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ABSTRACT 

 

This study analyzes the influence of soil-structure interaction on the seismic response of a three-
dimensional (3-D) rigid foundation on the surface of viscoelastic soil limited by bedrock.  
Vibrations result only from P, SV, SH, and R harmonic seismic waves. The key step is the 
characterization of the soil-foundation interaction with the impedance matrix on one hand and the 
input motion matrix on the other hand. The mathematical approach is based on the method of 
integral equations in the frequency domain using the formalism of Green’s functions (Kausel and 
Peck, 1982) for layered soil. This approach has been applied to analyze the effect of soil-structure 
interaction on the seismic response of the foundation as a function of the kind of incident wave, 
the angles of wave incidence, the wave frequency and the embedding of foundation.  
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INTRODUCTION 
 

The analysis of the behavior of foundations under dynamic loads has grown considerably over 

the past four decades. Stringent security requirements imposed on design of certain types of 

structures have played a particularly important role in the development of analytical methods. The 

key step in studying the dynamic response of foundation is the determination of the relationship 

between forces. This relationship which results in displacement is expressed using impedance 

functions (dynamic stiffness) or the compliance functions (dynamic flexibility). Consideration of 

the soil-structure interaction in the analysis of the dynamic behaviour of foundation allows to take 

realistically into account the influence of soil on its vibration. 

A myriad of methods has been proposed to solve the soil-structure interaction problem. To 

simplify the problem linear-analysis techniques have been developed. One of the most commonly 

used approaches is the substructuring method that allows the problem to be analyzed in two parts 

(Kausel et al [12], Aubry et al [1] and Pecker [21]). In this approach the dynamic response of 

superstructure elements and substructure are examined separately. The analysis of foundation 

systems can be reduced to the study of the dynamic stiffness at the soil-foundation interface 

(known as impedance function) and driving forces from incident waves. The kinematic interaction 

of the foundation with incident waves is implemented in the form of a driving-force vector  

Determining the foundation response thereby becomes a wave propagation problem. Due to the 

mixed-boundary conditions of the problem (displacement compatibility with stress distribution 
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underneath the foundation and zero tension outside) solutions are complex. The determination of 

impedance functions and forces of movement related to the incident waves is a complex process. 

Several studies have been conducted on the dynamic response of foundation using the finite-

element and boundary-element methods. Wong and Luco [30] have shown the importance of the 

effect of non-verticality of SV, SH harmonics on the response of a foundation. 

Apsel and Luco [3] used an integral-equation approach based on Green’s functions for 

multilayered soils determined to calculate the impedance functions of foundation. Using this 

approach, Wong and Luco [29] studied the dynamic interaction between rigid foundations resting 

on a half-space. Boumekik [5] studied the problem of 3-D foundations embedded in soil limited by 

a rigid substratum. The finite-element method was applied by Kausel et al [12], Kausel and 

Roesset [11] and Lin et al [13] to determine the behavior of rigid foundations placed on or 

embedded in soil layer limited by a rigid substratum. A formulation of the boundary-element 

method in the frequency domain has been developed to address wave-propagation problems of 

soil-structure interaction and structure-soil-structure which limits the discretization at the interface 

soil-foundation. In this approach, the field of displacement is formulated as integrals equation in 

terms of Green’s functions Beskos [4], Aubry et al [1], Qian and Beskos [22], Karabalis & 

Mohammadi [9] and Mohammadi [20].  Celebi et al [6] used the boundary-element method with 

integral formulation (BIEM) to compute the dynamic impedance of foundations. In this context, 

the analytical solutions of 3-D wave equations in cylindrical coordinates in layered medium with 

satisfying the necessary boundary conditions are employed by Liou [14] and Liou & Chung [15]. 

Sbartai and Boumekik [23] used the BEM-TLM method to calculate the one hand, the dynamic 

impedance of rectangular foundations placed or embedded in the soil layered limited by a 

substratum and also the propagation of vibrations in the vicinity of a vibrating foundation. In this 

study, the method has been applied to analyze the effect of some parameters on the dynamic 

response of the foundations (depth of the substratum, embedding, masses and shape of the 

foundation, soil heterogeneity and frequency). However, Sbartai and Boumekik [24, 25] have 

studied the dynamic response of two square foundations placed or embedded in soil layered 

limited by a substratum. Spryakos and Xu [26] have developed a hybrid BEM-FEM and have 

conducted several studies for parametric analysis of soil-structure interaction.  

