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ABSTRACT 

Currently, the dynamic response of nonlinear structures is generally determined by numerical 

integration of the incremental coupled second order differential equations of motion involving their 

tangent stiffness matrices. However, the dominant paradigm being computational, the initial value 

problems (IVPs) being solved are rarely stated in an analytical form. Three new formulations of analytical 

IVPs for nonlinear structures are presented in this Paper. Firstly, it is argued that only the IVPs based 

upon coupled third order differential equations of motion are proper for nonlinear MDOF dynamical 

systems. Secondly, it is shown that, for homogeneous dynamical systems, coupled second order 

differential equations are applicable. Finally, for general nonlinear dynamical systems, it is proposed to 

formulate the IVPs using decoupled nonlinear second order differential equations. Theoretical 

significance of these three analytical prospects in nonlinear structural dynamics is discussed. 

KEYWORDS: Nonlinear Structural Dynamics, Third-Order Equations of Motion, Homogeneous 

Systems, Decoupled MDOF Systems 

INTRODUCTION 

As in rest of classical mechanics, Newton’s second law of motion is the basis of structural dynamics. 

Starting from their basic formulation in the year 1877 by Rayleigh [1], the matrix form of equations of 

motion for linear MDOF structures was proposed by Collar, Duncan and Frazer in the third decade of 

twentieth century [2]. The following second-order coupled linear differential equations of motion for 

vibrating MDOF linear elastic structures with nodal masses and forces are popular till now in civil, 

mechanical and aeronautical engineering disciplines: 

 𝑀𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = 𝐹(𝑡) (1) 

Here, the symbols 𝑀 , 𝐶  and 𝐾  represent the constant mass, damping and stiffness matrices of the 

structure while 𝑢(𝑡)  represent its instantaneous nodal displacement response to the applied forcing 

function 𝐹(𝑡). As usual, superposed dot implies time derivative. For complete formulation of initial value 

problem (IVP), the initial nodal displacements 𝑢(0) and velocities 𝑢̇(0) are required to be specified. 

Under the assumption of classical damping, the damping matrix of these structures is generally 

formulated in terms of their mass and stiffness matrices. Linear mode theory valid for these structures is 

well-developed [3, 4, 5]. 

Nonlinear dynamical systems theory having applications across the disciplines deals primarily with 

SDOF systems. Duffing oscillators are known to exhibit sub-harmonic resonances, extreme sensitivity to 

initial conditions, exciting forces and system parameters, chaotic motions, etc. Self-excited vibrations are 

predicted for van der Pol oscillators. Analytical solutions being rarely possible, the nonlinear dynamic 

response is generally predicted by numerical integration of the equations of motion [6]. 

The theory of MDOF nonlinear dynamical systems is not so well developed. According to Lyapunov, 

for an 𝑛-DOF conservative system without internal resonances, there exist at least 𝑛 periodic solutions 

about the equilibrium state. These stable periodic motions constitute the normal modes for dynamical 

systems. Analogous to normal modes in linear dynamical systems, these invariant periodic motions are 

called nonlinear normal modes for nonlinear systems, even though these modes lack orthogonality and 

violate the principle of superposition [7, 8]. However, it has been recognised [9] that these nonlinear 

modes vary with instantaneous total amplitude of vibration. Also, in view of the pure uncoupling of linear 

modes, the concept of ‘mode interactions’ is considered by some researchers to be an oxymoron [10]. 
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A general computational strategy for determining the dynamic response of nonlinear MDOF 

structures formulated by Wilson, Farhoomand and Bathe [11] is very popular. The incremental equation 

of motion is deduced as follows from the incremental balance of elastic, damping, inertial and applied 

forces denoted as 𝐹𝑒(𝑡), 𝐹𝑑(𝑡), 𝐹𝑖(𝑡) and 𝐹(𝑡) respectively. At any instant during the motion, the elastic, 

damping and inertial forces are defined by the constitutive functions of instantaneous elastic 

displacements, velocities and accelerations respectively as 

 𝐹𝑒(𝑡) = 𝐹𝑒(𝑢(𝑡)), 𝐹𝑑(𝑡) = 𝐹𝑑(𝑢̇(𝑡)) 𝑎𝑛𝑑  𝐹𝑖(𝑡) = 𝐹𝑖(𝑢̈(𝑡)) (2) 

