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ABSTRACT 

 It is useful to estimate peak floor accelerations consistent with the specified seismic hazard for 
ensuring the safety of rigid nonstructural components in structural systems. A modal combination rule is 
formulated here to estimate peak floor accelerations in a multistoried building directly in terms of the 
dynamic properties of the building and pseudo spectral acceleration ordinates of the base excitation. The 
formulation is developed under the framework of stationary random vibration theory for a linear, lumped-
mass, classically damped, multi-degree-of-freedom system with the help of some approximations. A 
numerical study shows that the proposed rule performs well with the maximum average absolute error in 
any combination of building and excitation being less than 20% in case of 5% damping. Two simpler 
SRSS-type variants of the proposed rule, one considering modal cross-correlation and another ignoring 
this, are also shown to perform reasonably well, particularly when the building is not flexible to the 
ground motion. 

KEYWORDS: Rigid Nonstructural Components, Peak Floor Accelerations, Modal Combination Rule, 
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INTRODUCTION 

 Safety of a structural system against seismic hazard is ensured in practice by designing it as per the 
codal provisions in force at its location. This process usually ensures that the main skeleton of the system 
that consists of beams, columns, shear walls, floor diaphragms, structural connections, etc. remains intact 
without collapse during the extreme event expected during the life of the structure. Much of the attention 
paid in the past 30–40 years to the improvement of aseismic design procedures has been devoted to 
ensuring better and economical performance of such structural components as those provide stability and 
strength to the structure to survive during the earthquake ground motion. There are, however, 
nonstructural components also in a building that are attached to the main skeleton at different locations. 
Those may include masonry panels, parapets, chimneys, ceilings, water heaters, pressure vessels, 
generators, piping, storage tanks, escalators, equipments, and lighting fixtures, among various 
possibilities depending on the functional requirements expected of the building. Scant attention has been 
paid to the task of ensuring the safety of such components, except in critical installations like nuclear 
power plants, and as a result, there have been numerous cases of large damage, and thus heavy financial 
losses, in the last 10–15 years even when the damage to the main skeletons was not significant. In some 
cases, this has even led to undesirable consequences, like hospitals being closed down during the 1994 
Northridge earthquake (Hall, 1994). Damage to nonstructural components also poses threat to the lives of 
the building occupants in the near vicinity. 
 Nonstructural components respond primarily to the accelerations of the floors on which those are 
supported. The peak values of these floor accelerations may often be greater than the peak ground 
acceleration (PGA), depending on the building characteristics and the location of the floor, and thus, the 
nonstructural components may be effectively subjected to amplified ground motions. There may be a 
further amplification if the fundamental periods of these components are close to the natural periods of 
the structural system, resulting in severe damage to the components and to their attachments to the 
structural system. It is also important that the nonstructural components are not usually as ductile as the 
supporting structure and, therefore, those may fail even during small-to-moderate magnitude ground 
motions. It may not always be sufficient to simply anchor these components to the supporting system and, 
therefore, one may have to properly design these components and their attachments.  
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 Some efforts have been made in the past 10 years to improve the codal provisions to avoid damage to 
the nonstructural components (see Singh et al. (2006) for an up-to-date review), but much still remains to 
be done in this direction. The present codal provisions (see, for example, ASCE (2003)) are still 
oversimplified and do not adequately account for the role of all the governing parameters. As shown by 
Taghavi and Miranda (2005) and Singh et al. (2006), these provisions may in fact lead to too conservative 
estimates. Despite the significant research efforts, like those by Singh et al. (1998, 2006), Villaverde 
(1997), Soong et al. (1998), the present codal provisions for nonstructural components have yet to strike 
the right balance between simplicity and rigour. It is nevertheless clear that the future provisions in 
various codes will continue to depend on the use of pseudo-spectral acceleration (PSA) spectrum for the 
characterization of the input excitation. It is also clear that the future provisions will depend on the 
estimation of linear response of nonstructural components and the supporting structure, and that the 
nonlinear behaviour of these components and/or supporting structure will be accounted for via the use of 
some kind of response modification factor (Rodriguez et al., 2002).  
 The nonstructural components may be considered as rigid if those are sufficiently stiff to vibrate in 
phase with their attachment points. For such components it is desirable to properly estimate the absolute 
floor accelerations consistent with the specified seismic hazard. Restricting discussion just to the use of 
response-spectrum based techniques, there is no modal combination rule derived till date to predict the 
peak floor accelerations in a structural system by directly using the response spectrum ordinates. This is 
despite the fact that several researchers like Goodman et al. (1955), Rosenblueth and Elorduy (1969), 
Wilson et al. (1981), Singh and Mehta (1983) have proposed schemes to estimate the largest peak in the 
response of a base-excited linear system by combining the response maxima in different modes, after Biot 
(1934, 1942) outlined the basic superposition of modal responses in earthquake engineering. 
Nevertheless, there have been several efforts to estimate the PSA ordinates corresponding to the floor 
motions, known popularly as floor response spectrum, and since peak floor accelerations are zero-period 
ordinates of floor response spectra, those response spectrum-based formulations can be theoretically used 
to estimate the peak floor accelerations as well. For example, the papers by Singh and co-workers (Singh, 
1980; Singh and Sharma, 1985; Suarez and Singh, 1987) and Der Kiureghian and co-workers (Der 
Kiureghian et al., 1983; Igusa and Der Kiureghian, 1985) give elegant formulations to estimate floor 
response spectra for classically-damped structural systems and directly in terms of ground spectrum input 
by making varying sets of assumptions. The simplest of these, e.g., that by Singh (1980), is based on 
ignoring the interaction between the support and supported systems and may thus be used by lumping the 
mass of the nonstructural component with the supporting mass and by estimating the zero-period ordinate 
of the floor response spectrum. The formulations including the interaction, e.g., those by Suarez and 
Singh (1987) and Der Kiureghian et al. (1983), can be used by lumping the mass of the nonstructural 
component and by estimating the zero-period ordinate of the floor response spectrum for zero value of the 
supported mass. It is also possible to use a generalized response spectrum formulation (Singh et al., 
2006), but clearly there remains a need to develop a closed-form expression or a modal combination rule 
that can be used to estimate the peak floor accelerations directly in terms of the PSA ordinates and modal 
properties of a linear structural system. 
 This study considers the development of a modal combination rule from the power spectral density 
function (PSDF) of the floor acceleration response of a linear, lumped-mass, multistoried shear building. 
For this purpose, both excitation and response processes are assumed to be stationary, and the effects of 
nonstationarity are included in peak floor acceleration via the use of response spectrum ordinates and 
nonstationarity factors as in Gupta (2002). The modal combination rule and its two simpler variants on 
the lines of SRSS (square-root-of-sum-of-squares) rule (Goodman et al., 1955) are obtained by making 
suitable assumptions regarding nonstationarity factors and peak factors. Performance of the proposed rule 
and its variants is investigated through consideration of three example buildings and six example ground 
motions. 