Recently, McKay [18] used the reciprocity theorem based on the BIEM to analyze the 

influence of soil-structure interaction on the seismic response of foundations. However, Suarez et 

al [27] applied the BIEM to determine the seismic response of an L-shaped foundation. In 

addition, experimental work has been carried out by researchers in Japan to determine the effect of 

soil-structure interaction on the response of real structure Fujimori et al [7], Akino et al [2], 

Mizuhata et al [19], Watakabe et al [28] and Imamura et al [8]. 

In our study, the solution is derived from the BEM in the frequency domain with constant 

quadrilateral elements and the thin-layer method is used to analyze the influence of soil-structure 

interaction on the response of seismic foundation. The results are presented as coefficients of 

movement in matrix [S*] and in terms of displacement as a function of dimensionless frequency, 

angle of incidence (vertically and horizontally) and embedding of foundation. This paper 

represents a continuation of that paper was previously published in Sbartai and Boumekik [23] 
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where the impedance functions have been well studied in details. Therefore, they will not be 

discussed in this article. 

 

 FOUNDATION RESPONSE TO WAVES OF SEISMIC ORIGIN  

 

1. Physical Model and Basic Equations 

 

The geometry of the calculation model is shown Fig 1. Consider 3-D, rigid, massless, surface 

foundation of arbitrary shape S in full contact with a homogeneous, isotropic, and linearly-elastic 

soil that is limited by bedrock. The soil is characterized by its density ρ, shear modulus G, 

damping coefficient β and Poisson’s ratio ν. The foundation is subject to harmonic oblique-

incident waves that are time-dependent: P, SV, SH and R. 

 
 

 
Fig .1 Geometry of a foundation subjected to harmonic seismic waves. 

 
The movement of a not-specified-point "ζ " can be obtained from solving the wave equation: 

0)( 2
,

2
,

22 =−+− ijjiSijjSP uuCuCC ω ,                               (1) 

Where Cs, and Cp are the velocities of shear and compression waves and ω the angular frequency 

of excitation. 

iu  is the component  of the harmonic displacement-vector in the x-direction; 

ijju ,  is the partial derivative of the displacement field with respect to x and y; 

jjiu ,  is the second partial derivative of the displacement field with respect to y. 

The solution of equation (1) may be expressed by the following integral equation: 
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( )∫=
S

iijj dstxGxu ξωξωξω ),(),,(),( ,                         (2) 

With Gij denoting the Green’s functions at point i due to unit-harmonic load (vertical and 

horizontal) of the ground at point j and ti being a load (traction) distributed over an area of soil. 

 The medium is continuous so this relationship is very difficult to assess. However, if the soil 

mass is discretized appropriately, this relationship can be made algebraic and displacement can be 

calculated. The key step of this study is to determine the impedance matrix linking the harmonic 

forces applied to the resulting harmonic displacement.  Even with a continuous medium the 

determination of the impedance matrix is still very difficult, if not impossible, due to the 

propagation problem and its mixed-boundary conditions. However, if the medium is discretized 

vertically and horizontally then it is possible to making the problem algebraic by considering that 

the variation of interface displacement is a linear function. 

 

1.1. Discretization of the model 

 
The principle of horizontal and vertical discretization of soil mass is shown Fig 2. The 

principle of vertical discretization based on the division of every soil layer into a number of sub-

layers of height hj with similar physical characteristics. Each sublayer is assumed to be horizontal, 

viscoelastic, and isotropic, and characterized by constant Lame jλ , a shear modulus µi and a 

density ρj. The bedrock at depth Ht is considered infinitely rigid and is not discretized. The 

reflection wave is assumed to be total and the displacements null. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig .2 The model of calculation 
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Ht: height of soil mass; 

h1: height of the sublayer 1; 

Nx: number of elements in the x-direction for a horizontal plane;  

Ny: number of elements in the y-direction for a horizontal plane;  

Nz: number of soil layers. 

N is the total number of elements in soil-foundation interface and Bx and By are the dimensions of 

the foundation. 

Within a given sublayer, the displacement is assumed to be a linear function of interface 

displacement above and below. This is true when the height of the sublayer is small in relation to 

the wavelength considered (in the order of λ/10). This method is comparable to the FEM in the 

sense that the movements within each sublayer are completely defined from the displacements in 

the middle of the interfaces. The interaction between the elements is done only through the nodes. 

