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ABSTRACT 
  
Wave passage and differential motions of long structures can lead to excessive demands 
in the near field of strong earthquakes. For long and stiff structures these demands are 
dominated by pseudo-static deformations resulting from differential ground motions. In 
our previous work we confirmed that replacing continuous bridge girder with multiple 
short segments, interconnected by structural joints, reduces the pseudo-static forces in 
the piers. In this paper, these reductions are further examined for a three-span bridge 
with mid-span supported by pins. It is shown that the placement of pins in the mid-span, 
rather than over the piers, results in only minor differences in the forces and drifts of the 
bridge. The shear forces in the joint keys, as well as the drifts of piers, for out-of-plane 
response are again reduced in the high frequency band in the bridge that is made flexible 
by placement of joints in the middle span. 
 
Key words: Out-of-plane response of a three-span bridge, spatial seismic effects, 
ground rotations, structural torsion, reduction of shear forces in joint keys, reduction of 
pseudo-static actions. 
 
 
INTRODUCTION 
 
      For large and long structures, the effects of differential earthquake ground motions 
become significant and should be considered in the design (Bogdanoff et al. 1965; 
Okubo et al. 1983; Zembaty and Krenk 1993, 1994). Contributions to the response 
caused by differential ground motion have been studied for beams (Harichandran and 
Wang 1988, 1990; Zerva 1991), bridges (Kashefi and Trifunac 1986; Perotti 1990; Hyun 
et al. 1992), simple models of three-dimensional structures (Hao 1991), long buildings 
(Todorovska and Lee 1989; Todorovska and Trifunac 1989, 1990a, 1990b), and dams 
(Kojić and Trifunac 1988, 1991a, 1991b).  
 
      Extensions and generalizations of the classical response-spectrum method, which are 
based on the Taylor series approximations of long-wave ground motions, cease to be 
valid for short-wave excitations. Such extensions have been described in the studies 
involving differential strong motion (Jalali and Trifunac 2009, 2011; Trifunac and 
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Todorovska 1997a; Trifunac and Gičev 2006) and the strength-reduction factors (Jalali 
and Trifunac 2007, 2008; Jalali et al. 2007). Hao (1998) studied the required seating 
length to avoid unseating and pounding of adjacent bridge decks. Zanardo and Hao 
(2002) confirmed the significance of the spatially non-uniform ground motions, and 
Chouw and Hao (2003, 2004, 2005) showed that neglecting the soil-structure interaction 
(SSI) effect and ground-motion spatial variations will result in inaccurate prediction of 
pounding responses of bridge girders.  
 
 
 

 
 
 
Fig. 1. Plan view (top) and side view (bottom) of the schematic representation of a 
“bridge” with pins over the columns (from Jalali et al. 2012) (left) and with pins in the 
central span (right) as studied in this paper 
 
 
      The purpose of this paper is to extend the results of Jalali et al. (2012), who analyzed 
the seismic response of a simple, symmetric model of a three-span, simply supported 
bridge (Figure 1a) to fault-parallel and fault-normal displacements near faults. In this 
paper we study the same bridge, but move the pins of the central span away from the 
piers, as shown in Figure 1b. To emphasize only the consequences of differential, but 
propagating and transient fault-normal pulses and fault-parallel displacements, it will be 
assumed again that the soil-structure interaction can be neglected. Impulsive ground 
motion near an earthquake fault, and in particular the amplitude and period of the 
velocity pulses there, can have a significant effect on the performance of structures (Hall 
et al. 1995; Mylonakis and Reinhorn 2001; Dicleli 2008; Fenves and Ellery 1998; 
Jonsson et al. 2010; Trifunac and Todorovska 1994; Goel and Chopra 2008). These 
large pulses in acceleration, velocity and displacement time histories can also propagate 
to considerable distances from the fault and maintain their amplitudes and polarity over 
distances as large as tens of km (Todorovska and Trifunac 1997). 
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      This study aims to illustrate qualitatively the dynamic consequences of wave-
passage effects on long, bridge-like structures for idealized, near-fault, strong-motion 
pulses, to show the advantages of the flexible long structure, which can follow the 
deformations imposed by the propagating waves, and to show that the placement of the 
joints supporting the central span does not alter the overall trends in the response. A 
sensitivity analysis of the dependence of the response on many other governing 
variables and of the range of their possible values is beyond the scope of this paper. In 
this paper we consider only the wave passage effects. We do not consider coherency 
loss, which is poorly understood and difficult to model in the near field. 
 
