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ABSTRACT

This study analyzes the influence of soil-structunteraction on the seismic response of a three-
dimensional (3-D) rigid foundation on the surfack viscoelastic soil limited by bedrock.
Vibrations result only from P, SV, SH, and R harimeoseismic waves. The key step is the
characterization of the soil-foundation interactisith the impedance matrix on one hand and the
input motion matrix on the other hand. The mathémahtapproach is based on the method of
integral equations in the frequency domain usirggftrmalism of Green'’s functions (Kausel and
Peck, 1982) for layered soil. This approach has lagplied to analyze the effect of soil-structure
interaction on the seismic response of the foundagis a function of the kind of incident wave,
the angles of wave incidence, the wave frequendytlam embedding of foundation
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INTRODUCTION

The analysis of the behavior of foundations undgrathic loads has grown considerably over
the past four decades. Stringent security requinésnanposed on design of certain types of
structures have played a particularly importang inlthe development of analytical methods. The
key step in studying the dynamic response of fotiodas the determination of the relationship
between forces. This relationship which resultdisplacement is expressed using impedance
functions (dynamic stiffness) or the compliancections (dynamic flexibility). Consideration of
the soil-structure interaction in the analysisted tynamic behaviour of foundation allows to take
realistically into account the influence of soil i vibration.

A myriad of methods has been proposed to solvesttilestructure interaction problem. To
simplify the problem linear-analysis techniqueséhbeen developed. One of the most commonly
used approaches is the substructuring method tbaisathe problem to be analyzed in two parts
(Kausel et al [12], Aubry et al [1] and Pecker [R1h this approach the dynamic response of
superstructure elements and substructure are emdnsaparately. The analysis of foundation
systems can be reduced to the study of the dynatiffoess at the soil-foundation interface
(known as impedance function) and driving forcesrfiincident waves. The kinematic interaction
of the foundation with incident waves is implemehie the form of a driving-force vector

Determining the foundation response thereby becamweave propagation problem. Due to the

mixed-boundary conditions of the problem (displaesemcompatibility with stress distribution
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underneath the foundation and zero tension outsidkeifions are complex. The determination of
impedance functions and forces of movement relaidtie incident waves is a complex process.
Several studies have been conducted on the dynasponse of foundation using the finite-
element and boundary-element methods. Wong and [3@Johave shown the importance of the
effect of non-verticality of SV, SH harmonics ortfesponse of a foundation.

Apsel and Luco [3] used an integral-equation apgmohased on Green’s functions for
multilayered soils determined to calculate the idgree functions of foundation. Using this
approach, Wong and Luco [29] studied the dynantieraction between rigid foundations resting
on a half-space. Boumekik [5] studied the probld8-® foundations embedded in soil limited by
a rigid substratum. The finite-element method wppliad by Kausel et al [12], Kausel and
Roesset [11] and Lin et al [13] to determine thdawor of rigid foundations placed on or
embedded in soil layer limited by a rigid substratuA formulation of the boundary-element
method in the frequency domain has been developeatidress wave-propagation problems of
soil-structure interaction and structure-soil-staue which limits the discretization at the intexda
soil-foundation. In this approach, the field of glecement is formulated as integrals equation in
terms of Green’s functions Beskos [4], Aubry et[H], Qian and Beskos [22], Karabalis &
Mohammadi [9] and Mohammadi [20]. Celebi et al {8d the boundary-element method with
integral formulation (BIEM) to compute the dynanimpedance of foundations. In this context,
the analytical solutions of 3-D wave equations ytindrical coordinates in layered medium with
satisfying the necessary boundary conditions anel@yad by Liou [14] and Liou & ChunfL5].
Shartai and Boumekik [23] used the BEM-TLM methodctlculate the one hand, the dynamic
impedance of rectangular foundations placed or eade in the soil layered limited by a
substratum and also the propagation of vibrationhé vicinity of a vibrating foundation. In this
study, the method has been applied to analyze ffeeteof some parameters on the dynamic
response of the foundations (depth of the substrattmbedding, masses and shape of the
foundation, soil heterogeneity and frequency). Heeve Sbartai and Boumekik [24, 25] have
studied the dynamic response of two square foumastplaced or embedded in soil layered
limited by a substratumSpryakos and Xu [26] have developed a hybrid BEMAF&d have
conducted several studies for parametric analysisibstructure interaction.