The degrees of freedom of the soil mass are reduced to the degrees of freedom of the nodes. The 

stiffness matrix of soil mass is obtained in a similar manner to how it is determined in the FEM. 

This technique has been developed by Lysmer and Waas [17] and is known as the thin-layer 

method (TLM) and is used mainly for horizontal soil layers. This method has the advantage to 

making the problem algebraic and thus obtains the Green's functions by applying the boundary 

elements method in the soil-foundation interface. For this reason a horizontal discretization of the 

interface soil-foundation is established. 

The horizontal discretization permits to subdivide any horizontal interface of soil-foundation 

by elements of square-sections Sk. These elements where the constant-moving average is replaced 

by the movement of the center, assumes that stress distribution is uniform and is shown in Fig 2. 

Seeking simplicity of the integration calculation and economy of computing time the square 

elements are approximated disc elements. If the units loads (along the direction x, y, z) are applied 

to disc j, the Green’s functions at the center of disc i can be determined. By successively applying 

these loads on all discs, the flexibility matrix of soil complex at a frequency of a given ω can be 

formed. The discretized model to calculate the impedance functions of the foundation is also 

presented in Figure (2). In the discrete model, Equation (2) is expressed in algebraic form as 

follows: 

∑ ∫
=

=
N

i S

iijj dstGu
1

                                                 (3) 

 
2. Determination of Green's Functions by The TLM 

 

The Green's function for a layered stratum is obtained by an inversion of the thin-layer stiffness 

matrix using a spectral-decomposition procedure of Kausel and Peek [10]. The advantage of the 

thin-layer-stiffness matrix technique over the classical transfer-matrix technique for finite layers 

and the finite-layer-stiffness matrix technique Kausel and Roesset [11] is that the transcendental 

functions in the layered-stiffness matrix are linearized.  

In this work, the body (B) represents a layered stratum resting on a substratum base with n 

horizontal layer interfaces defined by z = z1, z2,..., zn and with layer j defined by zn< z < zn+1, as 
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shown in Figure (3). The medium of each n layer of hn thickness is assumed to be homogeneous, 

isotropic, and linearly elastic. For this body, the Green's function frequency domain is obtained 

with help of the TLM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Geometry of soil layers (B). 
 

According to the thin-layers theory of Lisper and Waas [17], displacements in each sub-layer 

vary linearly from one plane to another and still continue in the relevant direction (x, y, z). Thus 

the displacements in each sublayer are obtained by linear interpolation of nodal displacements at 

the interface of the sublayer (n) as follows: 

 

( ) 1)1()( ++−= nnn UUzU ηη                                          (3a) 

( ) 1)1()( ++−= nnn VVzV ηη                                           (4b) 

( ) 1)1()( ++−= nnn WWzW ηη                                         (4c) 

 

where 
nh

Znz )( −=η et (0 ≤ η ≤ 1), and, )(nU , )(nV  et )(nW  are the displacements along the x-

axis, the y-axis  and the z-axis as functions of z in the layer j, and with nU , nV  et nW  which are 
their nodal values at the interface layer z = Zn.  
 

∑
= −

⋅⋅
=

N

l l

nl
j

ml
imn

ij kk

a
G

2

1
22

φφαβ                                                (5) 

with: 

1=αβa  si βα =    and 
lk

k
a =αβ   si βα ≠   i, j = x, y, z. 

 
k, kl: wave number ; 

m: represents the interface where the load is applied;  

n: represents the interface where Green’s functions are calculated. 
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The obtained Green’s functions are complex and constitute the starting point for the 

determination of the flexibility matrix of an arbitrary soil volume. However, considering the 

geometry of the foundation, a system of Cartesian coordinates was adopted. The obtained U, V, 

and W Green’s functions are in fact the terms of the flexibility matrix of the soil. The 

determination of this flexibility matrix gives the impedance function of one or several foundations 

and the amplitudes of vibrations in the neighborhood of a foundation Sbartai and Boumekik [23, 

24]. 

Viscoelastic soil behavior can be easily introduced in the present formulation by simply 

replacing the elastic constants λ and G with their complex values: 

 

)21()(* βλλ iZ +=                                                 (6a) 

)21()(* βµµ iZ += ,                                             (6b) 

 
β is the hysteretic damping coefficient. 
 