The increments in these forces are determined by the increments in the corresponding kinematic 

variables in incremental duration 𝛥𝑡 as below: 

 𝛥𝐹𝑒(𝑡) = 𝐾𝑡𝛥𝑢(𝑡), 𝛥𝐹𝑑(𝑡) = 𝐶𝑡𝛥𝑢̇(𝑡) 𝑎𝑛𝑑  𝛥𝐹𝑖(𝑡) = 𝑀𝛥𝑢̈(𝑡) (3) 

Here, 𝐾𝑡  represents the tangent stiffness matrix defined as 𝐾𝑖𝑗
𝑡 = 𝜕𝐹𝑒𝑖/𝜕𝑢𝑗 . Similarly, the tangent 

damping matrix, 𝐶𝑡 , is defined as  𝐶𝑖𝑗
𝑡 = 𝜕𝐹𝑑𝑖/𝜕𝑢̇𝑗 . However, the mass matrix 𝑀  remains constant 

irrespective of the instantaneous acceleration. The incremental balance of these forces (𝛥𝐹𝑖(𝑡) +
𝛥𝐹𝑑(𝑡) +  𝛥𝐹𝑒(𝑡) =  𝛥𝐹(𝑡)) yields the following incremental form of governing equation of motion: 

 𝑀𝛥𝑢̈ + 𝐶𝑡𝛥𝑢̇ + 𝐾𝑡𝛥𝑢 = 𝛥𝐹(𝑡) (4) 

Like the tangent stiffness matrix is defined in terms of instantaneous displacements, the tangent 

damping matrix of the nonlinear structures has to be established in terms of instantaneous velocities using 

methods of system identification. In contrast, as per the practice in the linear structural dynamics, the 

damping matrix of nonlinear structures is specified independently or in terms of instantaneous tangent 

stiffness matrix and constant mass matrix under assumption of instantaneous classical damping. In this 

latter case, both the tangent stiffness and damping matrices are determined by the instantaneous 

displacements. Sometimes, assuming the nonlinear structure to be initially classical damped, the damping 

matrix is determined from the initial tangent stiffness matrix and thereafter assumed to remain constant. 

This incremental form of equation of motion is particularly useful for determination of structural response 

by numerical integration at discrete time intervals. The popular numerical integration schemes include 

Newmark-beta method, Wilson-theta method, Runge-Kutta method, etc. Though not explicitly 

mentioned, this numerically-formulated IVP also requires specifications of initial nodal displacements 

and velocities [3, 4, 5, 12, 13]. 

It must be kept in mind that, in classical mechanics, the problems are first formulated in the analytical 

form and then attempts are made to construct their closed-form solutions. It is possible to do so only for 

quite simple problems. Numerical methods and computer software need to be employed for solving more 

complex problems. Since most of the problems of engineering importance are complex, a distinct 

discipline of computational mechanics has emerged. However, one cannot start with the numerical 

version of the problem as has been done in the case of nonlinear structural dynamics. It is only by the 

formulation of analytical IVPs that it is possible to identify the algebraic structure informing the structural 

response. Then and only then efficient analytical and computational methods of their solution can be 

formulated and new applicable theorems and principles can be proved. 

The objective of the present Paper is to suggest new analytical prospects for moving ahead in 

nonlinear structural dynamics. Firstly, a new IVP involving coupled third order nonlinear differential 

equations of motion is formulated. Secondly, it is shown that the classical formulation of IVPs based upon 

coupled second order differential equations is valid for a class of nonlinear structures --- homogeneous 

dynamical structures --- as well. Thirdly, an IVP involving decoupled second-order differential equations 

is proposed for general nonlinear MDOF structures. Lastly, the proposed analytical approach to nonlinear 

structural dynamics is critically evaluated for its role in further developments in this field. 

