the
research and design fields. The slabs of suw are usually circular with or without a
concentric hole and are frequently provided with a tapered thickness, which is a function of
the radial distance only. These slabs can be treated as axisymmistrical circular plates of

variable thicknesses for analysis and design.

Jn the above mentioned structures, the loads are transmitted to their foundations
eithor through columns or through cylindrical or conical shells. When columas are. used,
circular rafts are invariably preferred to individual footings for guarding against uneven
settiement of foundation. In this case a circular ring beam connecting the columa bascs is
provided. In the case of staging of the shell-type, the provision of a circular raft is obvious.

The loads to which the circular raft is subjected are of two types. The first type

comprises of vertical loads due to the self weight of the super-structure plus the live load.
The effeat of thess is to cause a uniform bearing pressure in the upward direction under the

founkgnﬁ% e sk t};%}oﬂoads ;{; caused -l?y laltoral forces due to wind or n::;th—
uake. a wettbe of Joracs of Whis type, a linearly varying pressure is assumed to
gedevelop‘d_, s .;h ype y 8P

he fonn us, the total effect of this - vewicdl and lateral loads
is to cause an upward ‘bedring pressure havis giftar ‘o7 trapexzoidal variation under
thde foundation, It is customary not to allow lifting of the foundation on the windward
sido. patdl ‘ e gl - won ¢ nawe

i 4 . f

The provision of a circular raft offers two possibilities. It may be solid without a
concentric hole or annular with a concentric hole, In either case, two conditiong.are to be
satisfied. The maximum pressure under the foundation should not exo ® bearing
capacity of the soil, and the minimum pressure should be either zeko'bi'of compressive
nature, If ; sl:ﬂi'd lﬂafttis‘ provided, o:gy ‘oafl_ehof thfi two l;lzgiting cog‘%iﬁggs ggg‘,lpe !
satisfied and the other by a margin, But if the raft is made annular ‘it may bé possihle to
autisfy oxnctly both the limiting conditions viz., MM'M“em“to 'safe Bearing
- valuo:and minimum pressure equal to zero!?. e e -

“Fiso geberal problem of analysis, therefore, is to .analyse circular rafty with'or
without a:éoncestrie holé having axisymmetrical variation. of thickness and subjected toa
bearing pressire of the trapezoidat distribution. ~Usually the thickness of @ raftis a
maximum at the sing:beam or shellsupport with a linesi# tapering variation oigpi@ithey ‘side
ofit. The whole problem-may be broken up intofour parts, namely, twe-¢¥pes 6l ulab,
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(2) with, or (b) without concentric hole; and two types of loading, (a) vniform or axisym-

metric pressure, or (b) linearly varying or antisymmetrical pressure distribution. The

problem is illustrated in Fig. 1. A slightly simplified version in which the ring beam
 support is reduced to a ring line support is given in Fig, 2.

coLumn

RING BEAM RING SUPP ORY

: +
D ey - O] _
| T oy
Fig. 1—Annular raft supporting a serles of Fig. 2—Annular plite of non-uniform thickness-
columns connected by a ring beam and equivalent model for analysis
distribution of foundation pressure ’ ‘
under raft

METHODS OF ANALYSIS

Two approaches are mainly employed towards a solution of the above problem. They
re (a) the so called double cantilever approach and (b) the classical circular plate theory.

The first method of analysis more commonly adopted by design engineers for
annular rafts 13 to assume the portion of the raft projecgng onpeithér );ide of‘gthe l'il’gl 7 support
to act as a cantilever subject to a uniform or varying pressure as the case may be.®® The
slab is then mgmly_remforced for the cantilever moments, using only nominal reinforcement
in the tangential direction. In the: case of solid raft, the inner portion is treated as a circular
plate and designed for the resulting moments in radial and tangential directions in an
approximate manner. The projecting part of the slab is designed as cantilever. The major
draw-back of the cantilever approach is that the requirements of the circumferential bending

effect nor to the effect of thickness variation. Perha 8, this could b i
I . y ¢ a rational approach
after cracks have occurred radially due to the circumt]?erential moment. P
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The second approach based on the classical circular plate theory hasbeen widely -
adopted by various authors as applied to foundation slabs of tall elevatod water
towers!’¥05) a5 well to chimney foundations‘™. An examination of the contributions
mentioned above reveals that almost all the approaches towards a solution of the problem
mainly aimed at improving the formulation based on the classical circular plate theory for
plates having uniform thickness. The ring beam support was assumed to be either a simple
or built-in support. Moreover, the width of the ring beam support was usually replaced
by a ring-line support for simplifying the analysis. :