 
CALCULATION MODEL  

 

The total displacement of the soil matrix is obtained by successive application of unit loads on 

the constituents of the discretized solid ground. The displacements in the soil are then expressed 

by  

{ } [ ] { }tGu =                                                       (7) 

The vectors { }u and { }t  are the nodal values of the amplitudes of displacements and 

tractions respectively at the interface soil-foundation. [G] is the flexibility matrix of the soil. 

 
When the foundation is in place, it requires different components of soil displacement 

consistent with rigid body motions. Compatibility of displacements at the contact area S between 

the soil and the rigid foundation leads to the matrix equation  

{ } [ ] { }∆= Ru                                                        (8) 

[R] is the transformation matrix 
 

[ ]























−

−=

0100

0000

0001

xy

xz

yz

R                            (9) 

{ } { }t

zyxzyx ΦΦΦ∆∆∆=∆ ,,,,,
 
is the displacement vector; ),,( zyxii =∆  

represents 

translations and ),,( zyxii =Φ  
rotations (Fig 1). 
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If we denote { }P  the vector of load applied to the foundation, the equilibrium between the vector 

of loads applied and the forces (tractions) distributed over the elements discretizing the volume of 

the foundation is expressed by the following equation: 

{ } [ ] { }tRP t=                                                       (10) 

Combining equations (7), (8) and (10) we obtain the following equation: 

{ } [ ] [ ] [ ]( ){ }∆= − RGRP
t 1 =[ ]{ }∆)(ωK                      (11) 

with ω  is the circular frequency of vibration and [ ])(ωK  the impedance or dynamic-stiffness 

matrix of the rigid foundation. 

Considering an incident plane, SH, P, SV and R harmonic waves are characterized by the vertical 

and horizontal angles of incidence 
Vθ  and Hθ  respectively, as shown in Fig 1. The motion of the 

half-space due to these seismic waves can be expressed by the following equation: 

{ } { } [ ]cyxiff HHeUu /)sin.cos.( θθω +−= .                            (12) 

{ } { }tf
z

f
y

f
x

f UUUU ,,=  , is known as the vector of amplitudes of the soil, that depends on the z 

coordinate if we want to study the embedded foundations case. However, in the case of surface 

foundations (z = 0), it is known as the vector of amplitudes of the free field.  c is the apparent 

velocity of the incident waves having the form 

 VV

c
cor

c
c

θθ coscos
21 ==

 

for P or S waves, 

respectively, and being equal to the R-wave. The explicit expressions of the vector { }fU  of waves 

SH, P, SV and R may be found in Wong and Luco [30]. 

 
The presence of a rigid foundation on the surface of the half-space results in diffraction of the 

above waves so that the total displacement field { }u  is expressed by the following equation: 

{ } { } { }sf uuu +=                                                  (13) 

where{ }su  represents the scattered wave field that satisfies the equation of motion (7). Also, the 

total displacement field in the contact region between the foundation and the half space must be 

equal to the rigid body motion of the foundation. 

Substituting equation (8) into equation (13), written in terms of the scattered field leads to the 

force-displacement relation:  

{ } [ ]{ } { }fs uRu −∆=                                                       (14) 

Substituting equation (7) into equation (14), written in terms of the traction forces: 

[ ]{ } [ ]{ } { }fuRtG −∆=                                         (15) 

hence 
{ } [ ] [ ]{ } [ ] { }fuGRGt 11 −− −∆=                                  (16) 

Multiplying both sides of the equation (16) by the transpose of the transformation matrix and 

combining with equations (10) and (11) yields the external forces: 

 [ ] { } [ ] [ ] [ ]{ } [ ] [ ] { }fttt uGRRGRtR 11 −− −∆=                         (17) 

The equilibrium between external forces and seismic forces can be as follows: 
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{ } [ ]{ } [ ]{ }fUKKP *−∆= ,                                        (18) 

with [ ]*K   is the driving force matrix given by the following formula: 

[ ] [ ] [ ] [ ]cyxit HHeGRK /)sin.cos.(1* θθω +−−=  .                          (19) 

Equation (14) can be replaced by the alternative form: 

{ } [ ] { } [ ] { }fUSPC *+=∆
 
                                  (20) 

where 

[ ] [ ] 1−= KC  

[ ] [ ] 1−= KC  is the dynamic compliance matrix and [ ]*S  is the input motion matrix given by the 

following formula: 

[ ] [ ] [ ]** KCS =                                               (21) 

When the rigid foundation is acted upon by seismic waves only, the external forces are zero (P = 

0), and the seismic response of the foundation is obtained from equation (18) or (20) by the 

following expression: 

{ } [ ]{ }fUS*=∆                                                (22) 

with 

[ ]



























=

00

00

0

0

0

00

*

zx

yx

xzxy

zzzy

yzyy

xx

S

R

SR

SS

SS

S

S                                         (23) 

 
When the mass of the foundation is not zero, one simply has to replace [ ]K  by 

[ ] [ ]MK 2ω− in the above equations, where[ ]M is mass matrix of the foundation. 