DYNAMIC MODEL 
 
      The model we consider is a symmetric three-span bridge with middle hinges at a and 
b from the central columns (Figure 1b) consisting of three rigid decks with masses m1, 
m2, m3, polar mass moments of inertia J1, J2, J3, and lengths , supported by four 
axially-rigid mass-less piers connected at the top to the deck and at the bottom to the 
ground by circular rotational and torsional springs. The rotational and torsional springs 
represent the bending and torsional stiffness of the piers. It is assumed that there is no 
soil structure interaction so that the points on ground surface where the piers are 
supported move as in the free field of strong motion. At the middle hinges the rigid 
decks are interconnected by rigid shear keys to prevent out-of-plane relative 
displacement and unseating. The mass-less piers are connected to ground and to the 
rigid deck by linear circular rotational and torsional dashpots providing the prescribed 
fraction of critical damping. Rotation of the piers is assumed to be small enough so that 
the interaction between in-plane and out-of-plane motions of the rigid decks may be 
neglected. The bridge is acted upon by the acceleration of gravity, g, and is excited by 
differential out-of-plane and torsional ground motions. This model and its governing 
equations are described in Appendix A. 

1 2 3, ,L L L

 
NEAR-FAULT GROUND MOTION 
 
      To describe the ground motion near faults we consider  (fault-normal pulse) and 

 (fault-parallel permanent displacement), and select their amplitudes and duration to 
be consistent with what is known about the nature of these motions near-faults. Figure 
B1 in Appendix B shows schematically a fault and these two characteristic motions,  
and , which describe monotonic growth of the displacement toward the permanent 
static offset, and a pulse, here assumed to be perpendicular to the fault and associated 
with failure of a nearby asperity or passage of dislocation under or past the observation 
point. Further discussion and motivation for selecting these simple strong-motion 
displacement functions can be found in author’s previous work (Jalali and Trifunac 
2007, 2008, 2009). 

Fd

Nd

Nd

Fd

 
      The motions  and  have large initial velocity. It is proportional to the stress 
drop on the fault, and even in the presence of nonlinear site response it can be in the 
range of hundreds of cm/s (Trifunac 1998, 2009) 

Nd Fd
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STRUCTURAL RESPONSE 
 
      As in Jalali et al. (2012), it is assumed that L1=L2=L3=L =30 m, and for different 
phase velocities different time delays τ  will be selected ( .03,.05,.1,.2,.3τ = s). The 
height of the bridge is h = 6 m, and the torsional stiffness of piers is neglected ( ). 
The contribution of all modes of the bridge is included in all analyses and the damping 
ratio of the first mode is supposed to be

0TC =K

1 0.02ζ = . The period of the first mode of the 
bridge is assumed to vary between T1=0.1 and 1.5 sec and all the results are shown 
versus T1. In nonlinear analyses, the material behavior of piers in bending is assumed to 
be elasto-plastic and the yielding limit of rotational springs of piers is supposed to be yφ  
= 0.005 and 0.01. 
 
      In this paper only the action of out-of-plane (along the Y-axis, Figure 1) component 
of near-fault ground motion will be considered at the base of the piers (

igv ) for 
earthquake magnitudes M = 4–7, but the effects of foundation-soil interaction will be 
neglected. It is assumed that the bridge is near a fault and that the longitudinal axis of 
the bridge (X-axis) coincides with the radial direction (r-axis) of the propagation of 
waves from the earthquake source so that the absolute displacements of the bases of 
piers because of the wave passage are different. It is further assumed that the ground 
motion can be described approximately by linear-wave motion. Thus, the nonlinear soil 
strains and cracks in the soil, which accompany violent, strong ground motion in the 
near field will not be considered (Trifunac and Todorovska 1996; 1997a,b,c; Trifunac et 
al. 1996). By considering the wave propagation from left to right in Figure 1b, it is 
assumed that the excitations at all four piers have the same amplitude but differ in terms 
of phase. The phase difference (or time delay τ ) between the four ground motions 
depends on the distance between piers and the horizontal phase velocity of the incident 
waves. As can be seen in Figure 1b, the system is excited by differential out-of-plane 
ground motions, , 1,

igv i 4= , at the four bases, so that  
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where xC  is the horizontal phase velocity of incident waves. The functional form of 

 is defined by Equations (B1) and (B2) (see Appendix B) for the fault-normal 
pulse and fault-parallel displacements, respectively. For body waves, 