GENERAL NONLINEAR DYNAMICAL SYSTEMS 

For an SDOF nonlinear elastic structure, the nonlinear force-displacement relation, 𝑃(𝑢), can always 

be stated in terms of its secant stiffness (𝐾𝑠) as 𝑃(𝑢) = 𝐾𝑠𝑢. It is not possible to formulate unique secant 

stiffness matrices for the nonlinear elastic MDOF structures. For example, the following constitutive 

equations can be deduced for the nonlinear elastic system proposed by Qaisi and Kilani [14]: 

 𝑃1 =  𝐴𝑢1 + 𝐵𝑢2 + 𝐶𝑢1
3 + 𝐷𝑢1

2𝑢2 + 𝐸𝑢1𝑢2
2  + 𝐹𝑢2

3 

 𝑃2 =  𝐺𝑢1 + 𝐻𝑢2 + 𝐼𝑢1
3 + 𝐽𝑢1

2𝑢2 + 𝐾𝑢1𝑢2
2  + 𝐿𝑢2

3 (5) 



ISET Journal of Earthquake Technology, June 2019 33 

 

The above constitutive equation can be restated using any one of the following two versions of the 

secant stiffness matrix: 

 𝐾11
𝑠  =  𝐴 + 𝐶𝑢1

2 + 𝐷𝑢1𝑢2 + 𝐸𝑢2
2 ,         𝐾12

𝑠  =  𝐵 + 𝐹𝑢2
2 

 𝐾21
𝑠  =  𝐺 + 𝐼𝑢1

2 + 𝐽𝑢1𝑢2 + 𝐾𝑢2
2 ,          𝐾22

𝑠  =  𝐻 + 𝐿𝑢2
2 (6a) 

 𝐾11
𝑠  =  𝐴 + 𝐶𝑢1

2,           𝐾12
𝑠 = 𝐵 + 𝐷𝑢1

2 + 𝐸𝑢1𝑢2 + 𝐹𝑢2
2 

 𝐾21
𝑠  =   𝐺 + 𝐼𝑢1

2 ,          𝐾22
𝑠  = 𝐻 + 𝐽𝑢1

2 + 𝐾𝑢1𝑢2 + 𝐿𝑢2
2 (6b) 

This conclusion applies even to the case of geometrically nonlinear structures wherein the secant 

stiffness matrix is composed of elastic and geometric stiffness matrices [15]. 

Lack of unique secant stiffness matrices for nonlinear structures implies that it is not possible to state 

the analytical second order matrix differential equation of motion for them as (Equation 1) for linear 

structures. However, their tangent stiffness matrix determined as 𝐾𝑖𝑗
𝑡 = 𝜕𝑃𝑖/𝜕𝑢𝑗 is always unique. Thus, it 

is possible to state their constitutive equations in the rate-form as 𝑃̇𝑖 = 𝐾𝑖𝑗
𝑡  𝑢̇𝑗 or in the index-free notation 

as 𝑃̇ = 𝐾𝑡𝑢̇ . For undamped structures, the instantaneous internal force vector is obtained as 𝑃(𝑡) =
𝐹(𝑡) − 𝑀𝑢̈. On differentiating both sides, one gets 𝑃̇ = 𝐹̇ − 𝑀𝑢⃛. In view of this, the following coupled 

third order nonlinear differential equation of motion is derived for undamped MDOF nonlinear dynamical 

systems: 

  𝑀𝑢⃛ + 𝐾𝑡𝑢̇ = 𝐹̇ (7) 

The above equation of motion for undamped systems is generalised to obtain the governing equation of 

motion for damped systems as 

 𝑀𝑢 ⃛ + 𝐶𝑢̈ + 𝐾𝑡𝑢̇ = 𝐹̇ (8) 

This IVP involving third-order nonlinear differential equations requires the specification of initial 

nodal displacement, velocity and acceleration vectors. However, as argued earlier for sagging elastic 

cables by the Author and co-workers [16], initial acceleration vector is determined from independently 

specified initial nodal displacement and velocity vectors using Newton’s law of motion as follows: 

 𝑢̈(0) = 𝑀−1[𝐹(0) −  𝑃(0)  −  𝐶𝑢̇(0)]   (9) 

Here, the initial force vector 𝑃(0) corresponds to the initial displacement vector. 

The above third-order nonlinear differential equations of motion with nodal displacements as primary 

variables can also be expressed as the following equivalent second order nonlinear differential equations 

of motion with nodal velocities (𝑢̇ = 𝑉) as primary kinematic variables: 

 𝑀𝑉̈ + 𝐶𝑉̇ + 𝐾𝑉 = 𝐺(𝑡) (10) 

Here, 𝐺(𝑡) = 𝐹̇(𝑡) represents the forcing function. This version of equation of motion is particularly 

amenable to application of available numerical integration techniques. 