FORMULATION OF THE PROPOSED RULE 

1. PSDF of the Absolute Acceleration Response 

 Let us consider a symmetric shear building as shown in Figure 1 where the lumped floor masses im , 
1, 2,...,i n=  are interconnected through massless column springs of stiffnesses ik , 1, 2,...,i n= , and the 



ISET Journal of Earthquake Technology, March 2007 215 
 

 

viscous dampers representing the interstory dampings of magnitudes ic , 1, 2,...,i n= . The building is 
subjected to the ground acceleration ( )z t  at its base. The n -coupled equations of motion for this system 
can be written as  
 [ ]{ } [ ]{ } [ ]{ } [ ]{ }m x c x k x z m+ + = − Γ    (1) 

where [ ]m , [ ]c  and [ ]k  respectively are the n n×  mass, damping and stiffness matrices in terms of im , 

ic  and ik , 1, 2,...,i n= ; { }Γ  is the 1n×  ground displacement influence vector; { }x  is the 1n×  vector 
comprising of the relative displacements ( )ix t , 1, 2,...,i n=  of the floor masses; and { }x  d

d( { })t x= , 

{ }x  2

2
d
d

( { })
t

x=  are the time derivatives of { }x . It is assumed that the building is classically damped and 

therefore the viscous damping matrix [ ]c  can be diagonalized by the transformation [ ] [ ][ ]T cΦ Φ  where 
(1) (2) ( )[ ] ( [{ }{ } { }])nφ φ φΦ = ⋅⋅⋅  is the n n×  modal matrix of the eigenvectors ( ){ }jφ , 1, 2,...,j n=  

obtained by solving the eigenvalue problem, 2[ ]{ } [ ]{ }m kω φ φ= . The jth element of this diagonal form 
is denoted as 2 j j jMζ ω  where jω  and jζ  respectively are the natural frequency and damping ratio in 

the jth mode and ( ) ( ){ } [ ]{ }j T j
jM mφ φ=  is the jth modal mass. 

 
Fig. 1  Shear building model of n-storied building 
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 On using normal mode decomposition of the relative displacement of the ith floor, the transfer 
function relating the absolute acceleration response of the ith floor to the input ground acceleration may 
be expressed as  

 2 ( )

1
( ) 1 ( )

i

n
j

a i j j
j

H Hω ω φ α ω
=

= − ∑  (2) 

where ( )j
iφ  is the ith element of the jth mode shape vector, ( ){ } [ ]{ }j T

j jm Mα φ= Γ /  is the modal 
participation factor in the jth mode, and 

 2 2

1( )
2ij

j j j

H ω
ω ω ζ ω ω

−
=

− +
 (3) 

(with i = 1− ) is the transfer function relating the relative displacement of the equivalent SDOF 
oscillator in the jth mode to the input base excitation. On assuming stationarity in the excitation and the 
response, the PSDF of a response may be obtained by multiplying the PSDF of the excitation with the 
squared modulus of the corresponding transfer function. The PSDF of the absolute acceleration response 
of the ith floor may thus be expressed as  
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 (4) 

where ( )zS ω


 is the PSDF of the input base excitation ( )z t , ( )jH ω  (= 2 ( )jHω ω− ) is the transfer 
function relating the relative acceleration of the equivalent SDOF oscillator in the jth mode to the input 
base excitation, and *( )kH ω  is the complex conjugate of ( )kH ω . On the right hand side of Equation (4), 
the second term represents the cross-correlation of the ground acceleration with the relative acceleration 
response of the ith floor, and the third and fourth terms together represent the PSDF of the relative 
acceleration response of the ith floor. In the latter, the term involving the summation over k  represents 
the cross-correlation of the jth mode with the remaining 1n −  modes. On expanding this term by using 
the partials for *Re( ( ) ( ))j kH Hω ω  (Vanmarcke, 1972) and on rearranging terms, Equation (4) becomes  
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∑ ∑
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 (5) 

where jkC  and jkD  are the coefficients given in terms of jζ , kζ  and k jω ω= /  as  

 ( ) ( ) ( )( ){ }221 8 1 4jk j k j j k k j
jk

C
B

ζ ζ ζ ζ ζ ζ ζ = + − − − −  
       (6) 

