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DYNAMIC RESPONSE OF A PLATE RESTING ON A
VISCOELASTIC SUBGRADE

BisgaN KisHor*

INTRODUCTION

The‘theory of beams and plates on elastic foundations is one of the most impoi-tant fields

of study in mechanics. Large number of papers have appeared on the subject!!) and most
of the studies in this field were based on the Winkler-Zimmermann hypothesis. H. Hertz

(1886) was the first to give a complete analysis of floating elastic plates. Wymen!® and

Meyerhof'® analysed ice sheets as floating plates on liquid foundations.. An excellent
account of plates on elastic foundations is available in the classical book of Timoshenkeo.
and Woinsky-Kreiger'’. E. Reissner‘® analysed thin plates on Winkler foundation having
variety of boundary conditions including non-linear effects. Sinha®’ solved the problem
for large deflections and Woinsky-Kreiger™ and Kaczkowski® solved the problem for
anisotropic plates. Y.Y. Yu'® solved ; the problem for simultaneous axial and lateral loads.

Freudenthal and Lorsch?® and Hoshkin and Lee''" have presented investigations
of infinite beams and plates on Maxwell and Kelvin type of foundations. Pister and Willi-
ams''¥ and Pister'’® show the application of Reissner type model representing differential
shear. The dynamic response of a bedm on a viscoelastic subgrade has been discussed
by Achenbach and Sun®4.

The present paper deals with the evaluation of dyanamic response of a plate resting on
a viscoelastic subgrade and subjected to dynamic surface loads with spatial force distribu-
tions corresponding to that for rigid base, umform dnd parabolic distributions.

FORMULATION OF THE PROBLEM

In the present case an infinite clastic plate is considered resting on a three-element
standard linear viscoelastic solid represented by a spring k, in series with a Kelvin-Voigt
¢lement having spring k, and dashpot ¢. It appears as if an infinite number of viscoelastic
elements are required to represent this system. But due to the linearity of the viscoelastic
solid the analysis may be carried by considering spring and dashpot constants per unit of
area.

The differential equation of motion for a homogeneous, isotrbpic and thin elastic plate
resting on a viscoelastic subgrade is given, for axisymmetric case, by the following;

D V4, W (R, t)+maw(R VP R, )—Q (R, 1 BT e}

where,
2 1 3\
s (2 &
v 1‘“(aR= FR BR)
and the relation between the deflection of the viscoelastic element and the subgrade reaction
due to its deform.ation is expressed by the following equation;

Q. (R t) oW (R, 1)

at (2

{(ki+ko)/ki} Q (R, t)-+(c/ky)

=k, W (R, t)+c
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. The initiaf conditions of the system ‘ate specificd by the foHowing. rélations; .
W (R t)=f, (K)
(t=0)

AW (R t) ...03)
—ar —f(R)

The formulation for the problem is completed by specifying deflection and-its normset
derivative on the boundary and these boundary conditions are given by the following;

W (R, =g, (R, 1) ), L ‘ |
oW a(:-’ t)-—-'-g,' ® 1 }ﬁ((')n boundary, t > 0) voo(d)

whsfe’n 'réprbidats ‘the’ directions ‘of the outward norinal ‘at‘a point ol 'thb”ﬁ‘bundafy.
Now, the following nondimensfonal parameters aie defined

I=R/8 o t'[t"
s B i
Vi=3 74,

' e
mon= (it [ 12 1 "

WEDSWR S
p (r, ©)={12 (1 —v*)/E} (3/h)* P (R, t)
q (r, ©)={12 (1—v8)/E} (3/h)* Q (R, t)

Fy (0= £ (®)
Fy (=5 i (®)
G, (1, D=4 & (R,D)

Gy (6, 9=5 £ (R, 1) )
3=plate characteristic dimenston :
In addition to the above parametors the following quantitics are’ defined ;
Eg==(u® p?)/(u*,+p?,)==relaxed elastic modulus,

te=nf( ) =time of relaxation of load under the condition of constant
. deflection,
Ta="ful, =time of relaxation of deflection under the condition of
constant lodd:
Using the parameters defined above, the equations (1) to (@) are rewritten as follows;
7w @+ 8D p 10— 5 0 . ®)

Er w {r, 'r)-i—-En e alég—-r—)-

—q (r, T)+¢,aq-——g’ 7). (D
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w (r, 7)=F, (1) ; :
dw(r, 1) _ F, (1) (+=0) ...(8)

ot
w (t, 1)=G, {r, <)

awa(;’ T)=Gz {r, x)