HOMOGENEOUS DYNAMICAL SYSTEMS 

A function 𝑓(𝑋1, 𝑋2, −, −, 𝑋𝑛)  is said to be function homogeneous of order  𝑚  of 𝑛  independent 

variables (𝑋𝑖), if it can be expressed as 

 𝑓(𝑋1, 𝑋2, −, −, 𝑋𝑛) = 𝑋𝑟
𝑚 𝑔(

𝑋1
𝑋𝑟

⁄ ,
𝑋2

𝑋𝑟
⁄ , −, −,

𝑋𝑛
𝑋𝑟

⁄ ) (11) 

Here, the function 𝑔(𝑋1, 𝑋2, −, −, 𝑋𝑛) is zero order homogeneous function of these variables. Euler’s 

theorem for homogeneous functions is stated below for ready reference [17]: 

 (
𝜕𝑓

𝜕𝑋𝑖
) 𝑋𝑖 = 𝑚 𝑓(𝑋1, 𝑋2, −, −, 𝑋𝑛) (12) 

As per the time-honoured taxonomical practice in structural theory, the structures are classified as 

linear or nonlinear according to the mathematical function relating loads and displacements. Thus, a 

structure is said to be an 𝑚-order homogeneous mechanical system if the nodal forces are functions 

homogeneous of order 𝑚 of nodal displacements [16, 19]. In view of Euler’s theorem, 

 (
𝜕𝑃𝑖

𝜕𝑢𝑗
) 𝑢𝑗 = 𝑚 𝑃𝑖(𝑢1, 𝑢2, −, −, 𝑢𝑛) (13) 

Or equivalently, 

 (𝐾𝑖𝑗
𝑡 ) 𝑢𝑗 = 𝑚 𝑃𝑖(𝑢1, 𝑢2, −, −, 𝑢𝑛) (14) 
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In the index-free notation, one gets 
1

𝑚
 𝐾𝑡 𝑢 = 𝑃. The total nodal forces and displacements are related 

through secant stiffness matrix 𝐾𝑠  as in 𝐾𝑠 𝑢 = 𝑃  where 𝐾𝑠 =  
1

𝑚
 𝐾𝑡 . For example, the particular 

nonlinear constitutive equations (Equation 5) can also be restated as  

 𝑃1 = 𝑄1 +  𝑅1,           𝑄1 = 𝐴𝑢1 + 𝐵𝑢2,          𝑅1 = 𝐶𝑢1
3 + 𝐷𝑢1

2𝑢2 + 𝐸𝑢1𝑢2
2  + 𝐹𝑢2

3 

 𝑃2 = 𝑄2 + 𝑅2,           𝑄2 = 𝐺𝑢1 + 𝐻𝑢2,           𝑅2 = 𝐼𝑢1
3 + 𝐽𝑢1

2𝑢2 + 𝐾𝑢1𝑢2
2  + 𝐿𝑢2

3 (15) 

It can be observed that the force vector components, 𝑄𝑖  and   𝑅𝑖, respectively are first and third order 

homogeneous functions of displacements. The tangent and secant stiffness matrices (𝐾𝑡  and  𝐾𝑠) of this 

homogeneous mechanical system can be established as follows: 

 
𝜕𝑃𝑖

𝜕𝑢𝑗
=  

𝜕𝑄𝑖

𝜕𝑢𝑗
+  

𝜕𝑅𝑖

𝜕𝑢𝑗
,        𝐾𝑡 = 𝐾𝑄

𝑡  +  𝐾𝑅
𝑡  ,        𝐾𝑠 = 𝐾𝑄

𝑡  +
1

3
 𝐾𝑅

𝑡  (16) 

Some other researchers have investigated planar dynamical system with the following fourth degree 

homogeneous polynomial potential [18]: 

 𝑉(𝑢1, 𝑢2) =  𝑎𝑢1
4 + 𝑏𝑢1

3𝑢2 + 𝑐𝑢1
2 𝑢2

2 + 𝑑𝑢1𝑢2
3 + 𝑒𝑢2

4   (17) 

To recapitulate, the strain energy function for conventional two-DOF linear elastic structures is stated 

as follows: 