 ( ) ( )( ) ( ){ }22 21 2 1 4 1jk j k k j
jk

D
B

ζ ζ ζ ζ = − − − − −  
      (7) 

with  

 ( )( ) ( )( ) ( )2 42 2 2 2 2 2 2 2 2 2 28 1 2 1jk j k k j j kB ζ ζ ζ ζ ζ ζ = + − − − − + −  
      (8) 

2. Largest Peak of the Absolute Acceleration Response 

 Ordered peaks (largest, second largest, third largest, …) of a response process are estimated in 
stationary random vibration theory by (i) computing moments of the PSDF of the process, (ii) computing 
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root-mean-square (r.m.s.) value of the process and peak factors for the ordered peaks from the moments, 
and (iii) by multiplying the r.m.s. value with the peak factors (Gupta and Trifunac, 1988; Gupta, 2002). 
This procedure is followed in this section to formulate the expression for the largest peak of the absolute 
acceleration response at the ith floor. 
 Taking pth moment of ( )

iaS ω  about the origin leads to 
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In this equation, 

 
0

( )dG p
p zSλ ω ω ω

∞
= ∫ 

 (10) 

is the pth moment of the PSDF of the ground acceleration process, ( )z t ; 

 
2

0
( ) ( ) dV p

p j z jS Hλ ω ω ω ω ω
∞

, = ∫ 

 (11) 

is the pth moment of the PSDF of the relative velocity response of a SDOF oscillator with jω  frequency 

and jζ  damping ratio and subjected to the base acceleration ( )z t ; and  

 
2

0
( ) ( ) dA p

p j z jS Hλ ω ω ω ω
∞

, = ∫ 

 (12) 

is the pth moment of the PSDF of the relative acceleration response of this oscillator. 
 By calculating the moments from Equation (9) for p  = 0, 2 and 4 and then multiplying the r.m.s. 

value 0( )iaλ=  with a suitable peak factor, the largest peak amplitude of the desired absolute 

acceleration response can be determined at a given level of confidence. The peak factor depends on 0
iaλ , 

2
iaλ , 4

iaλ , strong motion duration of the excitation, and the level of confidence at which the response 
amplitude is to be obtained (see Gupta (2002) for details). The largest peak amplitude so obtained has to 
be multiplied with a suitable nonstationarity factor in order to account for the fact that the response 
process is not a stationary process. Such a factor may be close to unity if ( )zS ω



 is a spectrum-compatible 
PSDF (see, for example, Kaul (1978), Unruh and Kana (1981), Christian (1989)). Thus, the largest peak 
amplitude of the absolute acceleration of the ith floor becomes  
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∑
 (13) 

where iaη  is the corresponding peak factor and iaβ  is the nonstationarity factor, for this response 
process. 

 In continuation with the above logic, 0
Gλ  in Equation (13) may be expressed as 2( )G GPGA η β/ , 

where PGA  is the largest peak amplitude of the ground acceleration process ( )z t  for the same level of 
confidence to which iaη  corresponds, Gη  is the corresponding peak factor, and Gβ  is the nonstationarity 
factor for the acceleration process. In the same way, 0

V
jλ ,  may be expressed as 2( )V V

j j jSV η β/ , where jSV  

is the largest peak amplitude of the relative velocity response of the SDOF oscillator with jω  frequency 
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and jζ  damping ratio in response to the excitation process ( )z t , V
jη  is the corresponding peak factor, 

and V
jβ  is the nonstationarity factor associated with the relative velocity response process. Further, 0

A
jλ ,  

may be expressed as 2( )A A
j j jRSA η β/ , where jRSA  is the largest peak amplitude of the relative 

acceleration response of the SDOF oscillator (with jω  frequency and jζ  damping ratio) in response to 

the excitation process ( )z t , A
jη  is the corresponding peak factor, and A

jβ  is the nonstationarity factor 

associated with the relative acceleration response process. Thus, maxia ,  may be expressed as 
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 In the next section, suitable approximations will be made to develop a modal combination rule from 
this equation.  

3. Approximations for the Proposed Rule 

 One can use Equation (14) to estimate the largest peak amplitude of the absolute acceleration at the 
ith floor for the same level of confidence for which PGA , jSV  and jRSA  have been estimated. Hence, 
if the seismic design levels at a site are characterized by certain PGA, and spectral velocity (SV) and 
relative spectral acceleration (RSA) curves, this equation can be used to estimate the largest floor 
acceleration at the ith floor consistent with these design levels. For this, however, one needs to have 
reasonable estimates of η  ratios (i.e., ia Gη η/ , ia V

jη η/  and ia A
jη η/ ) and β  ratios (i.e., ia Gβ β/ , ia V

jβ β/  

and ia A
jβ β/ ). Further, it is unusual to have the SV and RSA curves available in a design situation. 