In this investigation, the plate-theory approach has been adopted but taking inte
account the variation of thickness. For reasons of simplicity the classical circular plate
theory as per Kirchhoff-Love formulation is used even though more refined theories like
Reissner’s theory,® Reissner-Goodier. theory'®) have been developed which take into
account the effect of shear deformations as weil. The difference in the results obtained by
the two is reported to be rather small. :

BASIC ASSUMPTIONS

Besides well-known assumptions that forth the basis for the development of the
clllassical theory of circular plates as per Kirchhoff-Love formulation, it is also assumed
that : '

1. there is no abrupt change in thickness and therefore the expressions for bending

and twisting moments developed for plates of constant thickness hold good
with sufficient accuracy to the case of plates of variable thickness also.

there are no stresses due to temperature variations.

3. thei thickness at any point in the plate is a function of the radial distance
only.

EQUILIBRIUM EQUATIONS

An element abed which is cut out of the circular plate by two adjacent radial planes
ad and be separated by an incremental angle d6-and by two cylindrical surfaces ab and ed
of radii r and r4dr respectively, is shoyr’n in Fig. 3(a). The positive directions of the

bending moments M, and M; and the twisting moments My, per unit length, acting onthe .
element will be taken as shown in Fig. 3(b). : o

The well-known general moment-curvature relations in terms of the deflection W
of the plate are given by :

V[T (1 2 5] (e
Me=—D[(: F+al Jreir)] - @
My=(1—) D [(f—a-":—;;*‘; %] e

Similarly the expressions for the shear forces Q; and Q; and reaetion'V, in ferms
of the deflection w are as follows: o -
Q=D [Ty low low 1w 2w

RSt W T T TRt E R
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das ar
Gg-t»wds m'-p-’?dr

b- MOMENTS AND FORCES

Fig. 3—Typical plate element

1 w1 w1 8w dD[(1—p ) *w 1—p
Q=-D [ i o0 T Ere0 Tt BB’]_dr ( T )arae ( r*) ©)

Pw 1w loaw [2—p\ w 3—p\ Aw
Vi=—D =t T 5~ E ( - araﬁ*—( = )ae=

dD [ g2w 1ow 1 2w
—dr FJ’“( n +F“Eﬁ%‘)] | ©

Finally the differential equation takes the following form
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dw 28w 12w low 2 atw 3_@_
D [ T T P T o T B T 3 o
4 w1 ow
Tt R |t
- dD 28‘w 24py 2w 1 aw 2 &Pw _Zif_gv_]
E[ pr +( T ) o0 TP or TE Grop D 78
aDf &w  u ow p.aﬁw]Eq

_ |t T ate 062 ™

This is a fourth order, linear, partial differential equation governing the un-
symmetrical bending of circular plates of non-uniform thickness.

The above differential equation can be presented in a simple and compact in-

variant form®V,
V(D V:w)—(1—p) Q¢ (D, w)=q ®
where
a_!E_ l1éow 1 &w 9)
0 TT ot v (
and in general

?D/f1w 1 2w ef12D\a/[ 1 ow
v ow=E2 (5 e "55?)*25;(?36)5(?53)
dwrleD 1 oow
F(TEFJFF W) (10)

In particular, since the thickness does not vary with 6, the derivatives of D with
respect of O will vanish.