 𝑉(𝑢1, 𝑢2) =  𝑎𝑢1
2 + 𝑏𝑢1𝑢2   + 𝑐𝑢2

2   (18) 

Of course, it is a second degree homogeneous polynomial potential. More general second order 

homogeneous complementary energy potential has been derived for a particular two-DOF cracked 

concrete beams by Pandey and Benipal [19]. Such second order homogeneous complementary energy 

potentials assume the form of polynomial fractions as 

 𝛺(𝑃1, 𝑃2) =  
 𝑆1(𝑃1, 𝑃2)

𝑆2(𝑃1, 𝑃2)⁄    

 𝑆1(𝑃1, 𝑃2) =  𝐴𝑃1
3 + 𝐵𝑃1

2𝑃2 + 𝐶𝑃1𝑃2
2   + 𝐷𝑃2

3,           𝑆2(𝑃1, 𝑃2) = 𝑃1 + 𝐸𝑃2 (19) 

Using this expression for the complementary energy potential, the force-displacement relations can be 

derived using Castigliano Theorem. Their displacement vector components turn out to be functions 

homogeneous of order unity of the force vector components. This is why such structures are said to 

belong to the class of First Order Homogeneous Mechanical (FOHM) Systems. The linear systems do 

belong, albeit merely vacuously, to the same class of FOHM systems. The secant flexibility (stiffness) 

matrices of these mechanical systems equal their tangent flexibility (stiffness) matrices. Similarly, the 

Falconi-Lacomba-Vidal potential (Equation 17) [18] defines a Third Order Homogeneous Mechanical 

System such that its secant stiffness matrix equal one-third of its tangent stiffness matrix. 

Thus, the unique secant stiffness matrices of the homogeneous dynamical systems can be obtained 

from their tangent stiffness matrices. The following coupled second order nonlinear differential equations 

of motion stated in terms of such secant stiffness matrices can be used for predicting their nonlinear 

dynamic response: 

 𝑀𝑢̈ + 𝐶𝑠𝑢̇ + 𝐾𝑠𝑢 = 𝐹(𝑡) (20) 

Here, the damping matrix, when established from the instantaneous secant stiffness matrix, depends 

upon the instantaneous displacements. Of course, the instantaneous damping forces are linear functions of 

the instantaneous velocities. Alternatively, the initial damping matrix can be assumed to remain constant. 

In this latter case, the structures will be rendered nonclassically damped resulting in gradually varying 

mode shapes. 

Sagging cables are known to lack unique passive natural state configuration. However, corresponding 

to each equilibrium state, there exists a unique natural state in reference to which their elastic 

displacements are defined. It has been established by Kumar, Ganguli and Benipal [16] that the natural 

state coordinates (𝑥𝑖) and small elastic displacements (𝑢𝑖) of MDOF weightless sagging elastic cables are 

functions homogeneous of order zero and unity respectively of the applied nodal forces (𝑃𝑟) . The 

deformed state nodal coordinates or placements (𝑦𝑖 = 𝑥𝑖 + 𝑢𝑖) are determined uniquely by these applied 

forces. The tangent configurational, elastic and elasto-configurational flexibility matrices are defined 

respectively as 𝐷𝑖𝑗 = 𝜕𝑥𝑖/𝜕𝑃𝑗 , 𝑓𝑖𝑗 = 𝜕𝑢𝑖/𝜕𝑃𝑗  and 𝑁𝑖𝑗 = 𝐷𝑖𝑗 + 𝑓𝑖𝑗 = 𝜕𝑦𝑖/𝜕𝑃𝑗 . Although sagging elastic 

cables belong to the class of Homogeneous Mechanical Systems, it is not possible to even define the 

constitutive equation of the type 𝑦 = 𝐿𝑠𝑃 in terms of some secant flexibility matrix 𝐿𝑠. This is because of 
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the fact that, in the case of elasto-flexible sagging cables, the kinematic vector (𝑦) represents deformed 

state nodal placements, not the elastic nodal displacements (𝑢)  as in the case of common elastic 

structures. Of course, the following rate-type constitutive equations can be stated for these structures: 𝑦̇ =
𝑁𝑃̇  or 𝑃̇ = 𝐾𝑡𝑦̇  where tangent stiffness matrix 𝐾𝑡 =  𝑁−1 . As argued above for General Dynamical 