Recently, McKay [18] used the reciprocity theoremséd on the BIEM to analyze the
influence of soil-structure interaction on the s@sresponse of foundations. However, Suarez et
al [27] applied the BIEM to determine the seismé&sponse of an L-shaped foundation. In
addition, experimental work has been carried outdsgarchers in Japan to determine the effect of
soil-structure interaction on the response of malcture Fujimori et al [7], Akino et al [2],
Mizuhata et al [19], Watakabe et al [28] and Imaanetal [8].

In our study, the solution is derived from the BEMthe frequency domain with constant
quadrilateral elements and the thin-layer methoased to analyze the influence of soil-structure
interaction on the response of seismic foundatiime results are presented as coefficients of
movement in matrix [S*] and in terms of displacemas a function of dimensionless frequency,
angle of incidence (vertically and horizontally) darmbedding of foundationThis paper

represents a continuation of that paper was preljopublished in Sbartai and Boumekik [23]



where the impedance functions have been well sutfiedetails. Therefore, they will not be
discussed in this article.

FOUNDATION RESPONSE TO WAVES OF SEISMIC ORIGIN

1. Physical Model and Basic Equations

The geometry of the calculation model is shown Eigonsider 3-D, rigid, massless, surface
foundation of arbitrary shape S in full contactiw# homogeneous, isotropic, and linearly-elastic
soil that is limited by bedrock. The soil is chaeaized by its density, shear modulus G,
damping coefficient3 and Poisson’s rati®. The foundation is subject to harmonic oblique-
incident waves that are time-dependent: P, SV, 8HRa

H;

Fig .1 Geometry of a foundation subjected to haimeeismic waves.
The movement of a not-specified-poil{ " can be obtained from solving the wave equation:
(Co—Cou; +Cy ; —w'u =0, @)

Where Cs, and Cp are the velocities of shear antpbmssion waves and the angular frequency
of excitation.

U; is the component of the harmonic displacementeren the x-direction,
U ; is the partial derivative of the displacementdielith respect to x and y;

U j is the second partial derivative of the displacetnfield with respect to y.

The solution of equation (1) may be expressed bydhowing integral equation:



U (%) = [ G (x.&0) (&) ddé), (2)

With G; denoting the Green’s functions at point i due tat-barmonic load (vertical and
horizontal) of the ground at point j andeing a load (traction) distributed over an aresod.

The medium is continuous so this relationshipasywdifficult to assess. However, if the soil
mass is discretized appropriately, this relatiopstsin be made algebraic and displacement can be
calculated. The key step of this study is to debeenthe impedance matrix linking the harmonic
forces applied to the resulting harmonic displac@meEven with a continuous medium the
determination of the impedance matrix is still vedifficult, if not impossible, due to the
propagation problem and its mixed-boundary condgicHowever, if the medium is discretized
vertically and horizontally then it is possiblert@king the problem algebraic by considering that

the variation of interface displacement is a lineiction.

1.1. Discretization of the model

The principle of horizontal and vertical discretina of soil mass is shown Fig 2. The
principle of vertical discretization based on theigion of every soil layer into a number of sub-

layers of height fwith similar physical characteristics. Each sublaig assumed to be horizontal,
viscoelastic, and isotropic, and characterized bgstant Lamelj, a shear modulug; and a
density p;. The bedrock at depth Hs considered infinitely rigid and is not disceetil. The

reflection wave is assumed to be total and thelaigments null.
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Fig .2 The model of calculation



H;: height of soil mass;

h;: height of the sublayer 1;

N,: number of elements in the x-direction for a honital plane;

N,: number of elements in the y-direction for a honital plane;

N, number of soil layers.

N is the total number of elements in soil-foundatioterface and Band B are the dimensions of
the foundation.

Within a given sublayer, the displacement is assuteebe a linear function of interface
displacement above and below. This is true wherh#ight of the sublayer is small in relation to
the wavelength considered (in the ordenf0). This method is comparable to the FEM in the
sense that the movements within each sublayerampletely defined from the displacements in
the middle of the interfaces. The interaction betmvthe elements is done only through the nodes.
The degrees of freedom of the soil mass are rediacttt degrees of freedom of the nodes. The
stiffness matrix of soil mass is obtained in a mmanner to how it is determined in the FEM.