SPECIAL CASE OF AXI-SYMMETRICAL BENDING

In the axisymmetrical case of loading, the twisting moment M and circum-
ferential shear force Q, will be zero. Also the deflection w and hence the shear force Q,
and moments M, and M; will be independent to 6, Therefore, the derivatives with respect
to 0 vanish and the general equations (1 and 2) given above will reduce to the following :

o dw  pdw)  /dd 4
Me=—D (Gr+& ar )=P (&+52) 1y
1 dw  diw o do
Mi=-—D (?E“ '&F)“D (F+&) (2
in which ® is the radial slope of the deflected surface and is given by &= — g

The radial shear Q. takes the following form

_p [€%  1dw 1dw] dD[d'w p dw '
Q=D [TF*TH}?“F&']JFEF raaed 13

_pld®  1d® @7 dbrde ¢]

or

R A B R
and the differential equation (10) reduces to .
p[dw 2 dw 1 d&w 1dw}
AT a0 TF de TRar

ars
dDF, &*w  (24u\dw 1dw] dD[dw u dw B
tar [2 -dr_”( r ) ar TE ar, +‘dr=='[—dr= trEfme 19

(14
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Equation (15) is a fouth-order, linear, ordinary differential equation governing the
symmetrical flexure of circular plates of non-uniform thickness,

SOLUTION OF THE GOVERNING EQUATIONS

A critical study of the literature on circular plates of variable thickness indicates
that analytical solutions to the differential equations (7), (8) and (15) were usually difficult
to be obtained. Therefore, the thickness variations chosen were mathematically simple so
that the analysis became less involved. Fora number of such variations, seclutions in
closed or series form were obtained for symmetrical bending problem(!2-1 a5 well as
antisymmetrical problem.t20-2

To overcome the limitations of the analytical solutions, many authors resorted to
numerical methods to solve the problems.'23~3)  QOne of the numericai methods commonly
employed for the solution of non-vniform circular plate problems was to divide the plate
into a series of concentric rings of finite width and of uniform thickness. The uniform
plate theory was then applied to each of these rings ensuring proper satisfaction of the
boundary or continuity conditions between two consecutive rings. Progressing this way
the boundary conditions at the ends were eventually satisfied. This method though ver-
satile in its applications had the drawbacks that large number of divisions of the plate were
necessary to approximate the modified thickness variation more closely to the actual one.

Finite-difference method was used, 38 in the problem of gas turbine disks. It
had the advantage that the equations for plates of varying thickness could be reduced to
finite difference form ylirectly. This method is used to obtain numerical solutions to the

problem undertaken in this paper.

GENERAL SOLUTION

The general solution due to Clebsch'®® of the biharmonic (homogeneous) equation
in polar coordinates for any unsymmetrical loading defining the flexure of circular plates

of uniform thickness is given by

w=Ro+ 2 Ry cos mi+ Z Ry’ sin mb (16)
m=1 m=1 .
in which R, R, R,, ...... yRYOLRY, L. are function of the radial distance r only.

The solution R,, being independent of the angle 6, Tepresents symmetrical bending of
annular as well as solid circular plates and vanishes for the anti-symmetrical bending case.

The linearly varying anti-symmetrical load qr can be represented as
qL=p g- cos 0 . (17)

and correspondingly the deflection w can be represented by the first term of the cosine
series namely R, cos . Omitting the subscript for convenience we may write
w=Rcos9 (18)

Substituting these expressions in the differential equation (7),I
D[R 42IR R FR-ZR4 IR -2 R+%R |
+0' [ 2 R“'+(3~f—“) R'—3 R'—Z R43R ]
s

in which the superscript primes denote order of differentiation with respect tor.
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Accordingly the expressions for the internal forces take the following form

" l ! 1 ‘
M,=—D [R +“’(F R'— R )] cos 6 (20)
1., 1
M;=—D [F R'— R+pR"] cos 6 @1
My=(l1—k) D [—:- R'+5 R] sinf @
et ] " 2 ’ 2
'3 " 1 1 1
-D [R +p(r-R—r-,R)]cose @3)

— _l Ir 1 ’ 1 H
Qg——D[ -r- R —F’R +;-3R]sm.0

-D’ [-—(I——E) R+ (%;)R ] sin 6 (24)

r
and finally,

Ve —D[R'"+l R-L R'-(Z_'t‘) R'+(3_—,“)R]cose
r r r

ré
—D’ [R”,i—p.(l-!— R'—#R )] cqsﬁ 2%

VARIABLES INVOLVED

The radius of the central hole ‘b’ and the radius of the ring support ‘¢’ will be
expressed in terms of the radius of the plate ‘2’ which will be taken as unity. In the case
of plate without hole, b will refer to the radis of the uniform portion of the plate. Similarly,

-the thickness of the plate at the ring support will be taken as unity and the other two
thicknesses, one at cach boundary will be expressed in terrns of four dimensionless ratios
viz., a=c/a, B=b/a, Toc="1pfts and 4 =taft,. For asolid plate t, will be taken to be the
uniform thickness from centre of the plate to aradius equalto b.