Systems, following third order nonlinear differential equation of motion is appropriate for damped 

weightless MDOF sagging elastic cables: 

 𝑀𝑦 ⃛ + 𝐶𝑦̈ + 𝐾𝑡𝑦̇ = 𝐹̇ (21) 

Application of Newton’s second law of motion to undamped weightless MDOF sagging elastic cables 

yields the equation of dynamic equilibrium as 𝐹(𝑡) − 𝑃(𝑡) = 𝑀𝑦̈ . It can be observed that it is the 

absolute acceleration (𝑦̈ = 𝑥̈ + 𝑢̈)  defined in reference to the absolute space which appears in the 

equation of motion. As sagging cables lack unique natural state, the elastic displacements (𝑢)  are 

measured relative to their instantaneous natural state (𝑥). Thus, it is not the elastic acceleration (𝑢̈), but 

total elasto-configurational acceleration (𝑦̈) which represents the Newtonian absolute acceleration. In 

contrast, the elastic displacements (𝑢) of the conventional elastic structures are measured from their 

unique natural state (𝑥). For such structures, the elastic acceleration (𝑢̈) does appear in their equations of 

motion. 

DECOUPLED NONLINEAR DYNAMICAL SYSTEMS 

To recapitulate, the constitutive equations of nonlinear elastic systems are stated in terms of nonlinear 

force-displacement relations. Force vector components are expressed as nonlinear functions of the 

displacement vector components. These nonlinear force-displacement relations can also be expressed in 

the following ‘uncoupled’ form: 

 𝑃𝑖 = 𝐾𝑖
𝑠(𝑢1, 𝑢2, −, −, 𝑢𝑛) 𝑢𝑖 (22) 

Here, the functions  𝐾𝑖
𝑠(𝑢1, 𝑢2, −, −, 𝑢𝑛) represent the secant stiffness coefficients relating force vector 

components (𝑃𝑖) with the corresponding displacement vector components (𝑢𝑖). However, these secant 

stiffness coefficients (𝐾𝑖
𝑠) determined by the instantaneous value of displacement vector components do 

not remain constant during vibration. Using their force-displacement relations in this form, an 𝑛-DOF 

nonlinear structure can be modelled as 𝑛  uncoupled SDOF nonlinear structures resembling Duffing 

oscillators. The governing second order nonlinear differential equations of motion for each of these SDOF 

systems can be stated as 

 𝑀𝑖𝑢𝑖̈ + 𝐶𝑖𝑢𝑖̇ + 𝐾𝑖
𝑠𝑢𝑖 = 𝐹𝑖(𝑡) (23) 

To an extent, such decoupling is routinely employed in the structural stability theory. While 

investigating the elastic stability of beam-columns under the action of lateral and axial loads, it is 

common practice to state the secant lateral load-displacement relations wherein the stiffness coefficient 

depends upon the axial force [15]. Thus, a two-DOF system is converted into an SDOF system. 

It is well known that the stiffness coefficient of a genuine SDOF stable structure is always positive as 

a non-positive stiffness coefficient would imply lack of stability. In contrast, the stiffness coefficient of 

the equivalent SDOF structures derived from an nonlinear MDOF structure can assume all real values 

including positive, nil and negative values. However, in this case, vanishing or negative stiffness 

coefficients of SDOF structures do not imply their instability. Of course, an underdamped nonlinear 

SDOF structure with positive instantaneous stiffness exhibits oscillatory motion. In contrast, even 

undamped SDOF structures with vanishing or negative stiffness are expected to experience only non-

oscillatory motion. Damping coefficients for SDOF structures with positive instantaneous stiffness can be 

assigned after due system identification. Though, system identification of nonlinear structures is quite 

complex, assignment of damping coefficients does not pose any theoretical challenge. When the stiffness 

is negative, critical damping coefficient (𝐶𝑖𝑐𝑟 = 2√𝐾𝑖
𝑠𝑀) turns out to be imaginary. It is not yet clear 

how to assign the values of damping ratio and damping coefficient.  