Suitable approximations, therefore, need to be made in order to obtain a useful expression for the peak 
floor accelerations from Equation (14). 
 It is proposed to first assume that various η  and β  ratios are unity. It will be shown in the next 
section through numerical examples that these ratios are usually not unity. While the η  ratios are not very 
far from unity, the β  ratios show considerable scatter around their mean values, depending on the 
characteristics of the structural system and excitation. However, since the mean beta ratios for the first 
few modes stay close to unity, this assumption is deemed to be appropriate. 
 Secondly, pseudo-spectral velocity (PSV) curves may be used in place of the SV curves as per the 
existing engineering practice. The RSA values may also be estimated approximately from the knowledge 
of PGA, pseudo-spectral acceleration (PSA), and energy distribution in the ground motion. As shown by 
Trifunac and Gupta (1991), this approximation of RSA, known as PRSA (pseudo-relative spectral 
acceleration), may be expressed as  

 
{ }

{ }

2 2

2 2

( ) ( )

( ) ( )

c

c

PRSA T PSA T T TPGA

PRSA T PSA T T TPGA

= − ; ≤

= + ; >
 (15) 

where ( )PRSA T  and ( )PSA T , respectively, are the PRSA and PSA values for the SDOF oscillator of 
period T , and cT  is the period corresponding to the centre of gravity of the Fourier spectrum ( )Z ω| |  of 
ground motion. cT  will be referred to in this study as the mean period of ground motion. 

 Incorporating the above approximations, Equation (14) leads to the proposed modal combination rule 
as 
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∑
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Since the PSDF of the relative acceleration response at the ith floor cannot be negative, it is necessary to 
apply the following check in the above rule: 
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If this check fails (due to the various approximations that have been made), the summation of terms on 
the left-hand side of (17) should be taken as zero. In view of this, the proposed rule may be expressed as  
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or, depending on how the mean period of ground motion compares with the natural periods of the system, 
jT  (= 2 jπ ω/ ), 1, 2,...,j n= ,  
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where 
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 A simpler variant of the proposed rule may be obtained by ignoring the cross-correlation between the 
ground acceleration and the relative floor acceleration. In that case, we obtain  

 
1
22 2

max maxi ia PGA ra, , = +   (21) 

with restriction as in Equation (20) remaining applicable. Further, on ignoring the cross-correlation of the 
jth mode with the remaining 1n −  modes (in the relative acceleration response), a further simpler variant 
of the proposed rule is obtained as  
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Since this form of the modal combination rule does not consider any cross-correlation, it will be referred 
to in this study as the SRSS rule for the peak floor acceleration response. Further, since Equation (21) 
ignores only the cross-correlation between the ground and relative floor accelerations, it will be referred 
to as the quasi-SRSS rule for the peak floor acceleration response. 
 It may be noted that both variants of the proposed rule lead to peak floor accelerations greater than or 
equal to PGA. Peak floor accelerations may however be less than PGA, when 

ˆ ( )
1

n j
i jj
φ α

=∑  > 
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= +∑  and the peak relative acceleration maxira ,  is not large enough in comparison with PGA. 

Such a situation may arise when the structural system is flexible with respect to the ground motion. If the 
system is only moderately flexible and just a few of its significant modes have periods greater than the 
mean period of the ground motion, lower floors may experience “less than PGA” peak accelerations. This 
may however be true for upper floors also when the system is very flexible and the periods of several 
significant modes exceed the mean period. It is shown in the next section that both variants usually lead to 
conservative to overconservative estimates of peak floor accelerations and are more suitable for use when 
the structural system is not flexible with respect to the ground motion. 

NUMERICAL ILLUSTRATION OF THE PROPOSED RULE  

1. Example Buildings and Excitations 

 In order to illustrate the proposed rule, six earthquake ground motions with the details as in Table 1 
are considered. Five of these motions (Nos. 1–3 and 5–6) are recorded motions while one motion (No. 4) 
has been synthetically generated for a Mexico City site during the 1985 Michoacan earthquake (see Gupta 
and Trifunac (1990) for details). The Fourier spectra of these motions (as normalized to the unit 
maximum value) are shown in Figures 2(a)–2(f) (solid lines without dots). Also shown are the 5%-
damping PSA spectra after normalization with respect to their respective maxima (solid lines with dots). 
It may be observed that all six motions cover a wide range of energy distributions. The dominant period 
in these motions varies from about 0.48 s in the Parkfield motion (see Figure 2(e)) to about 5.5 s in the 
Borrego Mountain and San Fernando motions (see Figures 2(a) and 2(f)). The Michoacan motion (see 
Figure 2(d)) is also a long-period motion with the dominant period of about 2.6 s. The Imperial Valley 
motion (see Figure 2(b)) and the Kern County motion (see Figure 2(c)) are medium-period motions with 
dominant periods as 0.85 and 0.65 s, respectively. In terms of the band of significant energy, the 
Michoacan motion is on one extreme with significant energy over a narrow band of 1.8–3 s. The Kern 
County motion is on another extreme with significant energy over a large band of 0.2–5 s. In the San 
Fernando motion also, the energy is concentrated in a narrow band of periods, while in the Imperial 
Valley motion, the band of energy is fairly wide. The remaining two motions (Borrego Mountain and 
Parkfield) fall in between with the band of energy not being narrow or wide. 

Table 1: Details of the Example Ground Motions 

Record 
No. Earthquake Site Component 

1 Borrego Mountain 
Earthquake, 1968 

Engineering Building, Santa Ana, Orange 
County, California S04E 

2 Imperial Valley Earthquake, 
1940 

El Centro Site, Imperial Valley Irrigation 
District, California S00E 

3 Kern County Earthquake, 
1952 Taft Lincoln School Tunnel, California N21E 

4 Michoacan Earthquake, 1985 Mexico City Synthetic 
5 Parkfield Earthquake, 1966 Array No. 5, Cholame, Shandon, California N05W 