In the case of an infinite plate the problemris compietely defined by equations (6) to
(8 and thi conthitions: that as 1.— 0, w.— Gand as 1. — 0, Wy,

} (On boundary, « > 0) .9

METHOD OF SOLUTION

The Hankel transform T (p, <) of a function f (r, <) is defined as follows;
. 7, -;):[f" rJ; (6 DL, 1) dr ...(10)
[

Applying the Hankel transforms (10), by the multipieation of rJ, (p.#} to- hoth sides
of the equations (6) to (8) and integrating between the limits-0 to oo; thie following sets
of equations are obtained} .

d’_‘;" (Ps 1)

o'W (e, )+ =Ple, D —q (¢, 7) - (1
Ex¥ (0. )+ B v, o@D g (o 4, BB 1)

w ( 7)=F, (p): }1.
' (r=0) 13y

AW () R
P ~Fo o)
MrTohe Laplace transform to ‘F(p, g} of a function F—(P, <) is defined’ by the following
reliation; :

T 8)=[:e-"?rp, 1) dr. ' ... .(14)

Applying the -Laplace transform to (11) and (12) and using the initial conditions
(13)-the following equations are obtained;

G (b, 8)+a (s =P (p> 9+5F; (B+F () -e e (15)
(Er+sErt, ) W (p, 8)—(ze3+ 1) q (p, 8)=Er 7, F; () —q (+0), ....(16)

. Equations (15) and (16) are two simultaneous equations have i?v'('p, s) and cT(p, 8) as
the utknown. Solving these equations result in the following; .

_ ple 9+ Fi(p)+Fa () 1
w(e, 9)=(1/A) ....(D
{Baty Fy (0 —1eq (+0)} —(zes + 1)
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| (o*-+) (P (e.9)+5F, () +Fs ()
qie, 5)=(1/A) g . ... (18)
Er (14 708) {Er 7, F; () —eq (+0)}

wherc :

(s 1
Er (1474 8)—(1 4145}

Applying the inverse Laplace and Hankel transforms to (17)and (18) yields the
following for w(r, 1) and q(r, *); :

1 - +im
e 9=z [ ek o
{p (e, 9)+5F, (0)+F, @} 1+, 8)+{Ert, F, (p)—: q (+0)}
o "+ (It )+ Er (1+7,5)

= im
CaEg=—gg [ IT. 03y (b 7).

A=

erdsde  * ...(19)

(¢*+5%) {Ex =, F, (o) — % T (+ O} —Er (14, 8) {p (e, 5)+5 F, (9} +F, (p)

(o*+8%) (T4, 8)+Er (1+7, 5) e dsd p

...(20)

EVALUATION OF DYNAMIC RESPONSE FOR IMPULSIVE SURFACE
LOADING

Equations (19) and (20) are the general expressions for the dynamic response and the
viscoelastic subgrade reaction for any type of given dynamic load and initial conditions.

In this section the analysis is presented for the case of an impulsive surface loading with
homogeneous initial conditions.

Let the dynamic surface load be given by the following; 7 ‘
p(r, )=p (1) 5 (v) : 2D
where, 8 (v} is the Dirac-delta function with Laplace transform equal to unity and p(r) is
a function of spatial coordinate r only. ‘

Applying Laplace and Hankel transforms to equation (21) results in the following;

P (5, 5)=F () | 2

Substituting for ; (p, s} in (19) from (22) and applying the given initial conditions re-
sults in the following expression for the dynamic deflection;

wir o= L[ [ D) (I+mg)erdsdp |
w (T, ‘?‘mjo L_hPJo ©0) ) (Ot O+ Br (T ®) -+ +(23)

Using the tabulated inverse Laplace transforms (¥ for the evaluation of the inner
integral of (23) and substituting gives the following;

= — 1+, a T 1412 agy
Wi 9=[ e do @) 0 [ G e o e )

0 1+Tg ax 3T
S s Gl C D)
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where, a,=Ay+By—b/3a ;
a,

ay=—k +i (v3/2) (As—By)—b/3a ;

“':.—% —~i (v/3/2) (A,;—Bg)—b/3a ;

are the roots of the equation,
te S3-+82+ (<¢ p'+En o) 5+pt+Er=0 .. -(29)

and ' Ag=[—b/2+(b¥/4+as2n )
By== —[b/2+(b¥j4-+a%2n))?
8=P‘+El:—°

1 1 2
b"_':r:' (F“'*‘El)""}rcs (e P"‘l‘ER Tﬂ)+ﬂ'