It turns out that nonlinear seismic analysis of structures using such second order decoupled equations 

of motion has recently been attempted. The conventional secant stiffness matrix is diagonalized by using 

‘equivalent nodal secant matrix’ [20]. The instability caused by nonpositive secant stiffness coefficients 

as identified above has not been encountered.  Perhaps, this is because of the fortuitous choice of the 

particular structure and loading resulting in positive stiffness matrix. It is only the secant stiffness 
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matrices ( 𝐾𝑖𝑗
𝑠 ) with some negative off-diagonal coefficients that the corresponding secant stiffness 

coefficients (𝐾𝑖
𝑠) are expected to vanish or even be negative. 

DISCUSSION 

It should be appreciated that different classes of mechanical systems are identified by their 

constitutive equations. However, constitutive equations of structures as distinct from their motion are 

rarely mentioned in the discourse on structural theory. The current philosophy of seismic design of 

structures relies on their ductility for the purpose of seismic energy dissipation. As per the professional 

parlance in the earthquake engineering community, the term ‘nonlinear analysis’ is deemed to convey 

inelastic analysis [4, 13]. It should be kept in mind that inelastic structures are always nonlinear, though 

the elastic structures can either be linear or nonlinear. Thus, the class of physically nonlinear elastic 

structures under discussion here as well as in nonlinear dynamical systems theory is not even considered 

admissible! Of course, energy dissipation by damping, though not by elastoplastic flow, is incorporated. 

Examples of distinct classes of structures include the linear elastic conservative structures, Kelvin-Voigt 

dynamical systems, classically damped systems, etc. Class of homogeneous dynamical systems has only 

recently been introduced: Cracked concrete beams and weightless sagging cables undergoing small elastic 

displacements have been modelled respectively as first order and mixed order homogeneous dynamical 

systems by the Author and co-workers [16, 19]. A new class of decoupled nonlinear MDOF dynamical 

systems is explicitly identified for the first time in this Paper. 

Even in the theories of vibrations of damped SDOF structures proposed since Rayleigh [1], it is the 

Kelvin-Voigt rheological model which is generally employed for deriving the governing second order 

linear differential equations of motion. The Zener rheological model is claimed by Haan and Sluimer to 

be better suited for predicting viscoelastic response of concrete. However, it demands third order 

differential equations of motion for predicting dynamic response of concrete structures [21]. Third order 

differential equations of motion have also been employed to describe the dynamic response of such 

mechanical systems like elastically-coupled isolator systems, relaxation type of vehicle suspension, 

vehicle-bridge interaction and nonlinear control systems [22,23], jerk phenomenon [24] and muscle-

tendon systems [25].  Earlier research investigations into the field of third order oscillators were carried 

out by Rauch, Friedrichs and Sherman [25]. 

As stated earlier, the IVP corresponding to the incremental equation of motion (Equation 4) is not 

formulated explicitly, though it is implied that only initial displacements and velocities need to be 

specified. Analytical form of the equation of motion (Equation 8) can be deduced from the incremental 

equation of motion (Equation 4) by dividing both sides by duration of the time interval 𝛥𝑡. Then, using 

the relations (𝛥𝑢̈ = 𝑢⃛𝛥𝑡, 𝛥𝑢̇ = 𝑢̈𝛥𝑡,   𝛥𝑢 = 𝑢̇𝛥𝑡,   𝛥𝐹(𝑡) = 𝐹̇𝛥𝑡), one obtains the third order differential 

equation of motion (Equation 8). However, the third order differential equation of motion demands the 

specification of initial displacements, velocities and accelerations. As presented in this Paper, such 

equation of motion along with these initial conditions leads to explicit formulation of IVP valid for 

MDOF nonlinear structures. 

Linear modal analysis results in 𝑛  uncoupled third-order homogeneous ordinary differential 

equations. The auxiliary equation for each of these differential equations with real coefficients is cubic 

polynomial with at least one real negative/positive root. The other two roots can be real distinct, real 

equal or complex conjugate depends upon the numerical values of its real coefficients [26]. For 

underdamped vibration modes, these latter roots are complex conjugate. Such systems with one real 

negative root and two complex conjugate roots are shown to exhibit their characteristic mode of damping 

of free vibrations. This involves exponential decay of oscillatory vibrations without change of sense of 

vibration amplitude [21]. As expected, such characteristic damping mode has also been predicted for 

weightless sagging elastic planar 4-DOF cables obeying third order differential equations of motion [16]. 

