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VIBRATION STUDIES OF A SURGE SHAFT SLAB

A.S. ArRYA* AND S.K. THAKKAR*

INTRODUCTION

Vibrations of siabs in the surge shaft chambers of hydroelectric power stations are
often caused due to dynamic effect of upsurge and down surge conditions and water
hammer effects due to sudden closing or opening of the gates. It is generally feared
that if the frequencies of the dynamic forces match with one of the natural frequency of
the slab, aresonance condition may arise which may lead to severe amplification of
forces. The problem of computation of natural frequency is complicated by the fact that
the slab being submerged in water, a virtual mass of water will act with it which is
expected to modify its frequency considerably. This contribution of the water can only
be determined by model test. This paper presents the results of an investigation carried
out by the authors in regard to the vibrations of Surge-shaft slab of Dehar power plant in
the Beas-Sutlej Link Project.

THE STRUCTURE

The general arrangement of water carrier tunnel, the surge-shaft chamber and its
top slab is shown in Fig, 1. The clear diametsr of the slab is 22.9m and thickness 2.14m,
There are three port openings of 3.66m x 1.07m each in the slab. The slab is anchored
to tgp rock through rock bolts and it is to be designed for the following two loading
conditions:

(1) A differential water head of 73.2m acting upward from below in case of worst
“upsurge” condition. _

(2) _ A differential head of 33.6m acting downward from above in case of worst
“down-surge” condition.

(3) A load of 4.57m of rock is to be taken as if suspended from the slab through
rock bolts when the upsurge condition occurs. The same load is assumed to act in esti-
mating the lowest natural frequency of slab.

Figures 2 and 3 show the results of upsurge and down surge studies. The slab
is also subjected to water hammer corresponding to gate closing time of 6.5 seconds.
Figure 4 gives the maximum pressure rise wave at the slab location due to water
‘hammer (1).

METHOD OF ANALYSIS

As seen from Fig. [, the surge shaft slab is a circular slab of 22.9m overall diameter
having a cut of 7.62m diameter at one end, a tapering thickness from 5.18 to 2.14m in
the portion where the inlet tunnel joins the chamber, and three rectangular openings of
3.66m x 1.07m where the penstock tunnels take off. The slab is monolithic with the
shaft lining as well asthe riser wall and is assumed to have fixed boundary condition
there. The main problem was to determine the natural frequency of the slab of varying
thickness and having an irregular fixed boundary. The natural frequency of such a com-
plex system cannot be determined in a closed form and numerical technique had to be
used for obtaining the results. The finite difference approach was used for obtaining the
frequency determinant and computing the natural frequencies and mode shapes of the
slab. To have a thorough check of the numerical work, the same finite difference operators
as were used for the actual slab conditions, were also used for finding the deflections and
moments under uniform load and also frequencies of solid uniform circular slab for which
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accurate results are available, A close agreement in the results was found indicating that
the method and expressions could be used for the complex slab with confidence.

FINITE DIFFERENCE PATTERN

The slab was divided into a rectangular grid as shown in Fig. 5. The goneral finite
difference pattern for an internal point of the siab is shown in Fig. 6 whereas the ex-
pressions for various terms a, to a,, are given in AppendixI. This pattern is a general
one which could take care any elemental distances between the grid lines as indicated by

the fractions r; to rg (2).

BOUNDARY CONDITION

The slab being fixed' at the boundary two conditions can be applied at each
boundary point, namely, tg) deflection at the boundary is zero and (ii) the slope of the,
deflected slab aormal to the boundary can be replaced by a series of straight lines forming
a large size polygon, the slope of the surface along the tangent to the boundary may also
‘be assumed to bo zero.  Thus the slope of the surface may be taken equal to zero at the
boundary in any direction. This condition was used in writing down the finite difference
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Fig. 6. Finite Difference Pattern for an Internal Point
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patterns at points near boundary and for eliminating the imaginary points beyond the
boundary.

EQUILIBRIUM EQUATIONS AND NATURAL FREQUENCY

Applying the finite difference operators to the various grid points within the slab
a sufficient.number of equations was written in terms of the deflections at the grid points.
In determining the natural frequency and mode shape in any mode, the applied load was
replaced by the inertia forces of the mass of the slab which is a function of the deflection
at the point under consideration. Thus the equations of equilibrium at all grid points
result in an equal number of homogenous simultaneous equations. From the frequency
determinant of the coefficients in these equations, the natural frequencies and mode
shapes have been derived.