6 San Fernando Earthquake, 
1971 

Utilities Building, 215 West Broadway, 
Long Beach, California N90E 

 Three example buildings are considered such that the range of fundamental periods typically found in 
multistoried buildings is covered to a large extent. The first example building, henceforth denoted as 
Building-1 (or BD1), is a 24-story symmetric building with 2 s as its fundamental period. This building is 
same as that considered by Singh et al. (2003). The second example building (Building-2 or BD2) is a 15-
story symmetric building with 1.2 s as its fundamental period. This building is similar to that considered 
by Ray Chaudhuri and Gupta (2003). Building-3 (or BD3) is the third example (symmetric) building with 
5 stories and 0.514 s fundamental period. This example building is similar to that considered by Hu et al. 
(2007). The values of floor masses and story stiffnesses for the three example buildings are given in 
Table 2, and natural frequencies in various modes of vibration are given in Table 3. The fundamental 
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periods of the example buildings are also indicated in Figures 2(a)–2(f) (dashed lines) in order to clearly 
show the relative stiffnesses of the example buildings with respect to the example ground motions. On 
assuming that the effects of soil-structure interaction are negligibly small, it may be observed that BD1 is 
very stiff to the San Fernando motion, stiff to the Michoacan and Borrego Mountain motions, flexible to 
the Imperial Valley and Kern County motions, and very flexible to the Parkfield motion. On the other 
hand, BD3 is very stiff to the Borrego Mountain, Michoacan and San Fernando motions, little stiff to 
Imperial Valley and Kern County motions, and is in near resonance with the Parkfield motion. The 
example buildings are assumed to be classically damped with damping ratio of 0.05 in all modes. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2 Normalized Fourier amplitude spectrum (solid line without dots) and PSA spectrum 
(solid line with dots) for (a) Borrego Mountain, (b) Imperial Valley, (c) Kern County, 
(d) Michoacan, (e) Parkfield, and (f) San Fernando earthquake motions (dashed lines 
indicate the fundamental periods for BD1, BD2 and BD3) 
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Table 2: Mass and Stiffness Properties of the Example Buildings 

i 
Floor Mass mi Story Stiffness k (t) i (kN/mm) 

BD1 BD2 BD3 BD1 BD2 BD3 
1 7,426 280 166 6650 525 290 

2 7,426 200 166 6260 536 290 

3 6,918 200 166 5880 536 290 

4 6,970 200 166 5880 536 290 

5 5,849 200 141 5510 536 290 

6 5,587 200 

 

5480 536 

 

7 5,569 200 5480 536 

8 4,063 200 5100 536 

9 3,678 200 5010 536 

10 3,678 200 5010 536 

11 3,678 200 4960 536 

12 3,415 200 4920 536 

13 3,415 200 4920 536 

14 2,855 200 4720 536 

15 2,469 200 4670 536 

16 2,469 

 

4670 

 

17 2,329 4610 

18 1,769 4220 

19 1,769 4220 

20 1,524 4260 

21 1,278 4240 

22 1,261 4260 

23 928 4250 

24 771 4420 

Table 3: Natural Frequencies of the Example Buildings 

Mode No. 
Frequencies (Hz) 

BD1 BD2 BD3 
1 0.50 0.83 1.94 

2 1.24 2.49 5.65 

3 2.00 4.10 8.86 

4 2.78 5.64 11.29 

5 3.51 7.11 12.78 

6 4.30 8.50 
 

7 4.97 9.83 
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8 5.70 11.09 

9 6.34 12.26 

10 6.98 13.32 

11 7.58 14.25 

12 8.09 15.03 

13 8.61 15.65 

14 8.96 16.11 

15 9.37 16.38 

16 9.80 

 

17 10.51 

18 11.10 

19 11.59 

20 12.39 

21 13.24 

22 14.49 

23 16.42 

24 19.33 

2. Results and Discussion: η  and β  Ratios 

 The proposed rule is based on assuming η  and β  ratios uniformly as unity. It will, therefore, be first 
seen via a numerical study how good this assumption is. For this purpose, it is assumed that the response 
spectra associated with the example ground motions represent expected levels of the largest peak 
responses to the ground motion processes to which these example motions correspond. The peak floor 
acceleration responses of the example buildings, as computed from the time-history analyses for the 
example motions, also thus correspond to the expected levels of the responses to these processes. The 
PSDF of the base excitation process, ( )zS ω



, is obtained in case of each example motion by dividing the 
squared Fourier spectrum of the record by sTπ  where sT  is the strong motion duration of the record 
given by Trifunac and Brady (1975). The values of sT  are obtained as 54.74, 24.44, 30.54, 47.28, 7.52, 
44.34 s respectively for the Borrego Mountain, Imperial Valley, Kern County, Michoacan, Parkfield and 
San Fernando motions. Further, for the calculation of PRSA curves, the mean period cT  is obtained as 
0.38, 0.17, 0.25, 0.96, 0.19, 0.39 s respectively for these motions. 

 The calculations of iaη  and iaβ  are based on the expression of PSDF ( )
iaS ω , as given in 

Equation (5), and on the maximum values of the absolute acceleration ( )ia t , as obtained via time-history 

analyses. The calculations of Gη  and Gβ  are based on the ( )zS ω


 and PGA values. Further, V
jη  and V

jβ  

are computed from the use of PSDF, 2( ) ( )j zH Sω ω ω| |


, and SV curve, and A
jη  and A

jβ  from the use of 

PSDF, 2( ) ( )j zH Sω ω| |


, and RSA curve. 