The expressions defining the thickness variations and consequently the variation of
the flexural rigidity will now be listed (Refer Fig. 4). Thickness t at any radial distance

R RS
-
J._ q _- T |_

’ e ‘

Fig. 4—Varistion of plate thickness

r=pa from the center of the plate is given by

et [ 1100 [ <o) | (268)

tmte [ 1- 12206 | oo - (26b)

1—a
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Variation of Flexural Rigidity D

D=DJ 1- 26— |, (<p<) - e
11—z 3
D=D{ 1= 26— |\G<o<D) | @7b)
in which D= l-z%t“_’- "

For particular values of ratio «, B, th, and raq, the value of D obtained from the
above expressions will be a constant. This fact helps in expressing D’ and D"’ conveniently,
in terms of D itself.

Thus one obtains for range B<<o<ar

% =k,/a where
. ‘ 1—ay, 1
k=3 |:_._c — 1
. «—p [l—la;_:bc (G—P)] (28a)

and D”/D=k,/a® where

I—Thc 1 ]
k=6 _ .
A [a—ﬁ [ 1-1{_—1‘;@_9)] (28b)

For range o <p <1

D’/D=k,/a where

— ﬂ “
=3 (il b
- Y e—a)

 ——

1—a

(29a)

and D"'/D=k,/a? where
1—n 1
k‘=6 [ _Ic :I ’ —
l—a [l _ 11 _‘:c (p~-a0) ]2 (29b)

BOUNDARY CONDITIONS

For the circular plates, the boundary conditions will be as shown in Table 1.

At the change of section in solid plates the functions w, ¢ M and Q will be
continuous. At the section of ring load applied through the ring beam or the shell, the
functions w and ¢ will be continuous, moment M will also be continuous when simple
support condition is assumed and the change of the shear force will be equal to the load
transmitted through the ring beam. .

FINITE-DIFFERENCE EQUATIONS

For deriving the finite-difference patterns central-difference approximations of
the first order are used with the error in the corresponding derivatives being of the order h?
where h is tho interval size. In some particular cases, as will be described later, use is
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TABLE |. BOUNDARY CONDITIONS FOR CIRCULAR PLATES

. Annular Plates Plates without hole
Edge Antisymmetrical . .
Bending Axisymmetrical { Antisymmetrical Axisymmetrical

Outer Mr=0 Mr=0 M1'=0 Mr=0
I=a V=0 - Q=0 V=0 Q=0
Inner M;=0 M,=0

r=b Vr=0 Qr=0

Centre w=0 $=0
r=0 M;=0 Q=0

made of forward and backward-differences also. They are second order approximations
with the error in the corresponding derivatives being of the order h2, The patterns derived

are shown in Figs (5) to (7). The expressions for the terms A, to A,; used therein are .
given in Appendix I.

= O-O-C-OGE]

uy 2e0n? []_ ¢, =-0/n° [ @ @ . @ ] .
" =-om []' | ” =-o.,h3 [ . @ ]'
."w-”h% @ i ] . Fig. 6—Backward difference patterns

." =-o;n’[ (s —(hrgy—(+) ]"

o =-on [] v | b s-ont "
v oo’ [Q-G-G-G-O  « - (6} O-E-G)-

Fig. 5—Central difference patterns Fig. 7—Forward difference patterns

For formulating the finite difference equations, the difference patterns are substituted
in the plate equation at the nodal points. Let the radial distance from r=bto r=a for
annular plates and r=0 to r=a for solid plates be divided into'n equal parts such thata
node falls at r=c. Let the deflection w be taken zero at the ring beam point. Then at



70 Bulletin of tha Indisn Saciety of Earthquake Technology

two divisions or more away from the edges, the central finite-difference patterns can be

written as such. But for two nodes, one on the periphery and one just inside, the patterns -
are to be modified so as to satisfy the boundary conditions, In the case of annular plates

no difficulty arises. But in the case of solid plate axisymmetrically loaded, a singularity

arises at r=0 since the expressions become infinite. In this case an additional equation

is obtained by writing the shear condition at the ring beam using the backward and
forward difference patterns for determining shears on the inside and outside of the ring

beam. The same difficulty arises when computing the moments at the centre of the

above plate. This is avoided by assuming the moment at the ngighbouring _point to be

equal to that at centre. The difference is expected to be small since 100 divisions of the

radius are used for these plates.