This technique has been developed by Lysmer ands\M&3 and is known as the thin-layer
method (TLM) and is used mainly for horizontal sleiyers. This method has the advantage to
making the problem algebraic and thus obtains thees functions by applying the boundary
elements method in the soil-foundation interfaca. this reason a horizontal discretization of the
interface soil-foundation is established.

The horizontal discretization permits to subdivatey horizontal interface of soil-foundation
by elements of square-sections Bhese elements where the constant-moving avésagplaced
by the movement of the center, assumes that diss#ution is uniform and is shown in Fig 2.
Seeking simplicity of the integration calculationdaeconomy of computing time the square
elements are approximated disc elements. If this loéds (along the direction X, y, z) are applied
to disc j, the Green’s functions at the centeris€ d can be determined. By successively applying
these loads on all discs, the flexibility matrix sl complex at a frequency of a givencan be
formed. The discretized model to calculate the idamee functions of the foundation is also
presented in Figure (2). In the discrete model, dfiqun (2) is expressed in algebraic form as

follows:

u, :ij G t ds 3)

i=1 g
2. Determination of Green's Functions by The TLM

The Green's function for a layered stratum is ole@iby an inversion of the thin-layer stiffness
matrix using a spectral-decomposition procedur&aidsel and Peek [10]. The advantage of the
thin-layer-stiffness matrix technique over the sieal transfer-matrix technique for finite layers
and the finite-layer-stiffness matrix technique Keluand Roesset [11] is that the transcendental
functions in the layered-stiffness matrix are limzed.

In this work, the body (B) represents a layeredtsm resting on a substratum base with n

horizontal layer interfaces defined by z 5 2,..., z and with layer j defined by,g z < 7.4, as
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shown in Figure (3). The medium of each n layehothickness is assumed to be homogeneous,
isotropic, and linearly elastic. For this body, Beeen's function frequency domain is obtained
with help of the TLM.
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Fig. 3 Geometry of soil layers (B).

According to the thin-layers theory of Lisper anc&¥ [17], displacements in each sub-layer
vary linearly from one plane to another and stilhtinue in the relevant direction (x, y, z). Thus
the displacements in each sublayer are obtaindth&gr interpolation of nodal displacements at

the interface of the sublayer (n) as follows:

ull(z)y=@-n)u"+p um™ (3a)
vl =@-nvr+pvm™ (4b)
W(z) = @-n)W" + p W™ (4c)

where , _ (z-2Zn) et (0<n<1),and,U™, V™ et W™ are the displacements along the x-
h,

axis, the y-axis and the z-axis as functions iofthe layer j, and wittJ ", V" et W" which are
their nodal values at the interface layer z,= Z

2 8, " @
G"=Y -~ . 5
[ ; k2 _ k|2 ( )
with:

k
aaﬂ:lsia:ﬁ andaaﬂZE sia# L i,j=xy,z

k, k: wave number ;
m: represents the interface where the load is egpli

n: represents the interface where Green’s functwesalculated.



The obtained Green’'s functions are complex and titates the starting point for the
determination of the flexibility matrix of an arkary soil volume. However, considering the
geometry of the foundation, a system of Cartes@ordinates was adopted. The obtained U, V,
and W Green’s functions are in fact the terms of ftexibility matrix of the soil. The
determination of this flexibility matrix gives thmpedance function of one or several foundations
and the amplitudes of vibrations in the neighbocthoba foundation Sbartai and Boumekik [23,
24].

Viscoelastic soil behavior can be easily introdudéedthe present formulation by simply

replacing the elastic constaatand G with their complex values:

A (@2)=Aa+2p) (6a)
H(Z)=p @+ 2iB), (6b)

B is the hysteretic damping coefficient.
CALCULATION MODEL

The total displacement of the soil matrix is obégirby successive application of unit loads on

the constituents of the discretized solid grounide Bisplacements in the soil are then expressed
by
{u}=[c]{t} )
The vectors {u}and {t} are the nodal values of the amplitudes of dispteres and

tractions respectively at the interface soil-fourata [G] is the flexibility matrix of the soil.

When the foundation is in place, it requires dd#far components of soil displacement
consistent with rigid body motions. Compatibility displacements at the contact ahetween

the soil and the rigid foundation leads to the matquation

{u}=[r]{a} ®)

[R] is the transformation matrix

[Rl=lo0 o o -z 0 x 9)

0 0 1 y =X 0

{A}={AX,Ay,AZ,qDX,dJy,tbz}t is the displacement vector, (i = X y,z) represents
translations anap, (i = x vy, z) rotations (Fig 1).