 The results for the η  and β  ratios are shown in Figures 3(a)–3(c) and 4(a)–4(d), respectively. 
Figures 3(a) and 4(a) show the results for ia Gη η/  and ia Gβ β/ , respectively, in the case of the three 
example buildings (Building Nos. 1–3 referring to BD1, BD2 and BD3, respectively). Each of these 
figures shows the scatter of 6n values (for six ground motions and n  floors) of the η  or β  ratio for each 
example building. The solid lines depict the respective average values while the dashed line shows the 
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value assumed for developing the proposed rule. Figures 3(b) and 3(c) show the plots for ia V
jη η/  and 

ia A
jη η/ , respectively, in the case of BD1. Figures 4(b) and 4(c) show the plots for ia V

jβ η/  in the case of 

BD1 and BD2, respectively. Further, Figure 4(d) shows the plot for ia A
jβ η/  in the case of BD1. Each of 

these figures (i.e., 3(b)–3(c) and 4(b)–4(d)) shows the scatter of 6n values (of η  or β  ratio) for each of 
the n  modes. The solid curve depicts the variation of average ratio with the mode number, while the 
dashed line shows the assumed value. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 (a) /ia Gη η  ratio values for Building-1 (BD1), Building-2 (BD2) and Building-3 (BD3); 
(b) /ia V

jη η  ratio values for BD1; (c) /ia A
jη η  ratio values for BD1 

 It may be observed from Figures 3(a)–3(c) (and more such figures in Kumari (2007)) that all cases are 
associated with small scatters (within a range of about 0.15) in η  ratios. Further, the average η  ratio 
appears to depend on the mode number (in the cases of ia V

jη η/  and ia A
jη η/ ), decreasing approximately in 

an exponential manner with an increase in the mode number; in the case of BD1 (see Figure 3(b)), it 
decreases from 1.07 to 0.83. This is expected as higher modes are associated with greater number of 
peaks and thus with higher peak factors (Gupta (1994)). In the case of ia V

jη η/  (see Figure 3(b)), it appears 
reasonable to assume the ratio as unity because the first mode that contributes maximum to the total 
response is associated with a ratio greater than or equal to unity. In the case of η  ratios for PGA and RSA 
spectra, a value slightly less than unity could be assumed. However, for simplicity in the proposed rule, it 
has been preferred to continue with the value of unity. 
 In comparison with the η  ratios, the β  ratios are associated with much larger scatters as shown by 
Figures 4(a)–4(d). The range of scatter can be as large as 1.8 (see the 1st mode in Figure 4(c), and 20th 
mode in Figure 4(d)) and the use of mean value in such a case may not be justified. The observed large 
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scatter is due to the results for different ground motions taken together, as the characteristics of ground 
motions seem to affect the β  ratios significantly. To illustrate, if the results for each ground motion are 
considered separately in the case of the ia V

jβ β/  ratio for BD1, the coefficient of variation (COV) in any 
mode can vary from 0.034 in the Michoacan motion to 0.125 in the Parkfield motion. This is much less 
than the minimum COV value of 0.236 (the maximum value is 0.516), obtained for all six ground 
motions taken together (as in Figure 4(b)). It is, therefore, clear that each of the β  ratios should be 
correlated with the ground motion characteristics. Further, if we ignore scatter in the β  ratios and look at 
their average values, it is observed that these ratios can be as large as 1.02 and as small as 0.79 in the case 
of PGA, as large as 1.18 and as small as 0.57 in the case of SV, and as large as 1.00 and as small as 0.48 
in the case of RSA. Therefore, the β  ratios should also be correlated with (i) the fundamental period of 
the building, and (ii) the mode number in the case of the ia V

jβ β/  and ia A
jβ β/  ratios (these ratios appear 

to decrease with increase in the mode number, though in an irregular fashion). However, considering that 
the average ia Gβ β/  ratio is close to unity and that ia V

jβ β/  and ia A
jβ β/  ratios are close to unity for the 

fundamental mode in each case, it has been decided to assume all β  ratios to be uniformly equal to unity. 
These ratios could perhaps be assumed as 0.9 in the cases of ia Gβ β/  and ia A

jη η/ . However, this value is 
not very different from 1.0, and therefore, a uniform value of 1.0 has been assumed for the sake of 
simplicity. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4  (a) /ia Gβ β  ratio values for Building-1 (BD1), Building-2 (BD2) and Building-3 
(BD3); (b) /ia V

jβ β  ratio values for BD1; (c) /ia V
jβ β  ratio values for BD2; (d) 

/ia A
jβ β  ratio values for BD1 
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3. Results and Discussion: Proposed Rule and Its Variants 

 To illustrate and compare performances of the proposed rule and its variants (SRSS and quasi-SRSS), 
the three example buildings have been subjected to the six example ground motions and the estimates of 
peak floor accelerations obtained from (i) the (exact) time-history analysis, (ii) the proposed rule (see 
Equations (18) and (20)), (iii) the SRSS variant (see Equation (22)), and (iv) the quasi-SRSS variant (see 
Equations (20) and (21)). Absolute error averaged over all floors has been calculated for all 18 
combinations of example buildings and ground motions for the ‘proposed’, ‘SRSS’ and ‘quasi-SRSS’ 
rules and shown in Table 4. It is clear from this table that the performance of the proposed rule is quite 
good with the average error being less than 10% in most cases. The maximum average error of 19.9% is 
observed in the case of BD1 subjected to the Parkfield motion, and the minimum average error of 2.26% 
is observed in the case of BD1 subjected to the Michoacan motion. Since BD1 is very flexible with 
respect to the Parkfield motion, it appears that the approximations made in developing the proposed rule 
are most inappropriate when the structural system is very flexible to the ground motion. Further, since 
BD1 is stiff with respect to the Michoacan motion, these approximations may be most appropriate when 
the system is relatively very stiff. 