RESULTS

Using the finite difference equations, solutions to a total of 600 cases involving a
variety of thickness ratios and plate-dimension ratios have been obtained. These also
include the particular cases when the thickness is uniform. For checking the accuracy of

- the computed results, the results obtained for the uniform thickness case for both sym-
metrical and anti-symmetrical loadings and for Poisson’s ratio equal to 0° 15 are compared
with the results obtained by Arya and Pathak by analytical method™. There is an
excellent agreement between both sets of results. The results for the non-uniform thickness
of plate are checked by applying statical equilibrium condition to a quadrant of the plate-
between external forces and moments and the internal reactive forces and moments, The
checks are found satisfactory.

For a selected number of cases, the principal bending moments M: and M are
presented here in graphical form for ready use in design problems. For the annular plates,
the resultsare plotted in Figs. 8 t0 43 where the parameter combinations have been
considered as given in Table 2. For- each combination of Band « in each figure ten
combinations of 1y, and <, are considered as given below e

Cme 0.2 0.2 0.2 0.5 0.5 0.5 0.8 0.8 0.8. 1.0
e 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 1.0

The last case tpo==14,=1.0 pertains ta uniform plates. Thus the results of plates of
linearly varying thickness having different tapers are automatically compared with those for
the uniform plates.

TABLE 2, PARAMETER COMBINATIONS AND REFERENCE
TO FIGURES FOR ANNULAR PLATES

Figure numbers for the parameter

ombinations of § and «
Diagram for Moment Load combinations of § and «

B=0.2 0.3 0.3 0:4 0.4 04 05 05 0.6
«=0.6 0.6 0.7 0.6 0.7 0.8 0.7 0.7 0.8

Circumferential
Moment M, Symmetrical 8 9 10 11 12 13 14 15 16
Antisymmetrical 17 18 19 20 21 22 .23 24 25
Radial Moment Symmetrical 26 27 28 29 30 31 32 33 34

M, Antisymmetrical 35 36 37 38 9 40 41 42 43
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For the solid plates, it was seen®’ that the most suitable location of the ring beam
support was at about r=0.8a. Thus the value of a=c/a was adopted as 0.8. Three
values of B equal to 0.4, 0.5 and 0.6 have been adopted for drawing the diagrams in Figs. 44
to 55. The figure references are given in Table 3. The taper combinations of p, and <ae
used for solid plates are the same as for the annular plates given above.

TABLE 3. PARAMETER COMBINATIONS AND FIGURE
NUMBERS FOR SOLID PLATES

Figure Numbers for parameter
combinations of § and a

Moment Load

p=0.4 0.5 0.6
a=0.8 0.8 0.8
Circumferential My Symmetrical 44 45 46
Antisymmetrical 47 48 49
Radial M, Symmetrical - 50 51 52
Antisymmetrical 53 34 55

CONCLUSIONS

On studying the variation of radial and circumferential bending moments for various

cases of plate thickness variations as shown in Fig. 8 to 55, the following conclusions are
drawn.

1. The magnitude of the maximum radial bending moment depends a great deal
on thickness variation of the plate. The maximum radial bending moment
occurs under ring support in all cases. ,

2. The magnitude of circumferential bending moment at any point changes signi-
ficantly with changes in thickness variation of the plate. The magnitude and
point of maximum circumferential bending moment also changes with change
in thickness variation. The value of the maximum moment increases with
larger taper in the thickness of the plate. ,

In the light of the above observations, it will be either unsafe or uneconomical to
design a varying thickness plate using the expressions for bending moments corresponding
to a plate of uniform thickness. It will therefore be desirableto adopt the design values
based on rational values given in the diagrams in the paper.