No attempt has been made here to investigate the problem of equivalence between the popular 

incremental and the proposed analytical IVPs for nonlinear dynamical systems. However, it is clear that 

their respective equations of motion, (Equation 4) and (Equation 8), are equivalent, but their required 

initial conditions do differ. More significantly, the IVP based upon incremental second order differential 

equation of motion is oblivious of the presence of a mode of damping in addition to the well-known 

underdamped and over damped free motion. This mode arises naturally when the third order differential 

equation of motion is employed. 
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A comparison of equations of motion (Equation 1 and Equation 10) reveals the similarity of their 

mathematical form. It can be observed that displacements and velocities are the primary kinematic 

variables respectively for the linear and nonlinear dynamical systems.  Mathematical similarity ensures 

same modal frequencies (𝑀−1𝐾) for both the types of systems. However, modal vectors are displacement 

vectors for linear systems, while it is velocity vectors which represent the modal vectors for nonlinear 

systems. For the particular case of forcing function (𝐹(𝑡) = 𝐹0 + 𝐹𝑡 𝑠𝑖𝑛𝜔𝑡) where 𝐹0 and 𝐹𝑡  represent 

sustained constant and small peak harmonic force vectors respectively, the resonance is predicted in both 

the formulations to occur at the same modal frequencies. Particular vibration mode can be excited by 

selecting the additional peak harmonic force vector 𝐹𝑡 proportional to the corresponding modal vector. 

For vibrating nonlinear systems, tangent stiffness matrices are determined by the instantaneous 

displacements. Thus, the instantaneous modal frequencies determined by the instantaneous tangent 

stiffness matrices vary with time-dependent instantaneous displacements. For the forcing function 

(𝐹(𝑡) = 𝐹0 + 𝐹𝑡𝑠𝑖𝑛𝜔𝑡) , the instantaneous modal frequencies do not differ very much from those 

determined using the tangent stiffness matrix in the equilibrium state provided the displacements from the 

equilibrium state remain small. For the extreme case of linear dynamical systems, the tangent and secant 

stiffness matrices, being equal and constant, are independent of the displacements. For homogeneous 

dynamical systems and decoupled MDOF nonlinear dynamical systems, the secant stiffness matrices have 

been defined which are employed for stating their second order differential equations of motion. It should 

be remembered that still, it is only the instantaneous tangent, not secant, stiffness matrices which 

determine the instantaneous modal frequencies. Case of first order homogeneous dynamical system is 

different in that, their instantaneous secant and tangent stiffness matrices being equal, their secant 

stiffness matrix can be employed for instantaneous modal analysis. Further, cumbersome modal analysis 

is not required for 𝑛  SDOF decoupled dynamical systems equivalent to MDOF nonlinear dynamical 

systems. 

As argued so forcefully by Truesdell [27], in physical sciences including structural dynamics, both 

computation and experimentation should properly by conducted under the supervision of a well-

developed mathematical theory. Predictions made by using ‘floating’ computational methods for all types 

of nonlinear systems can be misleading. Contrary to this understanding, the commercial computational 

algorithms have taken precedence over the analytical formulation of the IVPs in nonlinear dynamics of 

MDOF structures. In this Paper, an attempt has been made to reintroduce the analytical paradigm in this 

field. 

 CONCLUSIONS 

In this Paper, the analytical IVP involving third order nonlinear differential equations of motion 

appropriate for nonlinear MDOF structures is proposed. For a particular class of MDOF nonlinear 

structures, i. e., homogeneous mechanical systems, the conventional IVP based upon second order 

nonlinear differential equations of motion is shown to be valid. Also, an entirely different approach based 

upon decoupled MDOF nonlinear mechanical systems is proposed. Going against the dominant 

computational paradigm, it is argued that it is only after the formulation of analytical IVPs that new 

theorems and principles can be proved and dedicated analytical and computational solution methods can 

be formulated. Possible complete equivalence between the numerical and analytical IVPs based 

respectively upon second order incremental and third order analytical differential equations of motion has 

yet to be established. In the case of homogeneous dynamical systems, some initial progress has been 

made by researchers including the present Author. For the decoupled version of the nonlinear MDOF 

structures, even the formulation of analytical IVP has barely been suggested in this Paper, though such an 

approach has been adopted by others for numerical prediction of seismic response of some structures. It is 

hoped that the present Paper will motivate research along these identified analytical prospects. 
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