If we denote{P} the vector of load applied to the foundation, theikbrium between the vector

of loads applied and the forces (tractions) disteld over the elements discretizing the volume of

the foundation is expressed by the following eaqumati

{P}=[R]" {t} (10)
Combining equations (7), (8) and (10) we obtainfdtlewing equation:
Pr=([r I'leI"[RIf2}=[K (@) l{a) GEY
with ¢ is the circular frequency of vibration ar[@t (w)] the impedance or dynamic-stiffness

matrix of the rigid foundation.
Considering an incident plane, SH, P, SV and R baimwaves are characterized by the vertical

and horizontal angles of incidengg and g, respectively, as shown in Fig 1. The motion of the

half-space due to these seismic waves can be egurby the following equation:

{uf }:{U f }e[—iw (x.cosSH+y.sin9H)/c]_ (12)
{U f}: {U Suluf }t , is known as the vector of amplitudes of the, bt depends on the z

coordinate if we want to study the embedded foundatcase. However, in the case of surface

foundations (z = 0), it is known as the vector ofpditudes of the free field c is the apparent

velocity of the incident waves having the form_ _ ¢, or c=_C2 forPorSwaves,

r
cos 8, cos 8,

respectively, and being equal to the R-wave. Theigkexpressions of the vect@) f} of waves

SH, P, SV and R may be found in Wong and Luco [30].

The presence of a rigid foundation on the surfddhe half-space results in diffraction of the

above waves so that the total displacement f{elh is expressed by the following equation:

{u}={u’ }+{v} (13)
where{us} represents the scattered wave field that satisfiesequation of motion (7). Also, the
total displacement field in the contact region hesw the foundation and the half space must be
equal to the rigid body motion of the foundation.

Substituting equation (8) into equation (13), werittin terms of the scattered field leads to the
force-displacement relation:

{ust=[RIa} -fu'} (14)

Substituting equation (7) into equation (14), veritin terms of the traction forces:
[c{t}= [RHa}- {u'} (15)

hence
{t}=[c]" [Ria}-[c]*{u'} 19
Multiplying both sides of the equation (16) by tin@nspose of the transformation matrix and

combining with equations (10) and (11) yields tk&eenal forces:
[RI {t}=[R] [¢ " [RI{a} ~[R] [6]{u'} an

The equilibrium between external forces and seidorices can be as follows:



{P=lxKa}-|k Ru '}, (18)

with [K J is the driving force matrix given by the follovgriormula:

K| = [R]' || el o vsnenrrel )
Equation (14) can be replaced by the alternativefo
{a}=[cl{r}+[s {u'} (20)
where
[c]=[k]"

[c]=[K]" is the dynamic compliance matrix a{‘s*] is the input motion matrix given by the
following formula:

s J=[c]lk"] (21)
When the rigid foundation is acted upon by seiswéwes only, the external forces are zero (P =
0), and the seismic response of the foundationbisiwed from equation (18) or (20) by the

following expression:

fay=ls"fu'} (22)

with

S, 0 0]
0 Syy SyZ
0 S, S,

[ s’ ] = g (23)

0 ny S,
R, O

L SZX O _

When the mass of the foundation is not zero, omaplyi has to repIace[K] by
[K ]- w?[M ]in the above equations, Wheﬁm ] is mass matrix of the foundation.

VALIDATION OF THE METHOD

The accuracy of the method BEM-TLM used to study 3D-response of foundations subject
to plane-harmonic waves with variable angles ofdence and vibration frequency & this
section is validated through comparisons with tssobtained by Luco and Wong [16] and Qian
and Beskos [22] for a semi-infinite ground. A paedic study was conducted to define the
parameters of the calculation model. The influentdhe discretization of the soil-foundation
interface was studied. The thickness of a sublhy@ust be small enough that the discrete model
can transmit waves in an appropriate manner antbwitnumerical distortion. This size depends
on the frequencies involved and the velocity of g@vopagation. The frequency of loading and
velocity of wave propagation affect the precisidrttee numerical solution. Kausel and Peek [10]

showed that the thickness of sub-layer must be lsm#ian a quarter of the wavelength



Consequently, the maximum dimensionless frequenast mot exceed the number of sub-layer N
divided by four.