Table 4: Comparison of the Averaged Percentage Absolute Error (over Floors) in Peak Floor 
Acceleration for 5% Damping Ratio 

Record No. 1 2 3 4 5 6 

Example Building BD1 

Proposed* 12.67 8.18 11.73 2.26 19.88 6.07 

SRSS** 28.50 58.73 39.78 5.20 56.56 24.37 

Quasi-SRSS*** 27.50 52.19 33.92 8.35 47.58 24.02 

Singh et al. (2006) 16.23 15.82 17.91 23.35 16.62 21.94 

Example Building BD2 

Proposed* 7.03 15.75 2.56 11.81 12.31 4.09 

SRSS** 25.25 46.93 29.87 19.60 83.93 13.45 

Quasi-SRSS*** 28.97 49.42 30.91 20.85 84.00 14.29 

Singh et al. (2006) 38.58 30.07 18.06 40.87 37.70 30.34 

Example Building BD3 

Proposed* 4.17 4.62 9.29 4.07 3.56 5.68 

SRSS** 12.93 7.20 16.91 0.65 20.44 11.01 

Quasi-SRSS*** 15.44 10.51 12.98 9.05 15.73 7.63 

Singh et al. (2006) 106.73 85.31 101.71 122.84 109.94 120.26 

*Equations (18) and (20); **Equation (22); ***Equations (20) and (21) 

 The envelopes of floor accelerations for the worst case for each ground motion (see the error figures 
underlined in Table 4) are compared in Figures 5(a)–5(f). Figures 5(e) and 5(f) show the comparisons for 
BD1 in the cases of Parkfield and San Fernando motions, respectively. Figures 5(a) and 5(c) show the 
comparisons for BD2 in the cases of Borrego Mountain and Kern County motions, respectively. 
Figures 5(b) and 5(d) show the comparisons for BD2 in the cases of Imperial Valley and Michoacan 
motions, respectively. Comparisons for the remaining cases may be seen in Kumari (2007). In each of 
Figures 5(a)–5(f), ‘S’ refers to the results from the SRSS variant of the proposed rule, ‘E’ refers to the 
exact results, ‘P’ refers to the results from the proposed rule, and ‘Q’ refers to the quasi-SRSS variant of 
the proposed rule. It is seen from these figures that the results of the proposed rule follow the exact results 
well despite these being the worst cases for each ground motion. The results of the SRSS and quasi-SRSS 
variants follow the exact results on the conservative side. The results in Figures 5(c)–5(f) do not also 
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support the assumptions of ASCE (2003) regarding the (i) linear variation of peak floor acceleration with 
height, and (ii) peak roof accelerations as much as three times the peak ground accelerations. As shown 
by Figure 5(f), peak roof acceleration may even be greater than three times the peak ground acceleration. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5 Comparison of the floor acceleration envelopes for SRSS (S), exact (E), proposed (P) 
and quasi-SRSS (Q) estimates in the case of (a) BD2 and Borrego Mountain motion, (b) 
BD3 and Imperial Valley motion, (c) BD2 and Kern County motion, (d) BD3 and 
Michoacan motion, (e) BD1 and Parkfield motion, and (f) BD1 and San Fernando 
motion (see Equations (18) and (20) for the proposed estimates, Equation (22) for the 
SRSS estimates, and Equations (20) and (21) for the quasi-SRSS estimates) 

 On comparing the errors associated with the SRSS and quasi-SRSS variants of the proposed rule in 
Table 4, it is seen that both rules give comparable errors. This is expected since both rules differ from 
each other only in terms of the cross-modal correlation terms and since these terms do not play a 
significant role (the modes in all three example buildings are well-separated). Both SRSS and quasi-SRSS 
variants ignore correlation between the ground acceleration and relative floor acceleration, and this 
appears to lead to relatively larger errors in the cases like BD2 subjected to the Parkfield motion and BD1 
and BD2 subjected to the Imperial Valley motion. This may be due to the building being very flexible 
with respect to the ground motion (fundamental period of the building becoming as large as 10 times the 
mean period of the ground motion) and periods of several significant modes exceeding the mean period. 
Both SRSS and quasi-SRSS variants of the proposed rule are thus likely to work well as long as the 
structural system is not flexible with respect to the ground motion. Based on the example buildings and 
motions considered in this study, it appears that a range of 0.5–3 times the mean period (of ground 



228 A Modal Combination Rule for Peak Floor Accelerations in Multistoried Buildings  
 

 

motion) for the fundamental period of the building would ensure an average absolute error within 20%. It 
is also to be noted that the errors associated with the two variants are usually on the conservative side 
(about 97% times in the case of SRSS and 91% times in the case of quasi-SRSS). 
 In order to see how the simple SRSS variant compares with the recent recommendation of Singh et 
al. (2006), absolute error (averaged over all floors) in the case of Singh et al. (2006) has also been shown 
in Table 4 for the 18 example cases. It may be observed from this table that the maximum average 
absolute error in the case of the SRSS variant of the proposed rule is 83.93%, while it is 122.84% in the 
case of Singh et al. (2006). Further, out of the 18 cases considered, there are 8 cases in which the 
recommendation of Singh et al. (2006) gives lesser errors. Based on this limited study, therefore, SRSS 
variant of the proposed rule may be expected to perform better than the recommendation of Singh et 
al. (2006), particularly when the structural system is not flexible with respect to the ground motion. 
 In order to see how damping affects the relative performance of the proposed rule and its variants, 
results have also been obtained for 2% modal damping (instead of 5%), and Table 5 shows the errors 
associated with all three approximate methods. The observations based on the 5%-damping results are 
found to be broadly applicable in the case of the 2%-damping results also. In order to see more closely 
how the error in peak floor acceleration is distributed in the case of the proposed rule, cumulative 
probability density function for percentage error has been estimated by considering all 264 peak floor 
acceleration results (for 44 floors of the three example buildings, each subjected to the six example 
motions) and by obtaining the fractions of those results that have percentage errors below different levels 
varying from –60 to 60. For example, there are 143 5%-damping results that have negative errors with 
respect to the exact results (i.e., the exact results are greater), and thus the cumulative probability for the 
zero percentage error works out to 54.2%. The cumulative probability density function is plotted in 
Figure 6 for the 2%- and 5%-damping results. It is clear from this figure that damping does not have 
significant influence on the way errors are distributed in the case of the proposed rule. However, errors 
are distributed more symmetrically around the zero value in the case of 5%-damping results, and 
therefore, one can perhaps assume a greater value (than unity) for various β  ratios (or η  ratios, or both) 
for a more symmetric error distribution in the case of 2%-damping results. Such an exercise may however 
disturb the symmetry in the case of 5%-damping results, except when we choose a value slightly greater 
than unity, and may thus cause the maximum ‘average absolute error’ (see Table 4) to go up. 