 

VALIDATION OF THE METHOD  

 

The accuracy of the method BEM-TLM used to study the 3D-response of foundations subject 

to plane-harmonic waves with variable angles of incidence and vibration frequency ao in this 

section is validated through comparisons with results obtained by Luco and Wong [16] and Qian 

and Beskos [22] for a semi-infinite ground. A parametric study was conducted to define the 

parameters of the calculation model. The influence of the discretization of the soil-foundation 

interface was studied. The thickness of a sublayer h must be small enough that the discrete model 

can transmit waves in an appropriate manner and without numerical distortion. This size depends 

on the frequencies involved and the velocity of wave propagation. The frequency of loading and 

velocity of wave propagation affect the precision of the numerical solution. Kausel and Peek [10] 

showed that the thickness of sub-layer must be smaller than a quarter of the wavelength λ. 
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Consequently, the maximum dimensionless frequency must not exceed the number of sub-layer N 

divided by four. 

Consider a rigid, massless, square foundation of side Bx = 2a on the surface of the half-space 

with a Poisson’s ratio of v = 1/3 subjected to plane P, SV, or SH harmonic waves θH = 90 ° and 

θV= 45 °. Figure (4) shows the variation of the real and the imaginary part of coefficient Sxx 

movement based on the dimensionless frequency
20

B

C
a

s

ω= . The results obtained by the 

proposed method are in agreement with those obtained by the method used by Qian and Beskos 

[22]. Considering the same foundation subjected to a Rayleigh wave where the angle of incidence 

is horizontal (θH = 0) and the corresponding velocity taken is equal to cR = 0.9325c for a Poisson's 

ratio v= 1/3. 
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Fig. 4 The coefficient of movement Sxx a square foundation (θH=0°, θV=45° and cs/c=0.70711). 
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Fig. 5 The response a square foundation under the Rayleigh wave cR/c=0.9325. 
 

Figure (5) shows the real and the imaginary part of dimensionless displacement ∆x/HR function 

of frequency ao. The results of this study, using the BEM-TLM, method were compared with those 

of Qian and Beskos [22] (BEM) and those of Luco and Wong (BEM) [16]. 

 

The results obtained are in agreement with those of Beskos and Qian [22] and those of Luco 

and Wong [16]. However, a difference is present for dimensionless frequencies ao higher than 2.5. 

This difference can be explained in two ways: 
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1) Qian and Beskos isoparametric elements were used to determine the soil-foundation interface. 

These types of elements are more accurate than constant elements used by the method developed 

in this article.  

2) Qian and Beskos and Luco and Wong use the Green’s functions of a semi-infinite soil whereas 

our method used the Green’s functions of soil bounded by bedrock. 

 

PARAMETRIC STUDY AND DISCUSSION  

 

1. Surface Foundation  

 

In this section, a parametric analysis was performed by studying a square foundation of the 

side (BX =2a) subjected to plane-harmonic waves with variable angles of incidence and vibration 

frequency ao, as shown in Fig 1 is presented. The results are presented in terms of coefficients of 

motion as functions of the dimensionless frequency
20

B

C
a

s

ω= . The soil is characterized by the 

height Ht = 10m of the bedrock to simulate a semi-infinite, its Poisson's ratio is ν = 1/3, the 

coefficient of the hysteretic damping β = 0.05, the shear modulus µ  = 1, and its density 1=ρ . 

The terms of  coefficient of motion are presented in the following figures for the shear S-wave , 

with an horizontal angle of incidence θH = 90° and vertical angle of incidence θV  = 0°, 30°, 45°, 

60° and 90°  

 

1.1. Coefficients of movements in translation 

 

For an angle of incidence θv = 90 °, the coefficients of translational movement Sxx, Syy, Szz, 

are equal to unity for all frequencies. Typically this value is adopted in the study of a structure 

subjected to seismic loading. This value induces oversized foundations. Figures 6 and 7 show that 

for other angles these coefficients vary with the dimensionless frequency. The amplitude of the 

response also depends on the vertical angle of incidence. 
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Fig. 6 The coefficient of movement Sxx (θH = 90 °). 
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Fig. 7 The coefficient of movement Szz (θH = 90 °). 
 