NOTATION

a External radius of circular plate

b Radius of central hole in the plate

c Radius of ring beam support

D Flexural rigidity of plate

D - -First differential coeff. of D with respect to r

D, Flexural rigidity of plate at ring support

E Modulus of elasticity

h : Element size in finite difference patterns

k;, kg, k,, k;  Constants defined inthe paper

m Numerical constant

M; Radial bending moment per unit length of circumferential section of plate
M Circumferential bending moment per unit length of radial section ofthe

plate
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My Twisting moment per unit length of radial or circumferential section
my Dimensionless coefficient corresponding to M,
m; Dimensionless coefficient corresponding to M;
P Pressure intensity underneath the circular raft
P Concentric knife-edged ring load or reaction from support
Qr, Q¢ Vertical shear force per unit length on circumferential and radial sections of
the plate respectively
r Radial distance of any point from the centre of the plate
R,Ry; R Coeflicients used in series expansion of the vertical deflection of the plate
R’ First Differential Coeflicient of R with respect to r
t Thickness of plate at any point
ta Thickness of plate at outer boundary
th Thickness of plate at inner boundary
te Thickness of plate at ring support
Ve Kirchhoff® Shear per unit length of circumferential section
w Vertical deflection of plate
« Ratio of radius of ring support to plate radius
B Ratio of hole radius to plate radius
p Ratio of radial distance r to plate radius
6 Angular distance in Polar co-ordinates
() Radial slope of the deflected surface of plate
t Poisson’s ratio
The Ratio of thickness of plate at inner boundry to that at ring support
Tac Ratio of thickness of plate at outer boundary to that at ring support
Vv Laplacian differential operator :
v Biharmonic differential operator
O A bilinear differential operator
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APPENDIX

The following expressions appear in the finite different. patterns wherein

A= gt
a iy

These apply as such to the range p<<p<<a. For uniform plate k,=k,=0. For range
a<pK1, replace k, by k; and k, by k,.

A, =1—H—kA
Ay = —4H+2A HIGA Qi) KAH—3H 1 3k, AHS Jm— BHar
Ay = 6—2k,A—2(2+4) ks AH + 6H? — k, ATHE | 3k, AHS 3515

A, = —4—2H—2K,A+kA+(2 +p) kIAH—3H2+gklAH=+;H=+gk,HA2
A, = 1+H+KA

A, = 1-5H Ay = p—H/2 An=p H2
A-, = —2—!1-H2 A10= '—2“- -_ I'I2 A]8= I'Iz
Ay = 1+%H Ap= ¢+ H)2 A= —1/2
A= 1HH+ A+ by, AH Au= —H 4 1 4+ 1% a0
A= —2H—2k,A—pk, AHS 4 2H? A= 2H+(1—p) k,AH2+ H?
1—

A= —1+H+kA ~ Hi4 B Al A= ~H—1H— ¥ ,AH

.1 HikA +oH— EH— ¥ AH Ay= —T—H—kA
A=1= +H+ 1 +2 2 271 247 1
Ag= —2H—2kA —pk, AH 4 (3—p)H? Agg= I2+4H+4k1A—H2+%k1AH

3

Ap= —1+H+kA—5H 4 SH 4+ Bl AH Ag= —9—5H—5k,A+4H*—2uk,AH
A= %+2H+2k,A—3Hﬁ+guk1AH—p.klAH’-]-ZH’ Ap=H
Ay~ —4H— %Hﬂ— I—E—EklAH Ag= SH4+-2H142(1 —w)k AH

= —2H— %H’— 30— mAH (1 — )k AHS + HO

Au— — 3+ 2HF kA4 3 Spk AH—pk AHS 420
Agy= 9—SH—5k,A —4H? + 2pk,AH CAp= —124+4H+4kA+H - bk, AH

Ay=7—H—LkA Ag= —2H+IH - 3(1— )k AH+ (1 — )k, AH2 4+ H?
Agy= SH—2H:—2 (1—pw k, AH A3g=—4H+§H2+—2‘-‘- k, AH
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Figs. 50-52—Radial momeats in sofid . Figs. 53-55—Radial moments in solid

plates due to symmetrica! loading plates due to antisymmetrical loading