ANALYTICAL RESULTS
Three cases of slab were considered as follows:
(a) Uniform circular slab fixed at edges (symmetrical about XX)
(b) Uniform circular slab with circular cut to riser (symmetrical about XX)

(¢) Non uniform circular slab with circular cut due tg riser (symmetrical about XX).
The effect of rectangular holes was neglected in view pf their small size as compared
with the size of the slab. : .

. The fundamental frequency and mode shapes for the above three cases are given in
Fig. 7 and the frequency values are 18.48, 31.55 and 38.09 c/s respectively. The corres-
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Fig. 7. Mode Shape and Frequencies of Surge Shaft Slab.

ponding frequencies for the case of rock load suspended from the slab will be 10.5,
17.93 and 21.7 cycles per second.



Vibration Studies of a Surge Shsft Slab 127

MODEL TESTS

The model was made in perspex to a scale of 1/39 of the prototype radius. First the
slab was kept without hole or risers. Natural thickness of sheet was used which repre-
sented the thickness of slab to 1/710 scale. The slab was tigidly connected to the
container walls by gluing it with chloroform. The frequency of the slab was determined
in air in free vibrations and found to be 25 ¢/s. When extrapolated to the prototype
through dimensional relationships, the prototype frequency of solid uniform 2. 14m thick
slab would be 18.1 ¢/s which compares very closely with the value of 18.48 ¢/s found
by the finite difference solution. For this case closed form solution is also available and
the frequency by that works out as 18.81 ¢/s. Thus the experimental and analytical
results show very close corroboration.

Next this model was modified to incorporate the riser and port openings so as to
simulate the required condition. The slab was still uniform in thickness and the increase
in thickness was not incorporated. Since the increase in thickness increases the frequency,
the uniform condition was on conservative side. The model slab was tested for vibration
in air as well as under water. The model frequencies of uniform slab were found as
27.8 c¢fs in air and 2.04 ¢/s in water. The large reduction of frequency under water
occurs due to a mass of water which virtuglly vibrates with the slab. The equivalent
depth of the virtual mass of water was found to be 1. 14 times the diameter of the slab.
When the same ratio is assumed for calculating the frequency of the prototype slab,
and the experimental frequencies are extrapolated to the prototype, the fundamental
frequency under various conditions are found to be as follows:

In air
For self weight of uniform slab, f = 20.1 c/s
For slab.{-rock load ' = 1l.4¢fs

Under water
For slab+4-rock load +virtual mass of water, f = 6.92¢/s

Thus the lowest value of fundamental frequency is indicated to be 6.92 c¢/s. Actually
whole rock mass will perhaps not be dislodged from the rock and suspended from the
slab. Thus the frequency of 6.92 ¢/s will be a conservative value,

AMPLIFICATION OF PRESSURES

From the results presented above it is seen that the lowest possible frequency of the
surge shaft stab could be 6.92 c/s. From Fig. 4 the frequency of the water hammer is
found to be0.31¢/s. Itis thus seen that the frequency of water hammer pressure pulse
is only 0.0447 of the frequency of the surge shaft slab. In a case like this, no appreciable
dynamic amplification is obtained. Therefore, the water pressure under various con-
ditions may be assumed to be applied to the slab statically for design purposes.

CONCLUSION

(1) The analytical frequency of uniform circular slab éomputed by the finite difference
pattern differs from the analytical closed form solution by 1.8% and from the experi-
mental value by 2%, thus proving the suitability of the method adopted.

(2) The virtual mass effect of water on the frequency of the slab is substantial. In the
case studied herein, it is equal to the mass of water having a depth 1.14 times the
diameter of slab. Thus it must be given due consideration.
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(3) In the case of Dehar Surge shaft slab, the lowest probable natural frequency of the
slab is more than 20 times the frequency in water hamer wave, hence no possibility of
resonance. The dynamic amplification of the pressures is negligible.
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APPENDIX-I

Values of a,, to a,, for finite difference pattern for an internal joint.
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