( )
igv t

xC  will depend on 
the shear-wave velocity in the half space (β ) and the incident angle (γ ). For surface 
waves, xC  will depend on the dispersion characteristics of the medium (note that ( )xC ω  
will be different for each of the surface-wave modes; Todorovska et al. 2013). For plane 

 4



waves, the value of xC  varies between β  and infinity: ( )xCβ < < ∞ , and in this paper, 
it will be assumed to vary between 300 m/s and infinity (300 < Cx < ∞ ).  
 

 
 
Fig. 2. Maximum linear-shear-key forces (top two levels), and drifts in the piers (bottom 
two levels) vs. the fundamental period (T1), for fault-parallel displacement  and fault-
normal pulse , for magnitudes M = 4 to 7, for 

Nd

Fd τ = 0 and KTC = 0, and for the bridge 
models with pins over the columns (left) and in the central span (right)  
 
      For each specific design of a bridge, there will exist some torsional resistance 
between deck ends and piers. In Jalali et al. (2012), the torsional resistance between the 
middle piers and the deck ends at the two sides was modeled by a torsional spring with 
stiffness 0.5 , and the torsional resistance between the end piers and the deck ends 
was modeled by torsional springs with stiffness , where  is the torsional stiffness 
of the piers (Figure A1c). The ratio of torsional to bending stiffness for each pier 
( /

TCK

TCK TCK

TCK Kφ ) depends on the number of columns at each pier, the width of the bridge and 
the piers, the distance between the columns of each pier, the cross section and the height 
of the columns of each pier, and their material properties (Figure A1d). The ratio of 

/TCK Kϕ  is expected to vary between 0.1 and 2.0 (Jalali et al. 2012).  
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Fig. 3. Wave-passage effects on magnification factor of maximum linear-shear-key 
forces vs. system fundamental period (T1), time lag τ in seconds, for KTC = 0, for 
excitation by fault-parallel displacement  (top four segments), and for fault-normal 
excitation by  (bottom four segments), for magnitudes M = 4 and 7, and for the 
bridge models with pins over the columns (left) and in the central span (right)  

Nd

Fd

 
 
RESULTS  
 
      Based on the above formulation (Equation A8) we analyzed the response of a three-
span bridge with middle shear keys and different main periods excited by fault-parallel 
and fault-normal displacements for different earthquake magnitudes and time lags of 
wave arrival to the base of the columns. The linear response of the bridge is shown in 
figures 2 through 4 and the nonlinear response of the system is presented in figures 5 
through 8. 
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Fig. 4. Magnification factor of maximum linear drift in the piers of the bridge, vs. 
system fundamental period (T1) and time lagτ in seconds, with KTC = 0, for fault-
parallel displacement  (top four segments), fault-normal pulse  (bottom four 
segments), for earthquake magnitudes M = 4 and 7, and for the bridge models with pins 
over the columns (left) and in the central span (right)  

Nd Fd

 
      As it is seen from Figure 2 the same trends in the response are present as in the paper 
by Jalali et al. (2012) (Figure 1a). It is seen that the maximum shear key forces and 
drifts in the piers induced by fault-normal pulse are more than those induced by fault-
parallel displacement. By increasing of the main period of the bridge the maximum 
shear key forces decreases while the maximum drift in pier increases. For excitation by 
fault-parallel displacement the maximum shear key forces and drifts in piers may 
increase up to 2g and 10 percent for stiff (T1=0.1 sec) and soft (T1=1.5 sec) bridges, 
respectively. Meanwhile for excitation by fault-normal pulse the corresponding values 
may increase up to 9g and 25 percent, respectively. 
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Fig. 5. Ratios of maxima during nonlinear system response to maxima, during the linear 
system response, of the shear-key forces vs. system fundamental period (T1) and time 
lags τ (in seconds) for KTC = 0 and 0.005yφ = , excited by fault-parallel displacement 

 and magnitudes M = 6 and 7 (top four segments), and by fault-normal pulse  and 
magnitudes M = 5 and 6 (bottom four segments), for the bridge models with pins over 
the columns (top and third rows) and in the central span (second and bottom rows)  