Table 5: Comparison of the Averaged Percentage Absolute Error (over Floors) in Peak Floor 
Acceleration for 2% Damping Ratio 

Record No. 1 2 3 4 5 6 

Example Building BD1 

Proposed* 7.84 14.09 16.37 3.02 25.31 3.38 

SRSS** 16.16 31.72 10.32 3.57 29.35 13.06 

Quasi-SRSS*** 15.28 28.14 9.84 5.90 27.36 12.64 

Example Building BD2 

Proposed* 9.73 10.25 14.26 4.54 14.11 5.16 

SRSS** 13.08 22.35 8.60 12.82 56.86 9.43 

Quasi-SRSS*** 15.19 24.31 14.85 15.74 57.02 8.50 

Example Building BD3 

Proposed* 1.98 8.94 6.47 6.22 8.46 3.70 

SRSS** 10.83 2.72 14.10 2.14 10.42 10.11 

Quasi-SRSS*** 12.40 5.97 11.66 10.60 7.25 7.58 

*Equations (18) and (20); **Equation (22); ***Equations (20) and (21) 
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Fig. 6 Comparison of cumulative probability density functions for percentage error in the peak 
floor acceleration estimate from the proposed rule for 2% and 5% damping ratios 

 Though the cases considered in this study are not necessarily exhaustive or consider various 
possibilities in a balanced way, we can make following preliminary conclusions regarding the proposed 
rule. First, the absolute error in estimating absolute acceleration at the floor of a building does not exceed 
50%. Second, the probability of a negative error in this estimation is about 55%. Third, the probability of 
an absolute error within 10% is about 65%. The proposed rule can be improved further by considering 
more realistic β  ratios. This, however, requires an in-depth study on the correlations of these ratios with 
the ground motion characteristics and building periods.  

CONCLUSIONS 

 A modal combination rule has been formulated to estimate maximum values of the absolute 
accelerations of floors in a multistoried shear building. The building is assumed to be a linear, lumped 
mass, classically damped, fixed-base system, which is excited at its base by the ground motion described 
by a given PSA spectrum. The proposed rule is based on assuming the excitation and responses processes 
to be stationary and on the use of nonstationarity and peak factors to relate the (stationary) r.m.s. response 
with the (nonstationary) largest peak response. It is further assumed for simplicity that the peak factors for 
the modal responses and the total responses are equal and that the nonstationarity factors for these 
responses are also equal. The spectral velocity and relative spectral acceleration spectra are assumed to be 
approximated by PSV and PRSA spectra, respectively. The proposed rule includes (i) correlations 
between the ground acceleration and the relative acceleration in each mode, and (ii) the correlations 
between the relative accelerations in various modes. This rule requires just the knowledge of the dynamic 
properties of the building (mode shapes, modal frequencies and modal participation factors), the PSA 
ordinates, and the mean period of the ground motion. 
 A numerical study carried out with the help of three example buildings and six example ground 
motions with widely different characteristics shows that the peak floor acceleration estimates of the 
proposed rule follow the (exact) time-history estimates reasonably well through the building height and 
that the maximum average absolute error in any combination of building and excitation is less than 20% 
in the case of 5% damping. It is also seen that the probability of absolute error at any floor of being less 
than 10% is about 65%. In any case, this error does not exceed 50%. The performance of the proposed 
rule is excellent particularly when the building is stiff or very stiff relative to the excitation. It is also 
observed that two simpler variants of the proposed rule: (i) SRSS, ignoring all cross-correlations, and (ii) 
quasi-SRSS, ignoring the correlation between the ground and relative accelerations, give comparable 
errors for the example buildings with well-separated modes. Both ignore correlation between the ground 
acceleration and relative floor acceleration, and give estimates greater than or equal to PGA. In 
comparison with the proposed rule, the estimates from these variants are associated with greater errors 
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and those errors are usually on the conservative side. However, both variants are likely to work 
reasonably well provided the building is not flexible with respect to the ground motion. 
 The proposed rule is very convenient to apply as it uses the easily available PSA ordinates (including 
that at the zero period). For calculation of the mean period of the ground motion, it may be more 
convenient to use the PSV spectrum in place of the Fourier spectrum. The proposed rule can be made 
even more accurate by using more appropriate nonstationarity factor ratios. This however requires an in-
depth study on how to account for the effects of building and modal periods and ground motion 
characteristics on these ratios.  
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