Consider a rigid, massless, square foundationdsf B = 2a on the surface of the half-space
with a Poisson’s ratio of = 1/3 subjected to plane P, SV, or SH harmonicesfly = 90 ° and

0y= 45 °. Figure (4) shows the variation of the raatl the imaginary part of coefficient Sxx

movement based on the dimensionless frequapeyig. The results obtained by the
C. 2

s
proposed method are in agreement with those oldtdigethe method used by Qian and Beskos
[22]. Considering the same foundation subjected Rayleigh wave where the angle of incidence
is horizontal ¢ = 0) and the corresponding velocity taken is equak = 0.9325c¢ for a Poisson's
ratiov=1/3.

12
— Present Study

Real Part {+ Qian&Beskos 4*4
-+ Qian&Beskos 8*8

08 ---- Present Study

Imaginary Part {-*- Qian&beskos 4*4
-=- Qian&Beskos 8*8

06

04

02|

Coefficient of movement Sxx

Fig. 4 The coefficient of movement Sxx a squarenttation(64=0°, 6,=45° and ¢/c=0.7071).
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— Present Study
' Real Part —+—Qian&Beskos 8*8
I —=—Qian&Beskos 4*4
= - ——Luco
z 06 ---- Present Study
s 04 r Imaginary Part -+- Qian&Beskos 8*8
N -#- Qian&Beskos 4*4
2 02 ¢
(=]
0 + #
'olz b OIS 1
04

Fig. 5 The response a square foundation under dlgéeigh wavecy/c=0.9325.

Figure (5) shows the real and the imaginary padimiensionless displacemelt/Hg function
of frequency a The results of this study, using the BEM-TLM, hed were compared with those
of Qian and Beskos [22] (BEM) and those of Luco Wohg (BEM) [16].

The results obtained are in agreement with thodgeskos and Qian [22] and those of Luco

and Wong [16]. However, a difference is presentdionensionless frequencieglagher than 2.5.

This difference can be explained in two ways:
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1) Qian and Beskos isoparametric elements were tasddtermine the soil-foundation interface.
These types of elements are more accurate thatacdhredements used by the method developed
in this article.

2) Qian and Beskos and Luco and Wong use the Gedenctions of a semi-infinite soil whereas

our method used the Green’s functions of soil bednay bedrock.
PARAMETRIC STUDY AND DISCUSSION
1. Surface Foundation

In this section, a parametric analysis was perfadrimg studying a square foundation of the
side (B¢ =2a) subjected to plane-harmonic waves with vagiagles of incidence and vibration
frequency g as shown in Fig is presented. The results are presented in termeefficients of

motion as functions of the dimensionless frequq%cys & B The soil is characterized by the
C.2

S

height H = 10m of the bedrock to simulate a semi-infinits, Poisson's ratio is = 1/3, the
coefficient of the hysteretic dampirfig= 0.05, the shear modulyg = 1, and its densitp =1.

The terms ofcoefficient of motion are presented in the follogvifigures for the shear S-wave ,
with an horizontal angle of incidenég = 90° and vertical angle of incidenég = 0°, 30°, 45°,
60° and 90°

1.1. Coefficients of movementsin translation

For an angle of incidend®y = 90 °, the coefficients of translational movem8rx, Syy, $,
are equal to unity for all frequencies. Typicalhjst value is adopted in the study of a structure
subjected to seismic loading. This value inducesrgized foundations. Figures 6 and 7 show that
for other angles these coefficients vary with thmeahsionless frequency. The amplitude of the

response also depends on the vertical angle afeénce.

1,2 8
et g

E 1 o iy
P Real Part L3
s 08T 45
£ ——60°
@ 06 B
Z - Imagi -+-30°

04 maginary Part a5
° - 60°
 02F NN N s ST _
= 0 + + |
]
S .02 ) 0,5 1 1,5

0,4

Fig. 6 The coefficient of movement S, = 90 °).
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S 08 e
£ ——60°
% 06 —0°

; -+-30°

Imaginary Part
E 04 | ginary Y
° -+-60°
= 02 ——
2
£ 0 —t
2
o 02 ) 05 1
04

Fig. 7 The coefficient of movement Sz, (= 90 °).