Nd Fd

 
      In Figures 3 and 4 we show the effects of wave passage on the maximum shear key 
forces and drifts in piers of bridge for different earthquake magnitudes. As seen from 
Figures 3 under near fault ground motions the differential motion effect on maximum 
shear key forces of bridge is negligible in entire range of considered periods. Meanwhile 
the wave passage of translational out-of-plane excitation can increase drifts by 25 to 40 
percent for all magnitudes and depending to the time delay and due to the combined 
action of out-of-plane and torsional response this amplification can occur in entire range 
of considered periods (0.1<T1<1.5). 
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Fig. 6. Ratios of maximum drifts during nonlinear response to the maximum drifts 
during linear response in the piers of the bridge, vs. system fundamental period (T1) and 
time lagsτ (in seconds), for KTC = 0, and 0.005yφ = , excited by fault-parallel 
displacement  with magnitudes M = 6 and 7 (top four segments), and by fault-normal 
pulse  with magnitudes M = 5 and 6 (bottom four segments), for the bridge models 
with pins over the columns (top and third rows) and in the central span (second and 
bottom rows) 

Nd

Fd

 
      By assuming material nonlinearity in bending of piers we show the ratio of nonlinear 
to linear response of the bridge in Figures 5 through 8. Again we find the same trends as 
for the model in Figure 1a. Depending on the main period of the bridge, earthquake 
magnitude, and yφ  the amplitude of the responses become sensitive to action of the 
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gravity load. For large magnitudes and small yφ  the destabilizing effect of gravity and of 
horizontal excitation lead to conditions that are close to collapse ( sφ φ> ).  As it is seen 
from Figures 5 through 8 under near-fault ground motions the nonlinear behavior of 
piers tends to decrease the maximum shear key forces relative to what occurs in the 
linear system. For excitation by fault-parallel displacement the nonlinear behavior of 
piers tends to increase in maximum drift in piers of the bridge. Meanwhile, under fault-
normal pulse this trend is not seen and nonlinear behavior of piers tends to a decrease in 
maximum drift in the range of considered periods.  
 

 
 
Fig. 7. Ratios of maxima during nonlinear response to the maxima during linear 
response, of the shear-key forces vs. system fundamental period (T1) and time lags τ (in 
seconds), for KTC = 0, and 0.01yφ = , excited by fault-parallel displacements  with 
magnitudes M = 6 and 7 (top four segments), and by fault-normal pulses  with 
magnitudes M = 5 and 6 (bottom four segments), for the bridge models with pins over 
the columns (top and third rows) and in the central span (second and bottom rows) 

Nd

Fd
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Fig. 8. Ratios of maximum drifts in the piers during nonlinear response to the drifts 
during linear response, vs. system fundamental period (T1) and time lags τ (in seconds), 
for KTC = 0, and 0.01yφ = , excited by fault-parallel displacements with magnitudes 
M = 6 and 7 (top four segments), and by fault-normal pulses  with magnitudes M = 5 
and 6 (bottom four segments), for the bridge models with pins over the columns (top and 
third rows) and in the central span (second and bottom rows) 

Nd

Fd

 
 
DISCUSSION AND CONCLUSIONS 

  
      The results of this study show that, with only a few exceptions, the key forces 
between the bridge piers and bridge decks are reduced for τ  greater than zero relative to 
the synchronous excitation (τ  = 0) during linear system response to the propagating 
excitations by  and  (fault-parallel displacement and fault-normal pulse, Nd Fd
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respectively). The exceptions to this occur only in the end span (span 4-2 in Figures 1a 
and b) and are associated with out-of-plane whipping as the displacements  and  
leave the ground beneath the bridge and propagate out to the right. The reductions are 
more significant for long transit times

Nd Fd

τ , longer than ~ 0.1 s, and mainly occur for “stiff” 
piers when  is approximately between 0.1 and 0.3 s. This is due to the ability of the 
deck to deform by following the out-of-plane ground motion by relative rotation of the 
decks about the vertical axes through the piers at pins 3 and 4 (Figures 1a and b). As 
would be expected, these reductions become smaller, and magnification factors become 
larger than 1, for very small , and as the torsional stiffness between adjacent decks 
increases (Jalali et al. 2012). Also, the results of the simply supported model show that 
the wave-passage effects lead to increases of about 25% to 40% in the drift of the piers. 