The results show that the real parts of Sxx and Szz have a higher magnitude than the value of the 

imaginary parts. With low frequencies, the response is in phase with the free-field motion. These 

coefficients filter low frequencies and therefore behave as low-pass filters. 

 

1.2. Coefficients of movement in rotation and torsion 

 

Figures 8 and 9 present the relative coefficients of the rotational movement Rxy and Ryx to the 

x-axis and y-axis respectively. For an angle of incidence θv = 90 °, the coefficients of rotational 

movement (Rxy, and Ryx) are zero and maximum for θv = 0°. Figure (10) shows the relative 

coefficient of torsion Szx to the axis of z as a function of dimensionless frequency and the vertical 

angle of incidence θv. The results obtained show that the value of the imaginary part of Szx is 

dominant, which shows a large damping. Thus, the answer is out of step with the free-field motion 

in the center of the foundation. 
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Fig. 8 The coefficient of movement Ryx (θH = 90 °). 
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Fig. 9 The coefficient motion Rx (θH = 90°). 
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Fig. 10 The coefficient of movement Szx (θH = 90 °). 
 

Figures 8, 9, and 10 present these coefficients for other angles of incidence (0 °, 30°, 45°, 60° 

and 90°) and show that they vary depending on the dimensionless frequency. The amplitude of the 

response also depends on the vertical angle of incidence. The coefficient of movement of rotation 

and torsion filters high frequencies and therefore behaves as high-pass filters. 

The matrix coefficients of movement shown in Figures 7 to 10 are valid only θH = 90° for S waves 

with a horizontal angle of incidence. These coefficients can be determined for other incidence 

angles and other types of waves. 

 

2. Embedded Foundation  

 

To present results that are easier to understand visually, the driving-force vectors are converted 

to input-motion vectors by multiplying by the inverse of the impedance matrix. Three different sets 

of results are given. The response of the massless foundation to incident body waves of type SH, P 

and SV are considered.  

A square base dimension Bx = 2a embedded in a homogeneous viscoelastic soil to a depth (d) 

and subject to P, SV and SH-waves (Fig 11) is considered. 

In this section, the influence of the embedding ratio (t = d/a = 0, 0.3, 0.6) on the seismic 

response of the foundation is studied. The results are presented in terms of displacements, 
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rotations, and torsion; these terms are calculated with equation 18 as a function of dimensionless 

frequency a0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Model of calculation of an embedded foundation subjected to harmonic seismic waves. 

 

To simplify the presentation of this paper, only one direction of wave propagation is 

considered with the vertical incident angle θv = 45. Figures 12 to 19 represent the terms of 

displacement, rotation, and torsion caused by the incident P, SV and SH-waves.  These curves are 

given for different values of relative embedding. 

 

2.1. Compression wave (P) 

 

Figures 12 to 14 show the response of a massless foundation to an incident P-wave. The wave 

travels in the x-direction with its particle motion in the z and x-directions. Except for the vertical 

incidence θv = 90°, the incident P-wave causes a mode conversion and reflected SV-wave results. 

One angle of incidence is considered, and is 45° measured with respect to the x-axis. The 

wavelength of the incident P-wave is twice as long as that of the incident S-waves; therefore, the 

kinematic interaction is less prominent. In general, the P-wave induces displacement along the x 

and z-axes and rotation around the y-axis 

Figures 12-14 show the variation of displacement and rotation as a function of dimensionless 

frequency and the influence of embedding coefficient t on the motion of foundation.  
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Fig. 12 Horizontal input motion x∆  due to incident P-waves (θv=45°, θH=0°). 
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Fig. 13 Horizontal input motion z∆  due to incident P-waves (θv=45°, θH=0°) 
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Fig. 14 Rocking input motionyφ  due to incident P-waves (θv=45°, θH=0°). 

The displacements (x∆ , z∆ ) and rotation ( yφ ) are strongly attenuated due to the increase of 

embedded foundation. Another, the horizontal displacement x∆  is more affected by the presence 

of embedding than the vertical displacement z∆ and rotation yφ . When increasing the embedding, 

it is noted that displacement and rotation are cancelled frequency decreases then the signs change. 