APPROXIMATE DYNAMIC RESPONSE OF THE SYSTEM

It is quite evident that the evaluation of the integral in (24) is exceedingly difficult.
But an approximate expression for the dynamic deflection may be obtained when the
relaxation time (r,) is very small and can be neglected for all practical purposes. For this
case, w (r,7) is given by the following;
- - 1 y4lm et dS dp
w (T, 1)=L ede eryp (o) EiL_i. [(1—a e Br} 8V 4+Ex (1o—e) s+(p*+57)]
if, A=1—-x; 0, En
B - ER (‘Tu—‘“ Tg)
C=p*+E,
then (26) may be written as follows :

. — 1 {yrl=  evrds
w(r, ©)= Io 2 Jo (¢0p (P) = I‘r—i- m‘ip- ...(27)

The evaluation of the inner integral in (27) leads to the following three cases, depend-
ing on whether

BZ—4AC > 0, B* —4AC=0 or B'—4AC < 0 ;

. .(26)

w (T, T)= j " 03 (en) D —:; (67 —e~o%) dp, if B2—4AC > 0, ...(28)
1]
W, 9=[" ¢ 3o (1) 5 (@) 1A ¢~ dp, if B'—4AC0, ..(29)
a
w (r, 1)-,[' eJo (1) D (p)%e“‘11 sin ;% dp, if B—4 AC < 0, : <. (30)
0
where w={1/(2A)} (B+u} ;

B={1/2A)} (B—p) ;
p=(B2-4AC} ;

2, =B{(24) ;
o=(4AC—-BY ,

Since for dynamic response B2—4AC < 0, therefore, (30) represents the solution of
the present problem.
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EVALUATION OF P (r)

It is important to note that the settlement of soil and similar materials under uniform
surface loads is not uniform. This requires the foundation to be flexible so as to conform
to the deflection.  But if the flexible foundation is replaced by a rigid one carrying the same
load then the contact pressure distribution would change. In soil-foundation systems three
types of pressure distributions are commonly used, viz. the rigid base approximation, uni-
form and parabolic load distributions. Hence following Sung®®’ the pressure distributions
may be expressed by means of the following Fourier-Bessel integral ;

P(O=0/= R} * M ER) I () ok .G
where, '
M (£ Ro)=(1/2) sin (£ R,), for rigid base;
=J; (£ Ro), for uniform loading;
=41, (§ RY/(& R,), for parabolic loading;
and Ry==radius of the circuiar base.

The integral in 331). when evaluated for the three types of spatial pressure distri-
butions, gives the following: -

(i) For rigid base :

P for r<R
p(r)=% 21 R (RE,— )1~ ’ e
0 for r>R, ,
(ii) For uniform load :
P/(r R¥) for r<R,
p(r)={ ...(33)
0 for r>R,
(iii) For parabolic load :
{{ZP/(TF R2)} {1 —(t/Ro)} for r<R,
)= .39
for r>R,

RESPONSE EVALUATION FOR RIGID BASE APPROXIMATION

The spatial force distribution for this case is given by (32), therefore, applying
Hankel transform to it gives the following for p(p); '

- - P
ple)= Io tly(pr) 2z R, (R%, )% dr

~{P/(2x Ry)} —P‘— sin (sRy) - ..(39)

Substitution of p(p) from (35) into (30) results in the following :

L P _ - 1 . . -
w.(r, ‘r)=2n R, s L Jo (pD) - 2 sin (p Ry) sin ;—; de .. (36)
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RESPONSE EVALUATION FOR UNIFORM LOAD DISTRIBUTION

The spatial force distribution is given by (33) and applying Hankel transform to it
gives the following for 7 (p);

F =] 1) o &

={P/(= R%)} (Ro/p) J; (PRq) .37
Substitution of § (p) from (37) into (30) and using the following limit,

, lim ¥, (p Ry)/(p Ro)=1/2
Rgo—>0
results in the following: | .
w(r; 1)=(P{r) e~ ™" L ¢ Jg (pr) - sin ;—KT dp | - ...(38)

RESPONSE EVALUATION FOR PARABOLIC LOAD DISTRIBUTION

The spatial force distribution for this case is given by (34) and applying Hankel
transform to it gives:

5 @)= 3 (1) g (1R} dr

2P T4R 2RE
ZW—R—“J [—ng J, (pRo)— ';i"t" Jo (PRO)] .--(39)

Substitution of p (p) from (39) into (30) and on simplification the following is obtained:

4P - 4R 2R3 I .,
w(r, T)=Wo e~ %" [ _L pdo (p1) 5 ?0—11 {¢ Ro)— “;?P,JG(P Ro)}? sin gi—; dp

..(40)
DYNAMIC RESPONSE EVALUATION FOR PULSE LOADING
Let the dynamic surface load be given by :
p(r, Ty=p(1) F (7} .o .(4D)
where F (<) is a general type of pulse loading given by .
{1—etriT
i—T—:'_"eB—,fOF OQTQT/Z
F (1)31 1 20 (1-7/T) T -+ (42)
(__TT for T< t< T

It can be observed from equation (42) that for ® -» — o, the pulse shape approa-
ches a rectangle, for 0 - + oo , a spike and for 6=0. It represents a triangular pulse.
The other pulse shapes of common interest can be obtained by giving suitable values to 0.

The response of the system with rigid base approximation under a pulse loading given
Fggquatton (41) and can be obtained as below by applying convolution integral to equation

_ P [ [*2Js(r)sin (oRy) _

w(r, 1) IR, E

g—x1T1 §in 91
ey g A
20 [1—— '
.{l—e (-3 )}dpd-rl .. .(43)

T—T1
Similarly, the responses for uniform and parabolic load distributions can be obtained
by applying convolutions to (38) & (40) as :
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r . - —x3T1 i} '1
w(r,‘:)==£ e 1, {gr) c — §in ot 1-—@:2 ( T ) dedr, cra o (44)
") 1, o(1—e¥) 2A
4P - 4R 1
w{r, T)ﬂ,;ii;‘ . L Jo (pr) T:Jl (p Ro)m)' .
. e Ty sin ;X{l—e ( T .}de"‘: ver(45)

CONCLUSIONS

Expressions, for the dynamic response of a system of plate and viscoelastic subgrade,
have been obtained for impulsive surface loading with three most commonly assumed
pressure distributions in soil-foundation systems. The standard linear viscoelastic solid
used for the subgrade may be assumed to represent soil as it exhibits an initial elastic res-
ponse and a delayed elastic response. These two elastic responses are the limit cases corres-
ponding to the case of an elastic plate on an elastic subgrade and to the case of an elastic
plate on a Kelvin-Voigt type subgrade. These limit cases are discussed below:

(i) Elastic Plate on an Elastic Subgrade :

The dynamic response for this case is obtained from that of a standard linear viscoe-
lastic subgrade by letting n — 0 inequation (23) as

1 (= [ree ) P(e) e ds
W ()= 2ri L J"r-in ? Jo‘(PrJ pt+s84(u?, rhy/(p?y +1s®) de e 146)
On.evaluation of the inner integral of (46) and then substituting the resultin it, the
response is given by the following :

W 9=["ed e 7@ BELIT g, .47

(ii) Elastic Plate on Kelvin Voigt Type Subgrade :

The dynamic response of an elastic plate resting on a Kelvin Voigt solid correspongds
to another limit case of the standard linear viscoelastic solid by allowing the constant of
initial elasticity to increase beyond limits. The response for this case, as obtained from
(23) by letting p*, — oo, is given by the following;

L1 = ¥ P (p) ¢ ds
W= | vie PR OD G B (T O -+ 8)

Evaluation of the inner integral of (48) and subsequent substitution of the result in it gives
the following: .

w (t, D)=e—it L el ®
where, E'r=¢?, and B2, =(p4-+pt,).

: i
s Mfi-n”) 74 ... (49)

The dynamic response given by (49) contains ¢~ #7* ghowing a finite amplitude of the
system under dynamic loads which is quite expected of a viscoelastic subgrade.

SUGGESTIONS

The method presented in the paper may be used to calculate dynamic response of a
plate foundation system under any type of dynamic load by using the equation (19) and
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equation (20} for the evalvation of the subgrade reaction. This reaction force, when
divided by the dynamic deflection; shall give, what may be called, the coefficient of dya-
namic vis coelastic subgrades reaction.
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NOTATIONS

D=Eh%/12(1 —v¥)=plate flexural rigidity:
m=p.h=mass per unit area of the plate;
h=plate thickness;
v=Poisson’ ratio; '
pr==mass density of the plate material;

P (R, t)=applied transverse dynamic load per unit area of the plate;

Q (R, t)=viscoelastic subgrade reaction, force per unit area;

k,, k,=spring constants of viscoelastic model, force per unit area per unit deflection;
c=viscosity constant of the viscoelastic model expressed in force per unit area per
unit velocity; '
W (R, t)=transverse deflection of the mid-plane of the plate.