1T

1T

 
      In the absence of the pins, a long and continuous deck would have resulted in larger 
shear forces and bending moments in the piers during out-of-plane excitation with 
nonzero transit times (Jalali and Trifunac 2011; Jalali et al. 2012; Trifunac and Gičev 
2006). Long, continuous decks have large inertia, and through their large longitudinal 
rigidity they force all relative displacements between the deck and the ground to be 
taken by the piers. The rigid girders thus place larger demands on the piers. 
 
      The forces in the shear keys for the bridge models in Figures 1a and b are further 
reduced significantly by the nonlinear response of the piers (Figures 5 to 8), as long as 
the drifts in the piers are smaller than the angles, which lead to collapse caused by the 
gravity loads, dynamic instability, or both. Once again, it has been shown that for 
bridges and long structures on multiple supports the internal forces can be significantly 
reduced by selecting structural systems that can deform and conform to the motions 
imposed by the ground waves.  
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APPENDIX A 
 

      Shown in Figure A1a, is the model we consider in this paper. It is essentially the 
same model as the one studied by Jalali et al. (2012) with only difference being the 
location of the pins in the central span. Previously those pins were located above the 
columns, while in this paper they are at distances  and  from the left and right 
supports of the central span. Consequently the following formulation of the equilibrium 
equations is almost identical to the formulation presented in Appendix A of Jalali et al. 
(2012). Nevertheless, for completeness of this presentation, we include the 
corresponding equations for the model studied here, and again outline the method of 
solution. We define the parameters of the model as follows  

a b

 
kφ = Initial bending stiffness of the piers  
cφ =Linear bending damping coefficient of the piers 

cTk = Initial torsional stiffness of the piers  

cTc = Linear torsional damping coefficient of the piers 

im =Mass of i-th rigid deck 

1 2m m m m= + + 3 = Total mass of the bridge 
L1=L2=L3=L= Length of each span of the bridge 

/ 5a b L= = = distance between middle hinge and the nearest pier  
iJ =Polar moment of inertia of i-th rigid deck 

h = The height of bridge 
iφ = Rotational angle of  pier i th−

,
i ig gv θ = The free field out-of-plane and torsional motions of ground surface at the base 

of  pier   i t− h ( 1,2,3,4)i =
,

iG GV
i

θ = Absolute out-of-plane and torsional motions of the center of gravity of i-th 
rigid deck (  1,2,3)i =

,a bF F =Forces in shear keys at the middle hinges  
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Fig. A1a. Plan view of the bridge 
 
 

 
 
 
 

Fig. A1b. Side view of bridge piers and of the forces acting on them 
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      From geometry of the model (Figures A1a,b) the absolute out-of-plane displacement 
and torsional rotation of the center of gravity of three rigid decks are 
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(A1) 

Differentiating with respect to time we obtain 
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   The equilibrium equations of the three rigid decks are 

1
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1 3 1
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0                                                                               (A3-1)
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a G

a b G

F F F mV

F F F m V

+ + − =

= ⇒ + + =

34 2 3

       (A3 2)

0                                                                              (A3 3)b G

-

F F F m V -

⎧
⎪⎪
⎨
⎪

+ + − =⎪⎩

∑
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2 2G G G
L b L bF F Jθ θ θ

⎧
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⎪
⎪
⎨
⎪

− +⎪ − − =⎪⎩

∑

-

      Substituting Equations (A3-1) and (A3-3) into other equations we find the 
independent equations of motion of the system as follows 
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1 2 31 2 3 4 1 2 3 0G G GF F F F mV m V m V− − − − + + + =                                                         (A3-2a) 

1 1 1 11 3 1 3 1 1
( )( ) cos cos cos

2G G G G G
L aT T F L a F a mV Jθ θ θ θ

1
0+

+ + + + − − =                 (A3-4a) 