The imaginary part of the two modes of translation (vertical and horizontal) is not affected by the 

increase of embedding. In contrast, the imaginary part of the rotation is strongly affected by the 

presence of embedding. 
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2.2. Shear Wave SV 

 

Figures 15 to 17 show the response of a massless foundation subjected to an incident SV-wave. 

The wave travels in the x-direction with its particle motion in the z and x-directions. For a vertical 

incident angle θv = 45°, the free-field motion for the SV-wave in the direction of propagation is 

zero. Similar to the P-wave case, only the horizontal, vertical, and rocking components are excited. 
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Fig. 15 Horizontal input motion x∆  due to incident SV-waves (θv=45°, θH=0°). 
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Fig. 16 Vertical input motion z∆ due to incident SV-waves (θv=45°, θH=0°). 
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Fig. 17 Rocking input motionyφ due to incident SV-waves (θv=45°, θH=0°). 

 

Figures 15 to 17 present the variation of displacement and rotation as a function of frequency, 

and show the influence of embedding on the motion of the foundation. Fig 15 shows that the 



17 

displacement x∆ is zero for a foundation on the surface (t = 0) and becomes non-zero for relative 

embedding (t = 0.3 and 0.6) with an imaginary part that is strongly affected, indicating that the 

foundation does not follow the free-field motion.  Moreover the horizontal displacementx∆  is 

more affected by the presence of embedding than the vertical displacement z∆  and the rotation 

yφ  especially for low frequencies. The presence of the embedded foundation changes the sign of 

vertical displacement and rotation after frequency ao = 4. 

 

2.3. Shear Wave SH 

 

The response of the square, massless foundation to a SH-wave is presented Figures 18 and 19, 

with a horizontal angle of incidence θH=90°. The incident wave travels in the y-direction; 

therefore, the particle motion of the wave is in the x-direction. The shear wave causes 

displacement and torsion. Figures 18 and 19 show the embedment influence on displacement and 

torsion. 
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Fig. 18 Horizontal input motion x∆ due to incident SH-waves (θv=45°, θH=90°). 
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Fig. 19 Torsion-input motion zφ  due to incident SH-waves (θv=45°, θH=90°). 

 

Figures 18 to 19 show that the displacement and the torsion are strongly affected by the 

embedment of the foundation. For dimensionless frequencies lower than 3, the horizontal x∆ is 
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not affected by increasing the relative embedding. This is not the case for torsionzφ , which is 

strongly affected by an increase in the embedding. In contrast, for frequencies superior to 3, the 

presence of the foundation embedding causes a change of signs for x∆  and zφ .  

Figures 12 to 19 show that the horizontal displacement caused by P-wave is more attenuated 

than the displacement caused by SH and SV-waves; while the rotation caused by SV-wave is more 

attenuated than the rotation caused by P-wave. 

 

CONCLUSION: 

 

The interaction of a seismic square-rigid foundation placed and embedded in a homogeneous 

viscoelastic soil and subjected to obliquely incident harmonic P, SV, SH and R-waves was 

implemented. A simplified BEM-TLM was developed and used to calculate the foundation-input 

motion under different travelling seismic waves. The solution was formulated by the boundary-

element method in the frequency domain using the formalism of Green’s functions. Constant 

quadrilateral elements were used to study the seismic response of a foundation. The efficiency of 

this technique was confirmed by comparison with previous studies. This remarkably simple 

technique was concluded to be both highly effective and economical to determine input motions 

for rigid foundations of arbitrary geometry. The originality of the method lies first in the 

insignificance of the number of elements used in the discretization of the model, and second, in the 

ability to simulate a limited height of bedrock.   

This study shows the importance of the inclination of incident waves on the behavior of a 

foundation. The results indicate that: 

• The response of a foundation subject to non-vertical incident waves is different from that 

of a foundation subject to vertical-incident waves. 

• Non-vertical incident waves generate the torsion, translation, and rotation. Vertical 

incident waves cause the translation. 

• A vertical angle of incidence equal to θV=0° leads to an oversizing of the foundations. 

• Coefficients of translational movement filter low frequencies while coefficients of 

rotation filter at high frequencies. 

• Embedment of foundation affects displacement, rotation, and torsion in more specific 

ways and acts as a favorable factor in the seismic response of foundations. The movement 

of the foundation is strongly attenuated for relatively deep embedded, especially at low 

frequencies. 
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