The results show that the real parts gf&d S, have a higher magnitude than the value of the
imaginary parts. With low frequencies, the respasse phase with the free-field motion. These

coefficients filter low frequencies and therefoshbave as low-pass filters.

1.2. Coefficients of movement in rotation and torsion

Figures 8 and 9 present the relative coefficiefthe rotational movement,jRand Ry to the
x-axis and y-axis respectively. For an angle ofdancefv = 90 °, the coefficients of rotational
movement (R, and R,) are zero and maximum fd@v = 0°. Figure (10) shows the relative
coefficient of torsion § to the axis of z as a function of dimensionlesgjfiency and the vertical
angle of incidencév. The results obtained show that the value ofitheginary part of § is
dominant, which shows a large damping. Thus, tlssvanis out of step with the free-field motion

in the center of the foundation.

0,06
0,05
0,04
0,03
0,02
0,01

-0,01
0,02
0,03
-0,04

8,
Real Part — 0° ——30° —— 45° —~—60°

Imaginary Part ---- 0° -+-30° -+- 45°-+- 60°

Coefficient of movement Ryx

Fig. 8 The coefficient of movement,Rx = 90 °).
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RealPart —0° —30° ——45° —60°

Coefficient of movement Rxy

06
Imaginary Part —— 0° -+-45° -+-30° -+-60°

-0,8
Fig. 9 The coefficient motion R0y = 90°).

0,8

n
T

Coefficient of movement Szx

] 1 2
02 F
8, a
RealPart — 0° ——30° ——45° ——60° ° e T
L Imaginary part -——-0° -~-30° -~- 45° -~-60°
-0,6

Fig. 10 The coefficient of movement, &y = 90 °).

Figures 8, 9, and 10 present these coefficientstloer angles of incidence (0 °, 30°, 45°, 60°
and 90°) and show that they vary depending on imemsionless frequency. The amplitude of the
response also depends on the vertical angle aléncie. The coefficient of movement of rotation
and torsion filters high frequencies and therefmkaves as high-pass filters.

The matrix coefficients of movement shown in Figuveto 10 are valid onl§, = 90° for S waves
with a horizontal angle of incidence. These cogdfitcs can be determined for other incidence

angles and other types of waves.

2. Embedded Foundation

To present results that are easier to understanadiy, the driving-force vectors are converted
to input-motion vectors by multiplying by the ingerof the impedance matrix. Three different sets
of results are given. The response of the masklesslation to incident body waves of type SH, P
and SV are considered.

A square base dimension Bx = 2a embedded in a hemeogs viscoelastic soil to a depth (d)
and subject to P, SV and SH-waves (Fig 11) is clemed.

In this section, the influence of the embeddingordt = d/a = 0, 0.3, 0.6) on the seismic

response of the foundation is studied. The resaits presented in terms of displacements,
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rotations, and torsion; these terms are calculaitid equation 18 as a function of dimensionless

frequency a

A
d
Y
Sublayer A
Sublayer : t
Soil-foundation ————] Y-~ I
) Sublayer 3: i va, -7 s
interfface ~ [.T200 yer = WVe O3 L - L
N, || Hed
//
//
//
//
_________________ L~ v
Sublayer n: @ v, O,
z

Fig. 11Model of calculation of an embedded foundation satgd to harmonic seismic waves.

To simplify the presentation of this paper, onlyeodirection of wave propagation is
considered with the vertical incident andl¢ = 45. Figures 12 to 19 represent the terms of
displacement, rotation, and torsion caused byrbgént P, SV and SH-waves. These curves are

given for different values of relative embedding.

2.1. Compression wave (P)

Figures 12 to 14 show the response of a masslassldtion to an incident P-wave. The wave
travels in thex-direction with its particle motion in theandx-directions. Except for the vertical
incidenced, = 90°, the incident P-wave causes a mode conveesid reflected SV-wave results.
One angle of incidence is considered, and is 45asomed with respect to theaxis. The
wavelength of the incident P-wave is twice as lasghat of the incident S-waves; therefore, the
kinematic interaction is less prominent. In genetta¢é P-wave induces displacement along the x
and z-axes and rotation around the y-axis
Figures 12-14 show the variation of displacemert estation as a function of dimensionless

frequency and the influence of embedding coefficiamn the motion of foundation.
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The displacements/f, ,AA,) and rotation (py) are strongly attenuated due to the increase of

embedded foundation. Another, the horizontal dispiaent), is more affected by the presence

of embedding than the vertical displaceméntand rotatior,. When increasing the embedding,

it is noted that displacement and rotation are ellexdt frequency decreases thensghgns change.