3 13 1 3 1 2 4( )(
2G G

L a bm V F F mV F F θ− −
+ + − − − =

2
) cos 0G                                         (A3-5a) 

3 3 3 32 4 2 4 3 3
( )( ) cos cos cos

2G G G G G
L bT T F L b F b m V Jθ θ θ θ

3
0+

+ − + − − − =               (A3-6a) 

The equilibrium equation of i-th pier is 

0M = ⇒∑ 22 cos sin 0 tan
cosi i

i
i i i V i i V i

i

MM F h F h F F
h

φ φ φ
φ

+ − = ⇒ = −                 (A4) 

Assuming uniform distribution of mass over the length of the bridge decks we 
approximately determine  as follows  
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L
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+
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+
= +

2

g

g
                                                                                     (A5) 

 
 
      The bending and torsional moments of piers are then defined as follows (Figures 
A1c, d) 
 

 
 
 

Fig. A1c. Schematic representations of torsional stiffness between the pier and the 
ground and between the pier and the deck 
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Fig. A1d. Schematic representation of the deformation of a pier and of the associated 
stiffness and damping 
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( )F φ , and ( )φΦ are nonlinear function of the type described in Fig. A2.  

 

 
 

 
 

Fig. A2. Force-displacement (moment-rotation) relationship for bi-linear spring 
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      From (A2), (A4), (A5), and (A6) one can write independent equations with respect 
to 1 2 3, , ,φ φ φ and 4φ  as follows 
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By considering  
 

1 2

 
i

i
m

m m m m
m
m

α

= + +

=

3

                                                                                                         (A7) 

 
      The above equations can be written in matrix form as follows 
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      For small deformation of a linear system and by neglecting the gravity, damping, 
input ground motion, and high-order terms, Equations (A3-2b), (A3-4b), (A3-5b), and 
(A3-6b) can be written as follows 
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(A3-6c) 

      If we assume that  
 

1 3,m m a b= =   , 
 
then by taking the Fourier transform of Equations (A3-2c), (A3-4c), (A3-5c), and (A3-
6c) we have 
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(A3-6d) 
The above equations can be written in matrix form as follows 
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(A11) 
      For nonzero solution of Equation (A10) the determinant of the coefficients should be 
zero. Therefore we have 
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If, for example,  then by solving of Equation (A12) one can find the natural 
frequencies of the bridge as follows 
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(A13) 
      From Equation (A13) it is seen that the effect of torsional stiffness of piers on the 
natural frequencies of the bridge is small. By neglecting of torsional stiffness and 
damping of piers, 0, 0

c cT TK C= = , one can determine the rotational damping coefficients 
of the system for prescribed fraction of critical damping. The mass, stiffness, and 
damping matrices of the bridge are 
 

 30



[ ] [ ] [ ]

2 2
0 0 0 0 0 0

0.11467 0.00133 0.032 0.008 2 2
0 0 0 0 00.00133 0.11467 0.008 0.032

, ,
0.032 0.008 0.288 0.048 2 2

0 0 0 0 0 0
0.008 0.032 0.048 0.288

2 2
0 0 0 0 0 0

K C
h h

K C
h hM mh K C

K C
h h

0

K C
h h

φ φ

φ φ

φ φ

φ φ

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢

−⎡ ⎤ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢−⎢ ⎥= = =⎢ ⎥
⎢ ⎥− ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 
(A14) 

      The natural frequencies and symmetric and asymmetric mode shapes of the system 
are  then obtained as follows (Fig. A3) 
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Fig. A3. Symmetric and antisymmetric mode shapes of the bridge 
 

 
In modal space the mass, stiffness, and damping matrix of the bridge are 
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(A16) 
The damping ratio of i-th mode is 
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For the first mode we have 
 

1 20.02 0.00677
C

mh
φ

1ξ ω= ⇒ =                                                                                   (A18) 

 
 
APPENDIX B: NEAR-FAULT GROUND MOTION 

 
      It is difficult to predict strong ground motion near faults due to irregular distribution 
of slip (Mavroedis et al. 2004; Trifunac 1974; Trifunac and Udwadia 1974), non-
uniform distribution of geologic rigidities surrounding the fault, irregular distribution of 
stress on the fault, and complex nonlinear processes that accompany fault motion during 
earthquakes. Thus, it is hard to predict the detailed nature of the near-fault ground 
motion and of the associated strong-motion pulses in time. In this study, a simplified 
approach is adopted, and these motions are modeled by smooth functions, which have 
correct average amplitudes and duration, and which have been calibrated against the 
observed fault slip and the recorded strong motions in terms of their peak amplitudes in 
time and their spectral content (Trifunac 1993a,b).  
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Fig. B1. Fault-parallel, , and fault-normal, , displacements for magnitude M = 
7. 

( )Nd t ( )Fd t

 
      Figure B1 shows schematically a fault and two simple motions,  and , which 
describe monotonic growth of the displacement toward the permanent static offset and a 
pulse, which is usually perpendicular to the fault surface and associated with failure of a 
nearby asperity or passage of dislocation under or past the observation point (Haskell 
1969). In this paper the motions  and  represent fault-parallel and fault-normal 
motions of any fault system with shear type dislocation. For the fault-normal pulse, one 
can chose (Figure B1 -center) 

Nd Fd

Nd Fd

 
( ) Ft

F Fd t A te α−= .                                                (B1) 
 

The values of  andFA Fα  vs. earthquake magnitudes are shown in Table B1 (Trifunac 
1993b). Because the strong-motion data are abundant only up to about M = 6.5, we 
place the values of Fα , ,FA Nτ , and  for M = 7 in Tables B1 and B2 in parentheses to 
emphasize that those are based on extrapolation. For the fault-parallel permanent 
displacement, one can consider (Figure B1 -bottom) 

NA
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The values of , andNA Nτ , vs. earthquake magnitudes are shown in Table B2 . 
 
      The amplitudes of  and  have been studied in numerous regression analyses of 
recorded peak displacements at various distances from the fault and in terms of the 
observed surface expressions of fault slip. The latter are traditionally presented as 
average dislocation amplitudes, 

Fd Nd

u , and are related to , as Nd 2 Nu d= (see Figure B1 -
top). An important property of and  functions, as used in this study, is their initial 

velocity. It can be shown that
Fd

~
Nd

/Fd σβ μ , where σ  is the effective stress (~ stress drop) 
on the fault surface (Trifunac 1993b; Trifunac 1998), β  is the velocity of shear waves 
in the fault zone, and μ  is the rigidity of rocks surrounding the fault. For  it can be 

shown that 
Nd

00.5Nd C /σβ μ= , at t = 0, where typical values of  are 0.6, 0.65, 1.00, 
1.52, and 1.52 for M = 4, 5, 6, 7, and 8 (Trifunac 1993b; Trifunac 1998). The largest 
peak velocity observed so far, 5 to 10 km above the fault, is about 200 cm/s. For 
example, 170 cm/s was recorded during the Northridge, California earthquake of 1994 
(Trifunac et al. 1998). Because there are no strong-motion measurements of peak ground 
velocity at the fault surface, the peak velocities  and can be evaluated only 
indirectly in terms of 

0C

Fd Nd
σ . The accuracy of the stress estimates depends upon the 

assumptions and methods used in the interpretation of recorded strong-motion records, 
and it is typically about one order of magnitude. Therefore, by solving the above 
equations for σ , one can use  and 0 )Cβ~ 2 /(Ndσ μ ~ Fd /σ μ β  to check their 
consistency with other published estimates ofσ  (Trifunac 2009).  
 
Table. B1. Characteristics of Fault-Normal Pulse (Trifunac 1993b) 
 

M (magnitude) Fα (1/s) FA  (cm /s) ,max ( )Fd cm  
,max ( / sFd cm )

4 14.04 56.48 1.48 56.48 
5 7.90 151.61 7.06 151.61 
6 4.44 546.97 45.32 546.97 
7 (2.50) (860.34) (126.6) (860.34) 

 
Table. B2. Characteristics of Fault-Parallel Displacement (Trifunac 1993b) 
 

M (magnitude) Nτ  (s) NA  (cm) ,max ( )Nd cm  ,max ( / sNd cm )
4 0.55 4.9 2.45 4.45 
5 1.2 29.2 14.6 12.17 
6 1.8 245.5 122.75 68.19 
7 (3.0) (1288.0) (644.0) (214.7) 
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