The imaginary part of the two modes of translafegrtical and horizontal) is not affected by the

increase of embedding. In contrast, the imaginany pf the rotation is strongly affected by the

presence of embedding.
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2.2. Shear Wave SV

Figures 15 to 17 show the response of a masslasgidtion subjected to an incident SV-wave.

The wave travels in thedirection with its particle motion in theand x-directions. For a vertical

incident angleéBv = 45°, the free-field motion for the SV-wave hmetdirection of propagation is

zero. Similar to the P-wave case, only the horiabmertical, and rocking components are excited.
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Fig. 15 Horizontal input motiod , due to incident SV-wave#®,~45°, 8,=0°).
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Fig. 17 Rocking input motiowydue to incident SV-waveg#,=45°, 8,=0°).

Figures 15 to 17 present the variation of displaa@nand rotation as a function of frequency,

and show the influence of embedding on the motibthe foundation.Fig 15 shows that the
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displacement] , is zero for a foundation on the surface (t = 0) badomes non-zero for relative
embedding (t = 0.3 and 0.6) with an imaginary phat is strongly affected, indicating that the
foundation does not follow the free-field motiotMoreover the horizontal displaceméky is
more affected by the presence of embedding tharvehtical displacemedy, and the rotation
@, especially for low frequencies. The presence efdmbedded foundation changes the sign of

vertical displacement and rotation after frequeagcy 4.
2.3. Shear Wave SH

The response of the square, massless foundatiarstd-wave is presented Figures 18 and 19,
with a horizontal angle of incidenc&,=90°. The incident wave travels in thedirection;
therefore, the particle motion of the wave is ire tkedirection. The shear wave causes

displacement and torsion. Figures 18 and 19 shevethbedment influence on displacement and

torsion.
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Fig. 19 Torsion-input motiorg, due to incident SH-wave#®,=45°, 8,=90°).

Figures 18 to 19 show that the displacement andtdh&on are strongly affected by the

embedment of the foundation. For dimensionlessufeagies lower than 3, the horizontal, is
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not affected by increasing the relative embeddiFfigs is not the case for torsign, which is
strongly affected by an increase in the embeddimg.ontrast, for frequencies superior to 3, the
presence of the foundation embedding causes a etudrsigns forA, andg, .

Figures 12 to 19 show that the horizontal displam@ntaused by P-wave is more attenuated
than the displacement caused by SH and SV-wavek thie rotation caused by SV-wave is more

attenuated than the rotation caused by P-wave.

CONCLUSION:

The interaction of a seismic square-rigid foundatdaced and embedded in a homogeneous
viscoelastic soil and subjected to obliquely incid&éarmonic P, SV, SH and R-waves was
implemented. A simplified BEM-TLM was developed amskd to calculate the foundation-input
motion under different travelling seismic waves.eT$olution was formulated by the boundary-
element method in the frequency domain using thendtism of Green’s functions. Constant
quadrilateral elements were used to study the seisraponse of a foundation. The efficiency of
this technique was confirmed by comparison withvjgnes studies. This remarkably simple
technique was concluded to be both highly effectimd economical to determine input motions
for rigid foundations of arbitrary geometry. Theigimality of the method lies first in the
insignificance of the number of elements used éndiscretization of the model, and second, in the
ability to simulate a limited height of bedrock.

This study shows the importance of the inclinatafnincident waves on the behavior of a
foundation. The results indicate that:

* The response of a foundation subject to non-vérticadent waves is different from that
of a foundation subject to vertical-incident waves.

* Non-vertical incident waves generate the torsioandlation, and rotation. Vertical
incident waves cause the translation.

« A vertical angle of incidence equal@=0° leads to an oversizing of the foundations.

« Coefficients of translational movement filter loweduencies while coefficients of

rotation filter at high frequencies.

« Embedment of foundation affects displacement, imtatand torsion in more specific

ways and acts as a favorable factor in the seisgsjponse of foundations. The movement
of the foundation is strongly attenuated for refaly deep embedded, especially at low

frequencies.
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